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Abstract: The purpose of this paper is to obtain an accurate nonlinear system model to test vari-
ous control schemes for a motion control system that requires high speed, robustness and accu-
racy. An industrial sewing machine equipped with a Brushless DC motor is considered. It is 
modeled by a neural network that is configured as an output-error dynamical system. The identi-
fied model is essentially a one step ahead prediction structure in which past inputs and outputs 
are used to calculate the current output. Using the model, a 2 degree-of-freedom PID controller 
to compensate the effects of disturbance without degrading tracking performance has been de-
signed. In this experiment, it is not preferable for safety reasons to tune the controller online on 
the actual machinery. Experimental results confirm that the model is a good approximation of 
sewing machine dynamics and that the proposed control methodology is effective. 
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1. INTRODUCTON 

To accurately control a system, it is beneficial to 
first develop a model of the system. The main objec-
tive for the modeling task is to obtain a good and re-
liable tool for analysis and control system develop-
ment. A good model can be used in off-line controller 
design and implementation of new advanced control 
schemes. In some applications, such as in an indus-
trial sewing machine, it may be time consuming or 
dangerous to tune controllers directly on the machin-
ery. In such cases, an accurate model must be used 
off-line for the tuning and verification of the control-
ler. While nearly all aspects of modeling and simula-
tion in control systems have now reached a reason-
able stage of development, the aspect which remains 
least satisfactory at the present time is that of repre-
senting the loads supplied from systems due to the 
very wide range of load types.  

Most motion control systems driven by motors ex-

hibit nonlinear behavior and are often difficult or un-
realistic to model directly using laws of physics. Fric-
tion is the main nonlinear element in motion control 
systems. In general, a linear system allows the use of 
more sophisticated advanced control schemes to 
achieve higher performance. Lai 0 identified a 
nonlinear model with a combination of linear dynam-
ics and friction for the Virtual Reality (VR) Mouse, 
and used a few friction compensation strategies to 
linearize the VR Mouse dynamics. Turner 0 applied a 
creep random search based on Genetic Algorithms to 
simultaneously identify the linear motor parameters 
and the nonlinear friction parameters for a stereo 
camera system. However, various other nonlinear 
elements exist in a motor driver system. The voltage-
source pulse width modulation (PWM) amplifier is 
used and dead time is required to prevent the shoot-
through phenomenon during switching. This dead 
time causes distorted output voltage and results in a 
nonlinear effect to the system. In an extreme case, the 
distorted output voltage produces torque pulsation 
and instability at low-speed. Hur et al. 0 proposed a 2 
degree-of freedom (2 DOF) controller employing an 
inverse current dynamic model and a PI controller to 
compensate the effects of the dead time for induction 
motor control. The 2 DOF controllers have also been 
extensively studied in the area of motion control to 
suppress disturbances [1, 4-5].  

In this paper, we propose a method to obtain an ac-
curate nonlinear system model for a motion control 
system based on neural networks (NNs). Modeling 
techniques based on NNs have proven to be quite 
useful for building good quality models from meas-
ured data. If such an NN model is available, various 
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control synthesis approaches may be attempted, even 
if the controllers themselves are not implemented in 
neural networks. It is possible to use a number of 
conventional nonlinear design techniques such as 
feedback linearization, generalized predictive control, 
or model linearization followed by a linear design. 
Another approach is to use a neural network as the 
controller; e.g., direct inverse control or internal 
model control [6-9]. 

A model must be found that combines both robust-
ness and accuracy to the desired extent. As well, the 
model should be computationally efficient and eco-
nomical in order to be applied in mass-produced sys-
tems. To succeed in fulfilling these criteria, we apply 
a 2 DOF PID controller to compensate the effects of 
disturbance without degrading tracking performance 
for a real-life system modeled in a NN.  

