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Abstract — In this paper, neural network control is presented for a rehabilitation robot with unknown system

dynamics. To deal with the system uncertainties and improve the system robustness, adaptive neural networks

are used to approximate the unknown model of the robot and adapt interactions between the robot and the

patient. Both full state feedback control and output feedback control are considered in this paper. With

the proposed control, uniform ultimate boundedness of the closed loop system is achieved in the context

of Lyapunov’s stability theory and its associated techniques. The state of the system is proven to converge

to a small neighborhood of zero by appropriately choosing design parameters. Extensive simulations for a

rehabilitation robot with constraints are carried out to illustrate the effectiveness of the proposed control.

Index Terms — Adaptive neural network control, Full state feedback control, Lyapunov’s direct method, Out-

put feedback control, Rehabilitation robot.

1 Introduction

More than two-thirds of stroke patients with the limb impairment have significant weakness to conduct ac-

tivities of daily living [1]. Due to the increase of aged population and decline in number of caregivers, the

robotic device is in urgent need to fulfill these training tasks for those stroke patients. Advantages of robot

aided rehabilitation include the ability to document and store motion and force parameters, the ability to

achieve thousands of repetitions per treatment session, and increased biofeedback through the incorporation
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of training tasks [2, 3]. Moreover, robotic rehabilitation could potentially improve the productivity of stroke

rehabilitation, reduce cost and improve precision [4]. Therefore, it is essential for the robot to be able to per-

form efficient control in unknown dynamical interactions with patients [5]. In addition, a model-free method,

which requires little model information, is always favorable to mimic high DOF behaviors due to its simplicity.

In recent years, the control problem of the constrained robot has gained much attention [6, 7, 8, 9]. The control

of an uncertain robot in interactions with the patient is difficult to handle in the control design and stability

analysis due to the unknown system dynamics and unknown external force. In the literatures, impedance

control is widely used to handle the interaction between the constrained robots and the human, as it can

achieve a stable position and force control by tracking a target impedance model [10]. Under impedance

control, the position tracking is realized during the robot’s free motion, while the position and force are

indirectly controlled during the robot’s constrained motion [11]. Based on the Lyapunov’s direct method,

impedance control of the constrained robot has been presented in [9]. The hybrid force/position control is

also widely used for the constrained robotic systems. In [11], adaptive position/force control is proposed

for an uncertain constrained flexible joint robot for ensuring the position tracking and the boundedness of

force errors. In [12], robust adaptive position/force control is investigated for a nonholonomic robot under

holonomic constraints.

Neural networks based approach is considered to be an effective method in a number of research fields, which

requires relatively less information of the system dynamics. It has been proven that artificial neural networks

are able to approximate a wide range of nonlinear functions to any desired degree of accuracy under certain

conditions [13, 14]. Artificial neural networks have been widely used for the control design of uncertain

nonlinear systems [15, 16, 17, 18, 19, 20, 21, 22, 23]. The relevant applications for this approach based on the

Lyapunov’s stability theory include [24, 25, 26, 27, 28, 29, 30, 31]. However, most of above papers considers

the constrained force as a part of the system uncertainties, and neural networks are used to approximate those

uncertainties for achieving the control objective. This method may influence the system performance of the

proposed control when the constrained force is large. In order to overcome the drawbacks, the unknown

constrained force of the robotic system needs to be efficiently handled to guarantee the closed-loop control

performance. To improve the compensation performance for the external force, a signum term is employed to

deal with the unknown constrained force.

In this paper, we consider an n-link constrained rehabilitation robot with unknown system dynamics in inter-

actions with the human user. To deal with the system uncertainties and improve the robustness of the system,

adaptive neural networks are used to approximate the unknown model of the robot and adapt interactions be-

tween robots and humans. This work is well motivated by the control problem of the constrained rehabilitation
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robot with uncertainties. Compared to the existing work, the main contributions of the paper include:

(i) Adaptive neural network control with both full state feedback and output feedback is proposed to com-

pensate for the system uncertainties and improve the robustness of the closed-loop system.

(ii) Output feedback neural network control is proposed via the high gain observer when the full states

information is not available in some practical applications.

(iii) With the proposed control, uniform ultimate boundedness of the system is proved via the Lyapunov’s

direct method. The closed-loop system states will eventually converge to a compact set and the control

performance of the system is guaranteed by suitably choosing the design parameters.

The rest of the paper is organized as follows. The preliminaries and the dynamics of an n-link rehabilitation

robotic system are given in Section 2. Adaptive neural network control via the Lyapunov’s direct method is

discussed for system uncertainties in Section 3, where it is shown that the uniform boundedness of the closed-

loop system can be achieved by the proposed control. Simulations are carried out to illustrate the performance

of the proposed control in Section 4. The conclusion of this paper is presented in Section 5.

