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Abstract 

This paper presents a new method of predicting the liquid crystalline behavior 
of some organic compounds, using feed-forward neural networks. The 
prediction of properties is correlated with molecular weight and a series of 
structural characteristics estimated by mechanical molecular simulation. An 
efficient genetic algorithm based method is used to determine optimal topology 
of the neural model. 

Keywords: neural networks, genetic algorithms, liquid crystal properties. 

1. Introduction 

The design of materials possessing desired physical, chemical and biological 
properties is a challenging problem in the chemical, petrochemical and 
pharmaceutical industry. This involves modeling important interactions 
between basic structural units for property prediction as well as efficiently 
locating viable structures that can yield desired performance on synthesis [1].  
The use of neural networks to the prediction of properties of organic compounds 
has as main advantage the fact that neural networks can simulate the nonlinear 
relationship between structural information and properties during the training 
process, and generalize the knowledge among homologous series without need 
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for theoretical formulas. The ability of neural networks is significant in 
determination quantitative structure-property relationship, because compounds 
with known properties can be used to train networks, so that, subsequently, 
properties of other compounds that can not be ascertained by experimentation 
can be determined [2]. 

2. Problem Statement, background 

In our times, the reduction of the number of experimental trials represents a 
requirement that is more and more felt in the field of the study and analysis of  
chemical phenomena. Determination of the properties of some organic 
compounds based on their structures is a major research subject in 
computational chemistry. A common goal of materials science is the 
determination of relationships between the structure (microscopic, mesoscopic 
and macroscopic) of a material and its properties (mechanical, thermal, 
magnetic, optical, electrical, environmental and deteriorative). This information 
is crucial for engineering materials that provide a pre-determined set of 
properties [1]. The explosion in computational power of modern computers as 
well as their inexpensive availability has prompted the development of 
computer-assisted procedures for designing new materials to ease the protracted 
design, synthesis and evaluation cycle. Computational molecular design 
systems require the solution of two problems: the forward problem which 
predicts physical, chemical and biological properties from the molecular 
structure, while the inverse problem requires the identification of the 
appropriate molecular structure given the desired macroscopic properties.  
The property prediction methods may be evaluated based on their classification 
as empirical, semi-empirical, theoretical and hybrid approaches. The empirical 
methods usually require extensive data collection and result in linear or simple 
nonlinear structure-property relations. Computations are very rapid at the 
expense of prediction accuracy. In addition, these methods require a specific 
functional form which may not always be available and the parameters 
determined by regression from the data. They are also computationally 
expensive, but provide excellent property estimations. Most approaches settle 
for the middle ground by utilizing simplified assumptions as those found in 
semi-empirical methods and hybrid approaches. These methods provide the best 
compromise between model development effort, computational time and 
property prediction accuracy. In this regard, neural network based methods offer 
advantages of ease of development and implementation, and execution speed, 
while maintaining a high degree of accuracy of predictions. Neural network 
based models are relatively model free, in the sense that the underlying 
functional form is not as rigorous as in the traditional model based methods. 
This adds to the generality of these methods.  
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Different machine learning algorithms, including hierarchical clustering, 
decision trees, k-nearest neighbours, support vector machines and bagging are 
used in structure prediction [3]. 

3. Paper approach  

In the organic compounds’ field, the efficient design of new materials requires 
the prediction of the compound properties and the selection of the best structure 
from all the potential possibilities. To solve this problem, a quantitative 
structure-property relationship is necessary and as a function of the investigated 
property some methods are given in the literature [4, 5]. One of the most 
interesting properties of organic compounds is the liquid crystalline (LC) 
behavior, because in this state the materials combine two essential properties of 
the matter: the order and the mobility. But, due to the complexity of the liquid 
crystalline phase, it is not at all easy to predict the occurrence of a mesophase. 
There are many methods of predicting the liquid crystalline behavior based on 
molecular, energetic or structure-property relationship models [6-8]. 
In this paper we used an organic compounds database [9] (122 in all) which 
includes a wide variety of azo aromatic compounds containing different units 
connected to the azo aromatic core. The present approach is an opportunity to 
prove the utility and the efficiency of the neural networks for classification 
problems, particularly for quantifying the relation structure – properties for 
some azo aromatic compounds. Simple neural networks and accessible 
methodologies provide good results in LC behavior predictions. A new genetic 
algorithm based method is used to design optimal topology for neural model. 
The prediction of properties is correlated with chemical structure, molecular 
weight and a series of structural characteristics estimated by mechanical 
molecular simulation. 

3.1. Methodology  

Feed forward neural networks represent a method for building models when a 
non-linear relationship is assumed [2]. The processing elements of a network 
(the neurons) are organized in layers and each neuron is linked to the neurons of 
the next layer. Typically, a feed-forward network consists of one input layer, 
some hidden layers and an output layer. In the training phase, the neural 
network learns the behavior of the process. The training data set contains both 
input patterns and the corresponding output patterns (also called target patterns). 
Neural training leads to finding values of connection weights that minimize 
differences between the network outputs and the target values. The most 
extensively adopted algorithm for the learning phase is the back-propagation 
algorithm. The purpose of developing a neural model is to devise a network (set 
of formulae) that captures the essential relationships in the data. These formulae 
are then applied to new sets of inputs to produce corresponding outputs. This is 
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called generalization and represents subsequent phase after training (validation 
phase). A network is said to generalize well when the input-output relationship 
found by the network is correct for input/output patterns of validation data that 
were never used in training the network (unseen data). 