For the experimental system we consider a com-
mercial sewing machine. It requires high speed, ro-
bustness and accuracy. It is equipped with a BLDC 
(BrushLess Direct Current) motor. The BLDC motor 
is widely used as an actuator since it has a high 
torque-to-weight ratio, is easy to control, and has 
high efficiency and negligible maintenance require-
ments. Torque ripples are, however, one of the disad-
vantages of the BLDC motor and may be considered 
as a nonlinearity. In the present work, we model an 
industrial sewing machine, which has a BLDC motor, 
using NNs and then proceed to develop suitable con-
troller synthesis techniques for such a system. The 
entire approach is demonstrated experimentally. 

Apart from this introductory section, the article is 
organized as follows: Section 2 describes the setup 
used for data acquisition in our experiments. The sys-
tem identification procedure for the sewing machine 
is detailed in Section 3, where controller synthesis 
methodology and experimental results are also pre-
sented. Concluding remarks are given in Section 4. 

 
2. DATA  ACQUISITION 

To control and monitor the input command signal 
and encoder readings, the sewing machine is con-
nected to a computer using a Quanser PCI MultiQ 
I/O board (www.quanser.com). The foot pedal com-
mand signal is intercepted and replaced by an analog 
output line from the MultiQ board. This allows the 
foot pedal command signal to be simulated by vary-
ing the MultiQ output voltage. The MultiQ board also 
intercepts the encoder readings from the sewing ma-
chine. A diagram of the experimental setup is shown in 
Fig. 1. This figure also shows the software-block dia-
gram used to control and record the sewing machine 
response. 
Using this system setup, several test command sig-
nals were generated and applied to the sewing ma-
chine. The test signals included a step function, two 

chirp functions and a random-type signal. The step 
response will be used to determine the gains of the 
designed controller. The chirp functions have a fre-
quency sweep between 0.1 Hz and 3 Hz, since these 
are typical minimum and maximum rates of a human 
operated command input. The velocity range in the 
chirp signal used for the system identification has a 
maximum of 3,000 RPM. Chirp signals were em-
ployed in an attempt to exalt all nonlinear dynamics 
within the system. 

The resulting encoder readings were recorded and 
converted into velocity, with unit’s counts per sample 
(CPS). The encoder resolution is 1572 counts/ revolu-
tion and the sampling time is 1 ms. Thus, 1 CPS is 
equal to 38.168 RPM. Fig. 2 through Fig. 5 shows the 
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Fig. 1. System diagram. 

 
 

Fig. 2. Step function and response. 

 
Fig. 3. Chirp (Lo-Hi) function and response. 
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Fig. 4. Chirp (Hi-Lo) function and response. 
 

 

 
Fig. 5. Random function and response. 

 
input command signals and the sewing machine re-
sponses. (In these plots, the dashed line is the refer-
ence command signal and the solid line is the sewing 
machine response.) This set of input-output data will 
be used for system identification in the next section. 
 

3. SYSTEM IDENTIFICATION 

The objective is to carry out system identification 
of the sewing machine motion system by using neural 
networks. The input (u) of interest is the voltage ap-

plied to the BLDC motor while the output (y) is the 
rotor speed in RPM. Two sets of data were collected 
experimentally. For the first set, a chirp signal, which 
grows progressively in amplitude and frequency, was 
applied to the motor and the corresponding RPM 
outputs logged. In the second experiment, the chirp 
signal shrinks in amplitude with increasing frequency. 
Only the data obtained from the first experiment was 
used for training the neural net. Validation is per-
formed using the second data set, which were not 
used for training. We shall refer to the second data set 
as the test data. It is important to use the test data for 
validation to ensure that our neural network model 
does replicate the sewing machine system in general 
rather than memorize a specific data set. 

 
3.1. System identification using a neural network 

output error model 
In the identification framework, we assume that 

the sewing machine model can be represented in dis-
crete input-output form by the identification struc-
ture: 

ˆ ˆ[ ] [ ( 1),..., ( ),
( ),..., ( - 1)],

a

k b k

y k g y k y k n
u k n u k n n

= − −

− − +
(1)

where ˆ[ ]y k is the one-step ahead prediction of the 
output; and na, nb, nk are system order and delay, re-
spectively. This is essentially a one-step ahead pre-
diction structure in which we use past inputs and out-
puts to predict the current output. 