2 Preliminaries and Problem Formulation

2.1 Function Approximation

A class of linearly parameterized neural networks can be used to approximate the continuous function fi(Z) :

R
q → R,

fi(Z) = W T
i Si(Z), i = 1, 2, ..., n, (1)

where the input vector Z = [Z1, Z2, . . . , Zq]
T ∈ ΩZ ⊂ R

q, weight vector Wi ∈ R
l, the neural network node

number l > 1 and Si(Z) = [s1, s2, . . . , sl]
T ∈ R

l. Universal approximation results indicate that, if l is chosen

sufficiently large, W T
i Si(Z) can approximate any continuous function, fi(Z), to any desired accuracy over a

compact set ΩZ ⊂ R
q. This is achieved as

fi(Z) = W ∗T
i Si(Z) + ǫi(Z), ∀Z ∈ ΩZ ⊂ R

q, i = 1, 2, ..., n, (2)

where W ∗
i is the ideal constant weight vector, and ǫi(Z) is the approximation error which is bounded over the

compact set, i.e. |ǫi(Z)| ≤ ǭi, ∀Z ∈ ΩZ with ǭi > 0 as an unknown constant. The ideal weight vector W ∗
i is
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an “artificial” quantity required for analytical purposes. W ∗
i is defined as the value of Wi that minimizes |ǫi|

for all Z ∈ ΩZ ⊂ R
q, i.e.

W ∗
i = arg min

Wi∈Rl
{ sup

Z∈ΩZ

|fi(Z) − W T
i Si(Z)|}. (3)

The Radial Basis Function (RBF) neural network is a particular network architecture which uses l Gaussian

functions of the form

sk(Z) = exp

[−(Z − µk)
T (Z − µk)

η2
k

]

, k = 1, 2, ..., l, (4)

where µk = [µk1, µk2, ..., µkq]
T is the center of the receptive field and ηk is the width of the Gaussian function

[32].

2.2 Useful Technical Lemmas and Definitions

Lemma 1 [33] For bounded initial conditions, if there exists a C1 continuous and positive definite Lyapunov

function V (x) satisfying κ1 (‖x‖) ≤ V (x) ≤ κ2 (‖x‖), such that V̇ (x) ≤ −ρV (x) + c, where κ1 and κ2 :

R
n → R are class K functions and c is a positive constant, then the solution x(t) is uniformly bounded.

Lemma 2 [34] Consider the basis functions of Gaussian RBF neural network (4) with Ẑ being the input

vector, if Ẑ = Z − ǫψ̄, where ψ̄ is a bounded vector and constant ǫ > 0, then we have

sj(Ẑ) = exp
[−(Ẑ − µj)

T (Ẑ − µj)

η2
j

]

, j = 1, 2, ..., l,

S(Ẑ) = S(Z) + ǫSt, (5)

where St is a bounded vector function.

Definition 1 (SGUUB) [34] The solution X(t) of a system is semi-globally uniformly ultimately bounded

(SGUUB) if, for any compact set Ω0 and all X(t0) ∈ Ω0, there exists an µ > 0 and T (µ,X(t0)) such that

‖X(t)‖ ≤ µ for all t ≥ t0 + T .

Definition 2 The operator “⊙” is defined as follows:

a ⊙ b = [a1, a2, ...an]T ⊙ [b1, b2, ...bn]T = [a1b1, a2b2, ...anbn]T , ∀a, b ∈ R
n, (6)
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where a = [a1, a2, ...an]T and b = [b1, b2, ...bn]T are two n-dimensional vectors.

Lemma 3 [35] Suppose that a system output y(t) and its first n derivatives are bounded such that |y(k)| < YK

with positive constants YK , we can consider the following linear system:

επ̇i = πi+1, i = 1, ..., n − 1,

επ̇n = −λ̄1πn − λ̄2πn−1 − ... − λ̄n−1π2 − π1 + x1(t), (7)

where ε is any small positive constant and the parameters λ̄1 to λ̄n−1 are chosen such that the polynomial

sn + λ̄1s
n−1 + ... + λ̄n−1s + 1 is Hurwitz. Then, the following property holds:

ξk =
πk

εk−1
− x

(k−1)
1 = −εψ(k), k = 1, ..., n − 1, (8)

where ψ = πn + λ̄1πn−1 + ... + λ̄n−1π1 with ψ(k) denoting the kth derivative of ψ. Also, there exist positive

constants t∗ and hk such that ∀t > t∗, we have ||ξk|| ≤ εhk, k = 1, 2, 3, ..., n.

Lemma 4 [36, 37, 38] Rayleigh-Ritz theorem: Let A ∈ R
n×n be a real, symmetric, positive-definite matrix;

therefore, all the eigenvalues of A are real and positive. Let λmin and λmax denote the minimum and maximum

eigenvalues of A, respectively; then for ∀x ∈ R
n, we have

λmin||x||2 ≤ xT Ax ≤ λmax||x||2, (9)

where || · || denotes the standard Euclidean norm.

