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	is article proposes a comparative method to assess the performance of arti
cial neural network’s direct inverse control (DIC-
ANN) with the PID control system. 	e comparison served as an analysis tool to assess the advantages of DIC-ANN over
conventional control method for a UAV attitude controller. 	e development of ANN method for UAV control purposes arises
due to the limitations of the conventional control method, which is the mathematical based model, involving complex expression,
and most of them are di�cult to be solved directly into analytic solution. Although the linearization simpli
ed the solving process
for suchmathematical based model, omitting the nonlinear and the coupling terms is unsuitable for the dynamics of the multirotor
vehicle. 	us, the DIC-ANN perform learning mechanism to overcome the limitation of PID tuning. 	erefore, the proposed
comparative method is developed to obtain conclusive results of DIC-ANN advantages over the linear method in UAV attitude
control. Better achievement in the altitude dynamics was attained by the DIC-ANN compared to PID control method.

1. Introduction

	e advancement of the Unmanned Aerial Vehicle (UAV)
has triggered the development of the autonomous technology
for various assignments, from the applied strategic and
tactical mission to the simple carrier of the video shooting
camera and, recently, the SAR purposes [1, 2]. Meanwhile, in
the 
eld of autonomous technology, UAVs already become
the preferred platform for research and development of
the �ight control systems. Numerous types of UAV have
been constructed and developed for research platform, and
between those types, the quadrotor becomes the popular
type. 	e popularity emerged because of the construction’s
simplicity, the easiness of maintenance, their ability to hover,
and the capability of performing vertical take-o
 and landing
(VTOL) [3]. 	e quadrotor also provides two advantages
from the traditional rotorcra� vehicle like the helicopter [3].
First, the quadrotor does not require complicated linkages
to actuate its rotor; instead, the �ight was controlled by
varying the angular speed of each rotor. Second, by using
four propellers instead of one, the quadrotor required smaller
diameter for propellers.

	e quadrotor is a basically unstable aerial vehicle [4].
Such instability—although quadrotor has been successfully
�ying in 1920—has inhibited the development of the prac-
tical quadrotor until recent years. 	e instability occurred
because of the di�culties of controlling all of the four rotors
simultaneously with a proper amount of bandwidth [3]; until
these days, due to the availability of sophisticated �ight
controller board, one can �y the unmanned quadrotor using
the aeromodelling remote controller. 	ese conventional
�ight controllers, including the commercially produced, were
based on the PID controlmethod and designed bymathemat-
ical based model.

	e PID control method is a common method of control
which processes the error signal into input signal by the
aid of proportional factor (P), integrative action (I), and
di
erential action (D). 	e states were compared with their
respective references (the set points) to obtain the error
signal. 	e error signal ampli
ed with the proportional gain
(�P), interpreted as the present error term, to improve the
speed of the system response to its error. In parallel, the
error signal also integrated together with the integral gain
(�I) as the accumulation of the past error term and being
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di
erentiated together with the derivative gain (�D) as the
prediction of future error term [5].	ese gains were adjusted
with the tuning methods based on the linear mathematical
model that represents the dynamics of the system. 	e PID
gains can be tuned easily for the systems with a low level of
nonlinearity and perfectly uncoupled between the modes of
its dynamics. On the contrary, the quadrotor �ight dynamics
is a highly nonlinear, strongly coupled,multivariable, and also
underactuated system [4]. Hence, these contraries stimulated
various research about quadrotor �ight control methods
besides PID.

Alongside the linear control method like PID, the nonlin-
ear methods are also developed widely from the underwater
robot like ROV [6, 7] and AUV [8, 9], to the aerial robot
like quadrotor. Several appliedmethods for the quadrotor and
unmanned robots are the backstepping control [10–13], slid-
ing mode control [9, 14–17], and the learning-based control
method like fuzzy logic and arti
cial neural-network-based
controllers [18]. 	is article compared one of the arti
cial
neural-network-based controllers, that is, the arti
cial neural
network’s direct inverse control (DIC-ANN), with the PID
controller in the quadrotor attitude dynamics.