Using our intuition concerning the input-output 
model for the BLDC motor in the sewing machine, a 
second order system is selected for the identification 
structure. Therefore, na = nb = 2 and nk = 1 in the 
structure above.  

We use the neural network ˆ[ ]g ⋅ to model [ ]g ⋅ . The 
[ ]⋅ contains the regressor structure, which is imple-
mented as Tapped Delay Lines (TDLs) in code. 
Therefore, the regressor structure for this network is 
given by: 

ˆ ˆ( ) [ ( 1),..., ( ),
( ),..., ( - 1)],

a

k b k

k y k y k n
u k n u k n n

φ = − −

− − +
 (2)

where ˆ[ ]y k are delayed versions of the predicted out-
puts and u( )⋅ are delayed inputs to the system. At 
every instant, the predicted output is parameterized in 
terms of network weights Θ  by: 

and is depicted in Fig. 6. Note that the sampling in-
stant k is equivalent to t in all of the figures. 
In our model, the ĝ  network has eight hidden layer 
neurons with tanh activation functions and a single 

( , ) ( ( ), )y k g kφΘ = Θ , (3)
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Fig. 6. The architecture for the ˆ[ ]g ⋅ network. 

 

 
Fig. 7. The scaled training data - voltage input and 

RPM output. 
 

saturated linear function in the output layer. Network 
training is first carried out offline in batch form using 
the Levenberg-Marquadt optimization (rather than 
conventional back propagation). The networks are is 
the prediction error. So, the algorithm essentially 
seeks to minimize the prediction error over the train-
ing data set. The input and output data sets used for 
training are obtained by multiplying a chirp signal 
with a ramp and then applying this to the trained to 
minimize the cost function 

1

1 ˆ ˆ[ ( ) ( )] [ ( ) ( )]
2

N
T

k
J y k y k y k y k

N =
= − −∑ , (4)

where  

ˆ( ) [ ( ) ( )]e k y k y k= −  (5)

actual system. To facilitate training, the voltage input 
is scaled by 10 while the RPM output is scaled by 
1000. The training data sets are depicted in Fig. 7. 
One hundred (100) training iterations are performed 
at the end of which the cost function reduces to the 
order of 10-6. At this point, the optimal network 
weights for the ˆ[ ]g ⋅  networks are stored and used for 
validation. Validation and cross validation respec-
tively consist of applying the training and test data to 
the neural identification model in order to see how 
closely it fits the experimental data from the sewing 
machine in each case. 

 
Fig. 8. Validation of the neural model on training data. 
 

 
Fig. 9. Prediction errors over the training data. 

 
3.2. Neural network identification results 

In validation, we use the training data set as an input 
to the neural network model of the system and compare 
the outputs obtained with what was used during train-
ing. The voltage input is first scaled by a factor of 10 
while the RPM outputs are scaled by a factor of 
1000 before training the NN. Accordingly, to recover 
the original experimental data, we simply multiply 
the respective inputs and outputs by the scaling factor. 

Fig. 8 shows the validation results for the RPM 
output while the prediction error over training data 
are shown (in standard and histogram form) in Fig. 9.  
In Fig. 8, the light gray line represents the actual sys-
tem response while the dark line represents the pre-
dicted response. The results in Fig. 8 are excellent, 
but they do not necessarily relay an accurate story 
regarding the network's predictive capability since 
the networks merely received the same data they 
were trained on. 

To better characterize the network’s modeling abil-
ity, cross-validation is performed by applying the 
other data set not used for training to the network. Fig. 
10 depicts the RPM predicted vs. actual RPM while 
Fig. 11 illustrates the prediction errors on the test data. 
Again, the light gray line represents the actual system 
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Fig. 10. Validation of the neural model on test data. 

 
Fig. 11. Prediction errors over the test data. 
 

 
Fig. 12. The scaled secondary random test data - 

voltage input and RPM output. 
 
response while the dark line represents the predicted 
response. Observe that the fit is almost perfect and 
the errors themselves are minimal. 
Another experiment was carried out using richer sig-
nals that were significantly more random than the 
modified chirps used for the neural network training. 