2.3 Problem Formulation

The dynamics of an n-link rehabilitation robotic system are described by [9]

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ(t) − JT (q)f(t), (10)

where q, q̇, q̈ ∈ R
n are the position, velocity and acceleration vectors respectively, τ ∈ R

n is the input torque,

M(q) ∈ R
n×n is a symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈ R

n denotes the Centripetal and

Coriolis force, G(q) ∈ R
n is the gravitational force, J(q) is the Jacobian matrix which is assumed to be

nonsingular, and f(t) ∈ R
n is the vector of constrained force exerted by the user.
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Let x1 = q and x2 = q̇, we have the description of the robot dynamics as

ẋ1 = x2, (11)

ẋ2 = M−1(x1)[τ − JT (x1)f − C(x1, x2)x2 − G(x1)]. (12)

The control objective is to design control torques such that the system variable x1 tracks the given reference

trajectory xd(t) = [qd1(t), qd2(t), ...qdn(t)]T , while ensuring that all closed loop signals are bounded.

Property 1 [15] The matrix M(q) is symmetric and positive definite.

Property 2 [15] The matrix Ṁ(q) − 2C(q, q̇) is skew-symmetric.

Property 3 [15] The left-hand side of the dynamic equation can be linearly parameterized as

M(q)q̈ + C(q, q̇)q̇ + G(q) = Y (q, q̇, q̈)θ, (13)

where θ ∈ Rp contains the system parameters, and Y (q, q̇, q̈) ∈ Rn×p is the regression matrix, which contains

known functions of the signals q(t), q̇(t) and q̈(t).

Assumption 1 We assume that the constrained force f(t) is uniformly bounded, i.e., there exists a constant

f̄ ∈ R
+, such that |f(t)| ≤ f̄ , ∀t ∈ [0,∞).

Remark 1 This is a reasonable assumption as the time-varying constrained force f(t) is bounded from an

engineering point of view. Thus, the knowledge of the exact value for f(t) is not required, and the force

sensors mounted at the interaction points are not needed as well. As such, different constrained forces up to

various levels of interactions can be applied without affecting the control design or analysis.

3 Control Design

In this paper, two cases are investigated for the constrained robotic system: (i) full-state feedback control

design, i.e. x1 and x2 are all known; and (ii) output feedback control design, i.e. only x1 is known. For the

first case, adaptive neural network control is introduced for approximating the unknown model of the robot

and adapt interactions. For the second case where x2 cannot be directly measured, the high-gain observer is

designed to estimate x2 and ensure the control performance.

6



3.1 Adaptive Neural Network Control with Full-State Feedback

We first consider the case where full state information, x1 and x2, is available. Define a generalized tracking

error as z1(t) = x1(t)−xd(t) and have ż1(t) = x2(t)− ẋd(t). We introduce a virtual control α1(t) and define

a second error variable as z2(t) = x2(t) − α1(t). We choose

α1 = −K1z1 + ẋd, (14)

where the gain matrix K1 = KT
1 > 0, and we have

ż1 = z2 + α1 − ẋd = z2 − K1z1. (15)

Differentiating z2 with respect to time, we have

ż2 = M−1(x1)[τ − JT (x1)f − C(x1, x2)x2 − G(x1)] − α̇1(t). (16)

Considering a Lyapunov function candidate as

V1 =
1

2
zT
1 z1, (17)

and taking its time derivative along Eq. (15), we have

V̇1 = −zT
1 K1z1 + zT

1 z2. (18)

Then, we consider the Lyapunov function candidate as

V2 =
1

2
zT
1 z1 +

1

2
zT
2 M(x1)z2. (19)

Differentiating Eq. (19) with respect to time leads to

V̇2 = −zT
1 K1z1 + zT

1 z2 + zT
2 [τ − JT (x1)f − C(x1, x2)α1(t) − G(x1) − M(x1)α̇1(t)]. (20)

From Property 2, we know that 1
2(Ṁ(x1) − 2C(x1, x2)) is a skew-symmetric matrix. From definition of the

skew-symmetric matrix, we know that for any skew-symmetric matrix A ∈ R
n×n, it satisfies the condition

−A = AT . Then, we have −zT
2 Az2 = zT

2 AT z2 = zT
2 Az2. We further obtain zT

2 Az2 = 0. Hence, we can
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state 1
2zT

2 (Ṁ(x1) − 2C(x1, x2))z2 = 0. For this reason, 1
2(Ṁ(x1) − 2C(x1, x2))z2 disappears in the above

equation. When M(x1), C(x1, x2), G(x1), f are known, we design the model-based control as

τ0 = −z1 − K2z2 + JT (x1)f + C(x1, x2)α1(t) + G(x1) + M(x1)α̇1(t), (21)

where the gain matrix K2 = KT
2 > 0. Substituting Eq. (21) into Eq. (20), we have

V̇2 = −zT
1 K1z1 − zT

2 K2z2. (22)

Since the uncertainties exist in M(x1), C(x1, x2), G(x1), f , the model-based control design may not be

realizable. Thus, the above model-based control is not applicable for the robots with uncertainties. To over-

come the challenge, neural networks based control is utilized to approximate the uncertainties and improve

the performance of the system via the online estimation.