Arti
cial neural network (ANN) is a parallel distributed
processor consisting of simple neurons that enabled memo-
rizing the knowledge of a system by mimicking its nonlinear
model a�er training process [19]. In the control areas, the
ANN-based control system arises due to the drawbacks of the
nonlinear control systems like backstepping, sliding mode
controller, and so forth. 	e backstepping controller has
a fast converge rate and can handle uncertainties, but the
robustness is bad; while the sliding mode controller has good
robustness and simple physical implementation, it su
ers the
chattering phenomena [20].

	eANNworked as regressor structure whichminimizes
an error function in an iterative process by applying the
backpropagation of error algorithm. Since ANN is a non-
parametric model consisting of connected neurons in several
layers, the training process will adjust the weight in every
neuron’s connection to obtain the optimum 
tting of system
dynamics representation. For control purposes, the ANN
has been used to invert the system dynamics to obtain the
input signal correlated with the desired output results. 	e
inversion technique initiates the direct inverse control (DIC)
method with the use of ANN. 	e ANN method has been
applied for nonlinear systems from chemical reactor [21] to
nuclear purposes [22], whereas, in the 
eld of unmanned
system’s controller, the DIC-ANN becomes research topics
in UAV, for example, hexacopter [19], helicopter [23], and
quadrotor [24] to the AUV [8].

	is article proposed the method of comparing the DIC-
ANN with the PID control method. 	e research of DIC-
ANN in UAV controller [19, 23, 24] has published the
advantages of the method for UAV application. However, to
validate their improvement, the results still not be comparable
with the conventional control method. Hence this article
assesses the requirement of such comparison for the valida-
tion purpose. 	e method was derived to perform a “head to
head” comparison to measure the improvement occurred.

To give insight into the proposed comparative method
between ANN and PID control in quadrotor attitude, the
paper will be organized as follows. A�er introductory nar-
ration in the 
rst section, Section 2 will address the PID
control system representing the dominant conventional con-
trol method for UAV. To introduce the ANN control system,
Section 3 will present the DIC-ANN control system for
quadrotor attitude dynamics. Since the ANN-based control
appears to have advantages compared to the conventional
control method, Section 4 will discuss the comparison
method required for validation purposes. Continued from
the previous sections, the comparative analysis will be per-
formed in Section 5 to validate the advantages of DIC-ANN
over PID control method. Finally, Section 6 will conclude the
work in this article.

2. PID Control of Quadrotor Dynamics

	e PID is a popular method of control for various system
dynamics. Besides the wide application in the industry, the
PID was also applied in UAV control systems. Including
the quadrotor, PID also become a common method to
build the �ight controller. Although many methods and
control algorithms have been explored for a quadrotor,
like backstepping, sliding mode, feedback linearization, and
adaptive control, the PID method was popularly applied
in current control board developer [25]. 	e main reason
of PID implementation is the simple structure, the simple
hardware implementation, being easily tunable, and having
a good range of performance [26]. Yet the PID controller was
simple to be implemented, but the manual tuning process
for its gains is a complex and time-consuming e
ort with
required experience and caution [25]. Moreover, from the
practitioner point of view, the mathematical based PID
tuning is considered to be di�cult and impractical for the
quadrotor purpose, so they tuned their PID by trial and error
method instead [27–30].

2.1. Quadrotor Attitude Dynamics. 	e quadrotor is a UAV
built from four rotors installed at the corner of “plus” shaped
frame (the + con
guration). Each rotor consists of a 
xed-
pitch propellermounted to the brushless DCmotor for li�ing
the vehicle while controlling its attitude simultaneously. As
an illustration, Figure 1 showed the quadrotor built by the
Computational Intelligence and Intelligent Systems (CIIS)
research group of Universitas Indonesia for their research
purposes.