The scaled input and output sequences are depicted 
in Fig. 12 while the results that show the NN pre-
dicted RPM output versus the actual RPM outputs are 
shown in Fig. 13. Prediction errors over this test data 
(which were never used to train the network) are 
shown in Fig. 14. In all cases the neural network 

 
Fig. 13. Validation of the neural model using random 

test data not employed during network train-
ing. 

 

 
Fig. 14. Prediction errors over the test data. 
 
model performed very well and the prediction errors 
were not unduly large. 
 
3.3. System identification using a linear arx model 

As a comparison, a system identification of 
theBLDC motor component of the sewing machine 
was also performed using an ARX model given by 
the transfer function: 

where 

and m, n, k are appropriately selected system, order 
and delay parameters. The ARX scheme determines 
ai and bi from measured input-output data of the sys-
tem to be identified. 

A 2nd-order linear model (i.e. m = n = 2, k = 1) was 

[ ][ ]
[ ]

k B zG z z
A z

−= , (6)

1
1

1 1
1 2

[ ] 1 ... ,

[ ] ... ,

m
m

n
n

A z a z a z

B z b b z b z

− −

− − +

= + + +

= + + +
 (7)
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Fig. 15. Chirp (Hi-Lo) ARX model vs. real system 

response.  
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Fig. 16. 2 DOF PID controller (feedforward type). 
 

was extracted by using a random input-output data 
set with a transfer function given by: 

2
0.1228 0.1224[ ]

1.87 0.8705
zG z

z z
+

=
− +

,  (8)

and simulation results for this model (using a sampling 
rate of 1 ms) are depicted in Fig. 15. The gray line 
represents the actual system response and the dark 
line represents the predicted system response. 

It is clear that the linear identification model does 
not work as well as the neural network model, al-
though the general trends are noticeable. When ran-
dom data sets are used, the identification results are 
significantly degraded. 

 
3.4. Controller design 
Fig. 16 shows a general 2 DOF PID controller of 

feedforward type. Note that the input-output relations 
are written in the form: 

where, 
 

( )

1

2

1( ) 1 ,

( ) ,

P D
I

p D

F s K T s
T s

F s K T sα β

 
= + + 

 
= − +

  

and where G(s) denotes the model for the actual plant, 
r is the input, y is the output and d is the disturbance. 
Two important control objectives are command track-
ing and disturbance rejection.  

Command tracking and disturbance rejection are 
indicated by Wry = 1 and Wdy = 0, respectively. In a 
conventional PID controller it is impossible to mod-
ify the characteristics of tracking and disturbance 
rejection separately. However, from equation (9), Wry 
or Wre and Wdy can be adjusted separately by select-
ing the two filters F1 (gain from the command r to the 
output y) and F2 (feedforward compensator). This 
means that the performance of either the tracking or 
disturbance rejection can be tuned independently 
without affecting each other. 
Insightful ideas concerning the design of F1 and F2     
are difficult to come by in the case of parameter tun-
ing and so in this paper we take two measures. First, 
we coarsely tune the parameters based on Table 1 
presented by Araki 0. The plant transfer function G(s) 
is approximated to a 1st order time delay system in 
the form: 

-
( ) ,

1

sLKeG s
sT

=
+

 (10)

where K is the proportional gain, L is the delay time 
and T is the time constant. Normally we can deter-
mine these values from the step response, as shown 
in Fig. 2, since the step response of equation (10) is 
written by equation (11) below.  

The parameters shown in Table 1 are obtained to 
minimize the evaluation function (12) where E(s) is 
the Laplace transformation of the error signal e(t): 

( ) /( ) (1 )t L Ty t K e− −= − , (11)

2
2

4
20

( )
s jw

dw E s dw
ds

ϑ
∞

=

  =  
  

∫ . (12)

Table 1. Parameters for the 2 DOF PID controller. 