We propose the following control as

τ = −z1 − K2z2 − sgn(zT
2 ) ⊙ JT (x1)f̄ + Ŵ T S(Z), (23)

where sgn(•) returns a vector with the signs of the corresponding elements of the vector (•), ⊙ is the operator

defined as in Definition 2, Ŵ are the weights of neural networks, and S(Z) is the basis function. The neural

networks Ŵ T S(Z) approximate W ∗T S(Z) defined by

W ∗T S(Z) = C(x1, x2)α1(t) + G(x1) + M(x1)α̇1(t) − ǫ(Z), (24)

where Z = [xT
1 , xT

2 , αT
1 , α̇T

1 ] are the input variables to the adaptive neural networks and ǫ(Z) ∈ R
n is the

approximation error.

The adaptation law is designed as

˙̂
Wi = −Γi[Si(Z)z2,i + σiŴi], (25)

where Γi is the constant gain matrix, and σi > 0, i = 1, 2, ...n, are small positive constants.

Remark 2 The σ modification term in Eq. (25) is introduced to improve the robustness of the closed-loop

system when the system is subjected to bounded disturbance [39, 40]. Without such a modification term, the

estimate W ∗T S(Z) might drift to a very large value, which will result in a variation of a high-gain control
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scheme [34].

Remark 3 In this paper, we deal with a more challenging problem by considering the values of M(x1),

C(x1, x2) and G(x1) as fully unknown. If the individual term is known exactly, the terms can be excluded

from the approximations in Eq. (24) and rewritten explicitly as a part of the adaptive neural control Eq. (23).

Theorem 1 For the system dynamics described by Eq. (10), under Assumption 1, and the control Eq. (23)

with the adaptation laws Eq. (25), given that the full state information is available, for each compact set Ω0

where (x1(0), x2(0), Ŵ1(0), Ŵ2(0) ... Ŵn(0)) ∈ Ω0, i.e., the initial conditions are bounded, the trajectories

of the closed-loop system are semiglobally uniformly bounded. The closed-loop error signals z1, z2 and W̃

will remain within the compact sets Ωz1
, Ωz2

and ΩW , respectively, defined by

Ωz1
: =

{

z1 ∈ Rn | ‖z1‖ ≤
√

D
}

, (26)

Ωz2
: =

{

z2 ∈ Rn | ‖z2‖ ≤
√

D

λmin(M)

}

, (27)

ΩW : =

{

W̃ ∈ Rl×n | ‖W̃‖ ≤
√

D

λmin(Γ−1)

}

, (28)

where D = 2 (V (0) + C/ρ), ρ and C are two positive constants.

Proof: Consider the following Lyapunov function candidate

V =
1

2
zT
1 z1 +

1

2
zT
2 Mz2 +

1

2

n
∑

i=1

W̃ T
i Γ−1

i W̃i, (29)

where W̃i = Ŵi − W ∗
i , and W̃i, Ŵi and W ∗

i are the neural network weight error, estimate and actual value,

respectively. Differentiating Eq. (29), we obtain

V̇ ≤ −zT
1 K1z1 + zT

1 z2 + zT
2 [τ − JT (x1)f − C(x1, x2)α1(t) − G(x1) − M(x1)α̇1(t)]

+

n
∑

i=1

W̃ T
i Γ−1

i
˙̂

Wi. (30)

Applying the approximation Eq. (24), we have

V̇ ≤ −zT
1 K1z1 + zT

1 z2 + zT
2

[

−W ∗T S(Z) − ǫ(Z) + τ − JT (x1)f
]

+

n
∑

i=1

W̃ T
i Γ−1

i
˙̂

Wi. (31)
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Substituting the control Eq. (23) and adaptation law Eq. (25) into Eq. (31) yields

V̇ ≤ −zT
1 K1z1 − zT

2 (K2 −
1

2
In×n)z2 −

n
∑

i=1

σi

2
‖W̃i‖2 +

n
∑

i=1

σi

2
‖W ∗

i ‖2 +
1

2
‖ǭ‖2

≤ −ρV + C, (32)

where

ρ = min
(

2λmin(K1),
2λmin(K2 − 1

2In×n)

λmax(M)
, min
i=1,2,...n

( σi

λmax(Γ
−1
i )

))

, (33)

C =
n

∑

i=1

σi

2
‖W ∗

i ‖2 +
1

2
‖ǭ‖2, (34)

where λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of matrix A, respectively. To

ensure ρ > 0, the control gains K1 and K2 are chosen to satisfy the following conditions:

λmin(K1) > 0, λmin(K2 −
1

2
I) > 0. (35)

From the above analysis, it is straightforward to show that the signals z1, z2, and W̃i(i = 1, 2, ...n) are

semiglobally uniformly bounded. From the boundedness of x1d in Assumption 1, we know that x is bounded.