Quadrotor gains its recent popularity from recreational,
commercial, and military purpose [31]. 	e commercial
aspect varies from 
lming landscapes to movies, even deliv-
ering purchased items to buyers with the aid of GPS [32].	e
advanced purposes also served by quadrotor are such as real-
time information gathering for disaster area [1] and becoming
part of rescuing technology in SAR activities [2]. Quadrotor
is also popular as a research platform in �ight control areas
due to the simple design andmaintenance; the ability to take-
o
, hover, and land vertically; being inexpensive and of lower
risk compared to traditional helicopter [3, 32].	e quadrotor
controlling can be illustrated as shown in Figure 2.
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Figure 1: Quadrotor UAV.
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Figure 2: Quadrotor �ight convention.

	e typical quadrotor sketched in Figure 2 was having
the known rotorcra� characteristics of underactuated and
strong coupling in pitch-yaw-roll [33]. 	e latitude (�) of
hovering, rolling (�), pitching (�), and yawing (�) are directly
actuated by changing the rotor’s RPM, while the forward
and side translation can only be performed indirectly. 	is
underactuated system of quadrotor dynamics will become a
suitable case for control method comparison and evaluation.
	e addition of strong nonlinearity and coupled dynamics
brought another challenge to be handled by the compared
methods.

Conventionally, the quadrotor dynamic model was
derived from the 
rst principle technique. Starting with the
Newton-Euler equation ofmotion, the rotational dynamics of
UAV can be expressed by the following vector equation [34]:

J
�̇⇀
 = �⇀� − �⇀
 × (J�⇀
) . (1)

Equation (1) is related to the quadrotor’s angular acceleration

vector, �̇⇀
 , due to the control torque vector, �⇀� , over the cross
product of its current angular rate, �⇀
 , and its inertia tensor,

J, while the quadrotor’s angular acceleration vector, �̇⇀
 , is
inversely proportional to the inertia tensor, J. 	e inertia

tensor consists of three inertia terms with respect to �, �, and� rotation axis, that is, ���, ���, and ���, plus another six terms
of product of inertia between their respective crossed axis,
that is, ���, ���, ���, ���, ���, and ���, arranged as follows:

J = [[[[
��� ��� ������ ��� ������ ��� ���

]]]]
. (2)

	e quadrotor angular rate �⇀
 consists of the rolling rate,�, pitching rate, �, and yawing rate, �, in the vector bracket�⇀
 = [� � �]�. 	e quadrotor control torque vector, �⇀� ,
consists of rolling torque rolling, ��, pitching torque, ��, and
yawing torque, ��, as expressed in the vector bracket �⇀� =[�� �� ��]�.

In practice, by expanding (1) together with (2), one
can rearrange it to obtain another form of Newton-Euler
formalism for the quadrotor attitude dynamics equation as
follows [35, 36]:

�̇ = ��� − ������ �� − ��	��� + �����
̇� = ��� − ������ �� − ��	��� + �����
̇� = ��� − ������ + �����

�̈ = −� + (cos � cos�) ��! .

(3)

Equation (3) shows the quadrotor’s angular acceleration in
rolling (�̇), pitching ( ̇�), and yawing ( ̇�) axis, as functions
of moment of inertias in �-, �-, and �-axis (���, ���, ���);
rotor inertia (��	); control torque for rolling-pitching-yawing(��, ��, ��); and roll-pitch-yaw angular rates (�, �, �). 	e
hovering dynamics expressed the quadrotor’s vertical accel-
eration (�̈) as a function of mass (!), gravity constant (�),
vertical control thrust (��), and pitching and rolling angle
(� and �). In kinematics, the roll-pitch-yaw angular rates(�, �, �) were measured in body frame and rotating the
quadrotor to achieve its orientation in the inertial frame.	e
orientation of the quadrotor can be observed as the roll-pitch-
yaw �ight angles (�, �, �) and their di
erential with respect to
time related with �, �, �, as follows [37]:

{{{{{{{
̇�̇

��̇
}}}}}}}

= [[[[[

1 sin� tan � cos� tan �0 cos� − sin�
0 sin�

cos � cos�
cos �

]]]]]
{{{{{

���
}}}}}

. (4)

Equations (3) and (4) clearly show the nonlinearity of the
quadrotor angular dynamics, for example, the multiplication
between states�, �, � in (1) or between states �, �,� in (2).	e
strong coupling can also be seen in the � and � interaction
when moving the (�̈); in other words, to induce a vertical
climb the quadrotor also experienced the pitch-roll coupling
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Figure 4: PID control scheme for quadrotor dynamic system.

and vice versa. Consequently, a proper model of altitude
dynamics involved all roll, pitch, and yaw coupling each other.
	us, controlling the altitude dynamics is interrelated with
the control of rolling, pitching, and yawing movement.	ese
conditions enhanced the requirement to perform a modeling
method which accommodates such strong nonlinearities.
A�er the completion of Section 2, such requirement of
nonlinear modeling is accommodated by applying the ANN-
based system identi
cation tomodel the quadrotor dynamics
in Section 3.

2.2. �e Main Ideas in PID Control Systems. 	e PID control
method works in a feedback scheme to stabilize a system
dynamics.	e feedback line passes the output to the summa-
tion junction to obtain the errors and proportionally multi-
plies it (P-action), integrates it (I-action), and di
erentiates
it (D-action) into the system’s input to have it reduced.
For optimal result, these P, I, and D actions are ampli
ed
with their respective gains, �P, �I, and �D as illustrated in
Figure 3.

	e proportional action is speeding the system’s response
to counter the error according to the �P gain. 	us, better
response due to error measured should be obtained by
high �P gain. However, the increment of �P gain above a
certain limit can destabilize the system. 	e integral action
accumulated the error and continually reduce the further
error values.	e optimum value of�I eliminates the system’s
steady state error.	e di
erential action processed the rate of
change of the system’s error. 	e sensitivity of this action was
a
ected by �D. 	e optimum value of �D predicts the future
error of the system, to anticipate such error.

To produce the best result, these gains must be tuned to
attain the optimal combination. Such tuning was dependable
on the accuracy of the dynamic modeling. For practical
purposes, the developed PID technique is mostly tuned in
the linearized model of the system. 	us, applying PID in
quadrotor will potentially uncover its nonlinearity aspects.

2.3. Constructing PID Controller for Quadrotor Attitude
Dynamics. Recently, most of the various �ight controller
boards like Ardupilot, Pixhawk, and OpenPilot applied the
PID controlmethodwith double loop structure for roll, pitch,
and yaw channel [25]. 	us, PID becomes the conventional
method inUAV’s autonomous feature. In the 
eld of research,
the quadrotor’s PID control was processing the error values
to generate the control torsion [38–40]. 	is is due to the
application of Newton-Euler model to analyze the quadrotor
�ight behavior.

	e controller scheme in Figure 4 compares the roll, pitch,
yaw, and altitude with their references as their respective
errors. Each error values were fed into the PID to produce the
hovering thrust, the rolling, pitching, and yawing control tor-
sion. Such con
guration was common in quadrotor studies
involving PID, according to the following structure [40–42]:

�� = �P�
(�
 − �) + �I�

∫ (�
 − �) + �D�

223 (�
 − �)
�� = �P�

(�
 − �) + �I�
∫ (�
 − �) + �D�

223 (�
 − �)
�� = �P�

(�
 − �) + �I�
∫ (�
 − �) + �D�

223 (�
 − �)
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Table 1: 	e PID gains.