( )
1

1 2

1

2

1

( )( ) ,
1 ( ) ( )

( ) ( ) ( )
( ) ,

1 ( ) ( )
1 ( ) ( )( ) ,
1 ( ) ( )

G sWdy s
F s G s

F s F s G s
Wry s

F s G s
F s G sWre s
F s G s

=
+

+
=

+
−

=
+

 (9)

L/T KpK KI/T KD/T α β 
0.1 12.5 0.22 0.04 0.68 0.75 
0.2 6.1 0.41 0.08 0.63 0.70 
0.3 4.1 0.57 0.11 0.62 0.70 
0.4 3.1 0.71 0.15 0.59 0.69 
0.5 2.5 0.83 0.18 0.58 0.69 
0.6 2.11 0.94 0.21 0.56 0.69 
0.7 1.82 1.05 0.24 0.54 0.69 
0.8 1.61 1.13 0.28 0.51 0.68 
0.9 1.44 1.22 0.31 0.48 0.69 
1.0 1.33 1.26 0.34 0.49 0.66 
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Fig. 17. Simulation block diagram. 
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Fig. 18. Experimental system block diagram. 
 
The second step is the fine-tuning of parameters 

determined by Table 1 through simulation using the 
identified nonlinear model in the previous section as 
shown in Fig. 17. 
Our key focus is to minimize the delay of the system 
response so that the output y tracks the input as 
closely as possible. The controller gains, Kp, Ki and Kd, 
are tuned to provide the best tracking with mini-
malovershoot and vibration while keeping the control 
signal within the permitted voltage ranges for the 
MultiQ analog output. 

In this paper the tuned gains are Kp = 0.02, Ki = 
0.02, Kd = 0.5, α = 0.4, β = 0.2 when the sampling 
time is 1 ms. 

 
3.5. Experimental results 

The results of applying the controller to the system 
simulation and the actual system are discussed in this 
section. Fig. 18 shows the experimental setup used. 
For these experiments, a TMS320F240 digital signal 
processor was used for the controller and PWM sig-
nals. 
First, the identified system model is used with the 
designed 2 DOF PID controller. Then the same con-
troller is applied to the actual system. Fig. 19 through 
Fig. 22 indicate these results. The dark solid line re-
fers to the reference signal, the dark dashed line 
refersline represents the actual real system response. 
These results show that controlled velocity output of 
the simulated and real system matches the reference 

 
Fig. 19. Trapezoidal simulated and real controller 

tests. 

 
Fig. 20. Chirp (Hi-Lo) simulated and real controller 

tests. 
 

 
Fig. 21. Chirp (Lo-Hi) simulated and real controller 

tests. 
 
signals very closely in the case of the chirp and ran-
dom signals. Fig. 19 through Fig. 21 detail that the 
simulated and real responses of the sewing machine 
are almost exactly the same as the reference signals. 
The fact that the simulated and real controlled re-
sponses are practically identical further validate the 
identified system model. 
The trapezoidal reference signal produced greater er-
rors in both the simulated and actual systems. However, 
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Fig. 22. Random simulated and real controller tests. 

 
the resulting velocity profiles were still very close to 
the reference signal. The real trapezoidal response 
had a rise time of 150 ms. The simulated and real 
responses also differed slightly. This can be attributed 
to the system identification, which only used the 
chirp function data for modeling the system. This 
data did not contain any sharp edges or sudden 
changes and thus the identified system model does 
not behave like the real system when stimulated by 
very sharp velocity changes. Increasing the frequency 
sweep of the chirp signal should improve the identi-
fied system model for step and trapezoidal responses. 

 
4. CONCLUSIONS 

In this paper, we developed the nonlinear network 
model for a commercial sewing machine equipped 
with a BLDC motor. The identified model using neu-
ral networks is essentially a one step ahead prediction 
structure in which past inputs and outputs are used to 
predict the current output. 

Using the model, a 2 degree-of-freedom PID con-
troller to compensate the effects of disturbance with-
out degrading tracking performance has been de-
signed. With the experimental results, the model has 
been shown to be a good approximation of the sew-
ing machine and the proposed method demonstrates 
the effectiveness for a motion control system that 
requires high speed, robustness and accuracy. 

In further work, a Genetic Algorithm, which has 
been found particularly useful for optimization and 
searching, may be used to tune the gains of the 2 
DOF PID controller to minimize the error between 
the command input and the identified system model 
output. 
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