Since ẋ1d is also bounded, it follows that α1 is bounded and in turn x2 is bounded. As W ∗
i (i = 1, 2, ...n)

are constants, we know that Ŵi(i = 1, 2, ...n) are also bounded. For completeness, the details of the proof,

similar to [33], are provided here. Multiplying Eq. (32) by eρt yields

d

dt
(V eρt) ≤ Ceρt. (36)

Integrating the above inequality, we obtain

V ≤
(

V (0) − C

ρ

)

e−ρt +
C

ρ
≤ V (0) +

C

ρ
. (37)

Then, we have

1

2
||z1||2 ≤ V (0) +

C

ρ
. (38)

Hence, z1 converges to the compact set Ωzs. Bounds for z2 and W̃i can be similarly shown and this concludes

the proof. ¥
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Remark 4 The stability result proposed is semiglobal in the sense that if the number of neural network nodes l

is chosen large enough such that the approximation holds in Ωz1, Ωz2 and ΩW , then the closed-loop stability

can be guaranteed for bounded initial states and neural network weights. The exact sizes of the compact sets

Ωz1, Ωz2 and ΩW are not available as they depend on the unknown parameters W ∗ and ǫ.

Remark 5 It is easily seen that the increase in the control gains, K1 and K2, and the adaptive gains Γi(i =

1, 2, 3, ...n), will result in a better control performance. Therefore, we can conclude that the tracking errors,

z1 and z2, will eventually converge to a small neighborhood around zero by appropriately choosing design

parameters.

3.2 Adaptive Neural Network Control with Output Feedback

The proposed control Eq. (23) requires full states, x1(t) and x2(t), to be implemented. In the absence

of velocity sensors, we introduce a high-gain observer to estimate x2(t) through the certainty equivalence

property and separation principle.

From Lemma 3,
πk+1

εk converges asymptotically to x
(k)
1 , and the derivative of x1 to the kth order, i.e. ξk

converges to zero with a small time constant (due to the high-gain 1/ε) provided that x1 and its k derivatives

are bounded. Then, we can state that πk+1/εk is proper as an observer for estimating the output signals up to

the nth order. The observer for system Eq. (10) is considered with n = 2 and the estimate of the unmeasurable

state vector z2 is designed as

ẑ2 = π2/ε − α1, (39)

where the dynamics of π2 are described as

επ̇1 = π2, (40)

επ̇2 = −λ̄1π2 − π1 + x1. (41)

From the full state feedback control design, we rewrite the control law Eq. (23) and adaptation law Eq. (25)

to obtain the control and adaptation law for output feedback control as

τ = −z1 − K2ẑ2 + Ŵ T S(Ẑ), (42)

˙̂
Wi = −Γi(Si(Ẑ)ẑ2,i + σiŴi), (43)
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where K2 is the control gain, Γi is the constant gain matrix, and σi > 0, i = 1, 2, ...n, are small positive

constants.

Theorem 2 For the system dynamics described by Eq. (10), under Assumption 1, and the control Eq. (42)

with the adaptation law Eq. (43), given that the output information is available, for each compact set Ω0

where (x1(0), x2(0), Ŵ1(0), Ŵ2(0) ... Ŵn(0)) ∈ Ω0, i.e., the initial conditions are bounded, the trajectories

of the closed-loop system are semiglobally uniformly bounded. The closed-loop error signals z1, z2 and W̃

will remain within the compact sets Ωz1
, Ωz2

and ΩW , respectively, defined by

Ωz1
: =

{

z1 ∈ Rn | ‖z1‖ ≤
√

D
}

, (44)

Ωz2
: =

{

z2 ∈ Rn | ‖z2‖ ≤
√

D

λmin(M)

}

, (45)

ΩW : =

{

W̃ ∈ Rl×n | ‖W̃‖ ≤
√

D

λmin(Γ−1)

}

, (46)

where D = 2 (V2(0) + C/ρ), and ρ and C are two positive constants.

Proof: Consider the following Lyapunov function candidate

V2 =
1

2
zT
1 z1 +

1

2
zT
2 Mz2 +

1

2

n
∑

i=1

W̃ T
i Γ−1

i W̃i, (47)

where W̃i = Ŵi − W ∗
i , and W̃i, Ŵi and W ∗

i are the neural network weight error, estimate and actual value,

respectively. The time derivative of the Lyapunov function candidate V2 along the closed loop trajectory with

Eqs. (42) and (43) yields

V̇2 ≤ −zT
1 K1z1 − zT

2 (K2 −
1

2
I)z2 − zT

2 K2z̃2

+

n
∑

i=1

z2,i[Ŵ
T
i Si(Ẑ) − W ∗T

i Si(Z)]

−
n

∑

i=1

[W̃ T
i Si(Ẑ)ẑ2,i + σiW̃

T
i Ŵi] +

1

2
‖ǭ‖2. (48)

According to Lemma 3, we have

ξ2 =
π2

ε
− ẋ1 = −εψ(2), (49)

z̃2 = ẑ2 − z2 =
π2

ε
− α1 − ẋ1 + α1 = ξ2. (50)
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where ε is any small constant, ψ = π2 + λ̄1π1, and there exist positive constants t∗ and h2 such that ∀t > t∗,

we have ‖ξ2‖ ≤ εh2. Thus, we can use π2

ε
to estimate ẋ1, then x2 and z2 can be estimated as follows

x̂2 =
π2

ε
, (51)

ẑ2 =
π2

ε
− α1. (52)

From Lemma 2, using the properties, we have

−σiW̃
T
i Ŵi ≤ σi

2
(||W ∗

i ||2 − ||W̃i||2), (53)

||Si(Ẑ)||2 ≤ li, (54)

Ŵ T
i Si(Ẑ) = W ∗T

i (Si(Z) + ǫSti) + W̃ T
i Si(Ẑ)

= W ∗T
i Si(Z) + W ∗T

i ǫSti + W̃ T
i Si(Ẑ), (55)

where li and ǫ are two positive constants, and St is a bounded vector function.