3.2. Experimental arrangement 

The establishment of the numerical inputs for neural models (molecular 
descriptors) is a critical and difficult problem. This is due to the fact that the 
molecular descriptors must represent the molecular structural features related to 
the properties of interest as distinctly as possible. The prediction accuracy of 
neural networks depends heavily on the amount of correction between the 
molecular descriptors and the structural features. We used as molecular 
descriptors: length of the rigid core, length of the flexible core, total length, 
molecular diameter, molecular weight, ratio molecular diameter / total length. 
The molecular descriptors were estimated by mechanical molecular simulation 
using Hyperchem program. Concerning the liquid crystal behavior, we have 
coded with “1” the possibility to generate a mesophase and with “0” the 
crystalline or amorphous phases. This is the symbolic output of the model. 

3.3. Case study 

The combination of different structural units in a molecule gives rise to physical 
properties which are very important when designing new liquid crystals.  For 
practical use, the materials should not only have the molecular structure suitable 
for inducing liquid crystal properties, but also an appropriate combination of 
physical properties for that application. The factors influencing the molecular 
unit are varied and include core units, connecting groups, terminal groups, 
lateral groups and lengths of flexible chains. All these structural factors affect 
the nature of interactions between liquid crystalline molecules and are very 
important for obtaining the adequate mesomorphic behavior. The organic 
compounds used in this paper have similar structures with small structural 
changes that allow a systematical analysis of the factors that influences liquid 
crystals properties and determination of some parameters that will be used in 
prediction with neural networks. Our database contains compounds with 
different units connected to the azo aromatic core such as CN, Br, variable 
length alkyl chains, ketones by means of ester or ether linking group. 

3.4. Results & discussions 

The feed-forward, multilayered neural network is the most used kind of neural 
networks because the simplicity of its theory, ease of programming and good 
results and because it is a universal function in the sense that if topology of the 
network is allowed to vary freely it can take the shape of any broken curve. 
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Firstly, the data are split into training and validation data sets because it is more 
important to evaluate the performance of the network on unseen data that 
training data. In this way, we can appreciate the most important feature of a 
neural model - the generalization capability.  
One major problem in the development of neural network model is determining 
the network architecture, i.e. the number of hidden layers and the number of 
neurons in each hidden layer. We propose a genetic algorithm based method for 
detecting the optimal topology for a neural network that should approximate as 
well as possible the test data. The representation of solutions in chromosomes 
must simultaneously takes into account two problems: including the information 
on network topology (number of hidden layers, number of neurons in these 
layers) and including actually the connection weights and biases of the neurons, 
with the purpose of verifying the network training errors. All this information is 
coded by real numbers that is why we use the real encoding for the chromosome 
genes. The fitness function is equivalent in the present approach to calculating 
the mean square error for the test problem for the neural network represented by 
a certain chromosome. The chosen representation has both advantages and 
disadvantages. The advantage is the simplicity of the approach, as the genetic 
algorithm also accomplishes the finding of the optimum topology and the 
training of the neural network (determining the connection weights that allow 
approximating the test data). The disadvantage is represented by a long training 
time because of the big number of chromosome genes (information regarding 
the topology and the connection weights and the biases of the neurons). Details 
about our method is given in [10]. A MLP(4:42:14:1) is obtained, with MSE 
(Mean Squared Error) = 0.01831,  Ep (percent error) = 1.1133 % and r 
(correlation) = 0.9885.  
Table 1. Validation of the neural model, MLP(4:42:14:1) 

Length of the 
rigid core 

Length of the 
flexible core 

Molecular diameter / 
total length 

Molecular 
weight LC LC net 

9.21 25.5 0.08 463 0 0 
9.22 20.98 0.09 439 0 0 
9.22 6.22 0.19 270 1 0 
9.22 8.77 0.16 298 1 1 
9.23 8.9 0.16 296 1 1 
9.23 16.62 0.11 381 0 0 
9.21 6.39 0.18 266 0 0 
9.21 9.94 0.15 310 1 1 
9.21 20.61 0.10 439 1 1 
9.21 11.69 0.14 360 1 0 
9.21 17.24 0.11 431 0 0 
9.21 15.2 0.12 404 0 0 

 
The predictions of the neural network MLP(4:42:14:1) on the training data were 
compared to the experimental ones in order to verify how the network projected 
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has learned the behavior of the process. The correlation between the two sets of 
data, 0.99, and the probability of a correct answer of 99 % show a good 
concordance between the model and the experimental results. A key issue in 
neural network based process modeling is the robustness or generalization 
capability of the developed models, i.e. how well the model performs on unseen 
data. Thus, a serious examination of the accuracy of the neural network results 
requires the comparison with experimental data, which were not used in the 
training phase (previously unseen data). The predictions of the networks on 
validation data are given in Table 1 (LC net compared to LC obtained 
experimentally). Cells marked in black represent wrong predictions of the 
network. In the validation stage, the probability of a correct answer of 
MLP(4:42:14:1) was 83.33 %, that is a good performance of the designed 
network. Consequently, a feed-forward network MLP(4:42:14:1) can predict 
satisfactory the LC behavior of the compounds. 

4. Conclusions/Remarks/future work 

The prediction of the mesophase occurrence with machine learning methods as 
well as the choice and the codification (numerical and nominal) of different sets 
of parameters which characterize the structure and the behaviour of the azo 
aromatic compounds represent a new approach in the field. Neural network 
based method proved to be able to appreciate the liquid crystalline behaviour 
with small errors, so it represents an effective tool for structure – properties 
prediction. Simple feed-forward neural network with optimal topology 
developed within a genetic algorithm based procedure was used in this paper. 
We intend in our future research to extend the database including other types of 
organic compound and to use different machine learning methods such 
categorization algorithms. 
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