Substituting Eqs. (53) and (55) to Ineq. (48) leads to

V̇2 ≤− zT
1 K1z1 − zT

2 (K2 −
1

2
I)z2 − zT

2 K2z̃2 −
n

∑

i=1

W̃ T
i Si(Ẑ)z̃2,i

−
n

∑

i=1

σi

2
‖W̃i‖2 +

1

2
‖ǭ‖2 +

n
∑

i=1

z2,iW
∗T
i ǫSti +

n
∑

i=1

σi

2
‖W ∗

i ‖2. (56)

Substituting
n
∑

i=1
z2,iW

∗T
i ǫSti ≤ 1

2zT
2 z2+

n
∑

i=1

‖W ∗

i ‖2ǫ2‖Sti‖2

2 and −
n
∑

i=1
W̃ T

i Si(Ẑ)z̃2,i = −
n
∑

i=1

√
σiW̃

T
i√

2

√
2Si(Ẑ)z̃2,i√

σi
≤

n
∑

i=1

σi‖W̃i‖2

4 +
n
∑

i=1

2||Si(Ẑ)||2
σi

1
2 z̃T

2 z̃2 to the above equation, we can obtain

V̇2 ≤− zT
1 K1z1 − zT

2 (K2 − I)z2 − zT
2 K2z̃2 +

n
∑

i=1

σi‖W̃i‖2

4
+

n
∑

i=1

2||Si(Ẑ)||2
σi

1

2
z̃T
2 z̃2

−
n

∑

i=1

σi

2
‖W̃i‖2 +

1

2
‖ǭ‖2 +

n
∑

i=1

(
ǫ2‖Sti‖2

2
+

σi

2
)‖W ∗

i ‖2. (57)

Using Eq. (50), Ineq. (54) and zT
2 K2z̃2 ≤ 1

2zT
2 z2 + 1

2(K2z̃2)
T (K2z̃2), we further have

V̇2 ≤− zT
1 K1z1 − zT

2 (K2 −
3

2
I)z2 +

1

2
‖ǭ‖2 −

n
∑

i=1

σi

4
‖W̃i‖2

+ λmax(K
T
2 K2 + diag[2li/σi])

1

2
ξT
2 ξ2 +

1

2

n
∑

i=1

(ǫ2‖Sti‖2 + σi)‖W ∗
i ‖2. (58)
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From Lemma 3, applying 1
2ξT

2 ξ2 ≤ 1
2ε2h2

2, we have

V̇2 ≤ −zT
1 K1z1 − zT

2

(

K2 −
3

2
I
)

z2 +
1

2
||ǭ||2 −

n
∑

i=1

σi

4
||W̃i||2

+λmax(K
T
2 K2 + diag[2li/σi])

1

2
ε2h2

2 +
1

2

n
∑

i=1

(

ǫ2||Sti||2 + σi

)

‖W ∗
i ‖2

≤ −ρV2 + C, (59)

where ρ and C are two constants defined as

ρ = min
(

2λmin(K1),
2λmin(K2 − 3

2I)

λmax(M)
, min
i=1,2,...,n

( σi

2λmax(Γ
−1
i )

))

, (60)

C =
1

2

n
∑

i=1

(

ǫ2||Sti||2 + σi

)

‖W ∗
i ‖2 + λmax(K

T
2 K2 + diag[2li/σi])

1

2
ε2h2

2 +
1

2
‖ǭ‖2. (61)

To ensure that ρ > 0, the control gains K1 and K2 are chosen to satisfy the following conditions:

λmin(K1) > 0, λmin(K2 −
3

2
I) > 0. (62)

¥

Remark 6 In this section, we have assumed that the position measurements are perfect and designed a rig-

orous theoretical treatment of the output feedback problem using a high-gain observer corresponding to a

non-model-based approach. If the output measurements are contaminated with zero mean Gaussian white

noise within tolerance, careful implementation is necessary by designing ǫ to be sufficiently small. A satu-

ration function can be used to overcome the peaking phenomenon of the high-gain observer following the

procedure detailed in [41].

Remark 7 The tracking error has been shown to converge and remain within a small neighborhood of the

origin. If the residual error is desired to be lower, it can be reduced such that C/ρ in both Theorems 1 and

2 decreases. The reduction is achieved by increasing K1, K2, the approximation accuracy of the neural

networks, and the high-gain 1/ε of the state observer.

4 Simulation

Considering a rehabilitation robot with two revolute joints in the vertical plane as shown in Figs. 1 and 2,

simulations are carried out to verify the effectiveness of the proposed control. Let mi and li be the mass and

14



length of link i, lci be the distance from joint i − 1 to the center of mass of link i, as indicated in the figure,

and Ii be the moment of inertia of link i about an axis coming out of the page passing through the center of

mass of link i, i = 1, 2.

Figure 1: A 2-DOF rehabilitation robotic system.

We define

q =







q1

q2






=







θ1

θ2






. (63)

Figure 2: The schematic of the 2-DOF knee rehabilitation robotic system.

Then, we have the kinetic energy given as

K(q, q̇) =
1

2
m1l

2
c1q̇

2
1 +

1

2
I1q̇

2
1 +

1

2
m2l

2
1q̇

2
1 + m2l1lc2q̇1(q̇1 + q̇2) cos q2 +

1

2
m2l

2
c2(q̇1 + q̇2)

2

+
1

2
I2(q̇1 + q̇2)

2. (64)
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The potential energy is written as

P(q) = m1glc2 sin q1 + m2g[l1 sin q1 + lc2 sin(q1 + q2)]. (65)

Using the Lagrange’s equation d
dt

∂(K−P)
∂q̇

− ∂(K−P)
∂q

= 0, the dynamics of the robot can be expressed as Eq.

(10), where

G(q) =







(m1lc2 + m2l1)g cos q1 + m2lc2g cos(q1 + q2)

m2lc2g cos(q1 + q2)






, (66)

M(q) =







m1l
2
c1 + m2(l

2
1 + l2c2 + 2l1lc2 cos q2) + I1 + I2 m2(l

2
c2 + l1lc2 cos q2) + I2

m2(l
2
c2 + l1lc2 cos q2) + I2 m2l

2
c2 + I2






, (67)

C(q, q̇) =







−m2l1lc2q̇2 sin q2 −m2l1lc2(q̇1 + q̇2) sin q2

m2l1lc2q̇1 sin q2 0






. (68)

The kinematics of the robot and the Jacobian matrix are written as

φ(q) =







l1 cos q1 + l2 cos(q1 + q2)

l1 sin q1 + l2 sin(q1 + q2)






, (69)

J(q) =







−(l1 sin q1 + l2 sin(q1 + q2) −l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)






, (70)

J−1(q) =
1

l1l2 sin q2







l2 cos(q1 + q2) l2 sin(q1 + q2)

−[l1 cos q1 + l2 cos(q1 + q2)] −[l1 sin q1 + l2 cos(q1 + q2)]






. (71)

Parameters of the robot are listed in the table below.

Table 1: Parameters of the robot

Parameter Description Value

m1 Mass of link 1 2.00 kg

m2 Mass of link 2 0.85 kg

l1 Length of link 1 0.35 m

l2 Length of link 2 0.31 m

I1 Moment of inertia of link 1 1
4m1l

2
1 kgm2

I2 Moment of inertia of link 2 1
4m2l

2
2 kgm2
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The initial positions of the robot are given as

q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0. (72)

The desired trajectory tracking a circular path is given as qd = [0.14 sin(0.5t), 0.14 cos(0.5t)]T , where t ∈

[0, tf ] and tf = 40s.

We consider the robot under external disturbance composed by the Gaussian white noise. f(t) is given as

[sin(t) + 1 + d(t), 2 cos(t) + 0.5 + d(t)]T , where d(t)∼N (0, 1) is a white Gaussian noise of power 0dBW.

As −0.783 ≤ d(t) ≤ 0.818, we have f(t) ≤ [2.818 3.3180]T , and we choose f̄ = [3 3.4]T . Three

different cases are evaluated for the simulation studies. Firstly, we examine the model-based control designed

in Eq. (21). Secondly, the proposed adaptive neural network control with the full state feedback Eq. (23) is

considered. Thirdly, the adaptive neural network control with the output feedback Eq. (42) is evaluated.

For the model-based control, the control parameters are chosen as K1 = diag[10, 10], K2 = diag[8, 8]. For

the approximation-based control, a number of 256 nodes are used for each Si(Z) with centers chosen in the

area of [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]. Variance of centers is set as

η2 = 1. The initial weights Ŵ1,i = 0, Ŵ2,i = 0, (i = 1, 2, ...256). For adaptive neural network control with

the state feedback, the control parameters are chosen as K1 = diag[50, 50], K2 = diag[30, 30], σ1 = 0.02,

σ2 = 0.02, Γ1 = 10I256×256, Γ2 = 10I256×256, which satisfy the conditions in Eq. (35). For adaptive

neural network control with the output feedback, the control parameters are set as K1 = [200 0; 0 80],

K2 = [60 0; 0 20], σ1 = 0.02, σ2 = 0.02, Γ1 = 10I256×256, Γ2 = 10I256×256, η2 = 1. The initial weights

Ŵ1,i = 0, Ŵ2,i = 0, (i = 1, 2, ...256). The high-gain observer in Eq. (42) is used to obtain the output

feedback controller, with n = 2, λ̄1 = [4, 2]T , and ǫ = 0.001. The initial conditions of the observer are set as

π1 = π2 = π̇1 = π̇2 = [0, 0]T .

The tracking performance of the closed-loop system for the robot with two revolute joints are given in Figs. 3

and 4. From the two figures, we can state that all the three kinds of control (21), (23) and (42) can successfully

track the desired trajectory, where the system error is converging to a small value close to zero. However, to

achieve the control objective, the model-based control requires the fully-known system dynamics, which is

difficult to obtain in practice. The simulation results also show that neural networks are able to approximate

the unknown system dynamics and ensure the control performance. The tracking error reduces corresponding

to an increase in the adaptation gains, Γ1 and Γ2. Simulation results show the boundedness of the adaptation

gains where larger Γ1 and Γ2 will increase the convergence rate.

The angular velocities of the joints are given in Fig. 5. The corresponding control inputs are given in Fig.
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6. The control inputs are affected by the Gaussian noise, where the oscillation appears in the control inputs.

Especially, the high-gain observer does not bring the increase of the control inputs, which is an effective

design for the output feedback control. The control inputs are varying from −5Nm to 14Nm, which are

implementable by using motors in practice. Even though the robotic system is subjected to the Gaussian noise,

the control performance is not affected, and the proposed control still can work well. Fig. 7(a) demonstrates

the boundedness of the adaptation weights, Ŵ1(t) and Ŵ2(t). The proposed adaptive neural network control

produces a low norm of the error as shown in Fig. 7(b). Both the norms of the errors for the full state feedback

control and the output feedback control converge to a small constant.

Meanwhile, we consider the changes in model parameters to illustrate the compensation for system uncertain-

ties in the simulation part. In the range of 0 ∼ 20 seconds, we set the mass of the link 1 and the link 2 in

accordance with Table 1. In the range of 20 ∼ 40 seconds, m1 and m2 are changed to 3.00 kg and 1.50 kg

respectively with all other parameters fixed. By using the same control gains as in the previous case, the track-

ing performance of the closed-loop system for the robot with two revolute joints are given in Figs. 8 and 9.

From the two figures, we can state that although the error has an abrupt charge at the time of 20 second, all the

three kinds of control (21), (23) and (42) can successfully track the desired trajectory too, and the system error

is converging to a small value close to zero. This is to say that the proposed control is able to compensate for

the system uncertainties. The angular velocities of the joints are given in Fig. 10. The corresponding control

inputs are given in Fig. 11. Fig. 12(a) gives the boundedness of the adaptation weights, Ŵ1(t) and Ŵ2(t).

The proposed adaptive neural network control produces a low norm of the error as shown in Fig. 12(b). Both

the norms of the two errors also converge to a small constant.

Furthermore, to better illustrate the tracking performance for the proposed control, we use a step reference in

the desired trajectory qd = [0.14, 0.14]T (t > 0). The tracking performance for the robot with the parameters

in Table 1 is shown in Figs. 13 and 14. We can state that the proposed control can also track the step reference

successfully. The corresponding control inputs are given in Fig. 15.

5 Conclusion

In this paper, adaptive neural network control has been developed for a rehabilitation robot with unknown

dynamics. Two cases are investigated for the robot: (i) full-state feedback control design; and (ii) output feed-

back control design. For the first case, adaptive neural network control has been introduced for approximating

the unknown model of the robot. For the second case where x2 cannot be directly measured, the high-gain

observer has been designed to estimate x2 and ensure the control performance. The adaptive neural networks
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aim to compensate for the uncertainties of the dynamic model of the robot. All the signals of the closed-loop

system have been proved to be uniformly ultimately bounded by tuning the weights of the neural networks and

the control gains. The simulation results have illustrated that the proposed control is able to track the desired

trajectory with a good performance.
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Figure 3: Tracking performance and the error of the closed-loop system for the first joint.
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Figure 4: Tracking performance and the error of the closed-loop system for the second joint.
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Figure 5: Performance of the q̇1 and q̇2.
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Figure 6: Control inputs τ1 and τ2.
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Figure 7: Norms of the adaptation weights and errors.
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Figure 8: Tracking performance and the error of the closed-loop system for the first joint.
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Figure 9: Tracking performance and the error of the closed-loop system for the second joint.
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Figure 10: Performance of the q̇1 and q̇2.
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(a) Control input τ1
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Figure 11: Control inputs τ1 and τ2.
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Figure 12: Norms of the adaptation weights and errors.
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Figure 13: Tracking performance and the error of the closed-loop system for the first joint.
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Figure 14: Tracking performance and the error of the closed-loop system for the second joint.

0 5 10 15 20 25 30 35 40
−40

−30

−20

−10

0

10

20

30

t [s]

C
on

tr
ol

 in
pu

ts
 [N

m
]

Control input τ
1

 

 

Model based control τ
1

Full state feedback control τ
1

Output feedback control τ
1

(a) control input τ1

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

15

t [s]

C
on

tr
ol

 in
pu

ts
 [N

m
]

Control input τ
2

 

 

Model based control τ
2

Full state feedback control τ
2

Output feedback control τ
2

(b) control input τ2

Figure 15: Control inputs τ1 and τ2.
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