Con
guration Mode KP KI KD N Remark

Con
g. #1

Roll (�) 0.4 0.3 0.1 5

Assuming all rotors have similar characteristics
Pitch (�) 0.4 0.3 0.1 5

Yaw (�) 0.2 0.1 0.1 5

Altitude (z) 0.3 0.3 0.1 5

Con
g. #2

Roll (�) 0.4 0.3 0.1 5

Treating each rotor with its own respective coe�cients
Pitch (�) 0.4 0.3 0.1 5

Yaw (�) 0.2 0.1 0.1 5

Altitude (z) 0.3 0.3 0.1 5

Con
g. #3

Roll (�) 2 5 2 5

Treating each rotor with its own respective coe�cients
Pitch (�) 2 5 2 5

Yaw (�) 1 5 2 5

Altitude (z) 2 2.5 0.5 5

�� = �P�
(�
 − �) + �I�

∫ (�
 − �)
+ �D�

223 (�
 − �) .
(5)

	e symbols �, �, and� refer to the �ight angles of roll, pitch,
and yaw. 	us, �� denotes the hovering thrust, while ��, ��,
and �� denote the rolling, pitching, and yawing torsion.

To perform the comparative simulation, the quadrotor
was modeled using the ANN-based system identi
cation
which directly related the altitude and �ight angles as the
function of the PWM values, that is, the motor command
signals. 	e choice of such PID structure, although common
in quadrotor �ight analysis was unable to be directly cascaded
to the twin ANN model for comparison purpose in this
article. 	us, as illustrated in previous Figure 4, a special
inverse mechanism must be constructed to convert this
controlling force-torsion into PWM values or the motors
command signals.

2.4. Tuning the Quadrotor PID Gains . 	ere are many types
of tuning methods, varying from the simple Ziegler-Nichols
to the more advanced fuzzy logic based tuning to obtain a
good combination of PID gains [43]. However, an extensive
study by O’Dwyer revealed that there were many industrial
PID controllers “out of tune” [44]. 	us, regardless of the
numerous methods available, the PID tuning was not really
a simple task. Similarly, in the practical world, the quadrotor
practitioners found that the tuning of quadrotor’s PID was
di�cult [27]. Hence, they tuned their PID by using trial and
error method [27–30].

From their trial and error approach, these quadrotor
practitioners developed systematics steps that di
er from one
to another. Beginning from the roughmethod, the quadrotor
�ight dynamics were observed, and then the PID gains are
adjusted until the oscillation disappears [29] and continued
with the common procedure which tuned the pitch and roll
parameters with the same values and then tuned the yaw
[27]. Another separated technique is tuning one axis at a
time, from roll, pitch, and then yaw axis, while the quadrotor

hovers. In that axis, they adjust each gain of �P, �I, and �D.
Due to the coupling dynamics of quadrotor, they return to
readjust the gains of previous axis [28].	edi
erent sequence
is also used by tuning of �P 
rst, then �D, and 
nally the �I

gains [30]. Initially, the gains were set to zero and then slowly
increased until the quadrotor’s oscillation critically damped;
a�er that, the tuning process repeated until quadrotor �ies in
a stable manner.

A practitioner’s method in tuning quadrotor’s PID gains
using computational so�ware was reported in [45]. Although
the computational so�ware seemed to result in optimized
gains, the 
rst �ight crashed due to the incorrect sampling
rate, and extensive tuning had to be performed again to �y
the quadrotor at the following attempt. Furthermore, the
increment of the controller performance conducted by tuning
the PID gains manually. 	ese conditions have enhanced the
requirement of an accurate model of quadrotor’s dynamic to
correctly tune its PID gains.

	e manual tuning of PID still becomes a common
preferable method in quadrotor control studies [40, 41, 46].
	us, in this work, the PID gains were manually tuned to
work on the discrete form of controller [47]:

�P + �I ⋅ 5� 1� − 1 + �D

61 + 6 ⋅ 5� (1/ (� − 1)) . (6)

A�er extensive iteration, the optimal gains are obtained in
Table 1.

Figure 5 showed the result of several tuning processes
with the gains described in Table 1 before obtaining the
preferable response of PID control on quadrotor altitude.	e
reference altitude pro
le is plotted by the green dashed line,
showing two ramps and two segments of constant altitude.
	is choice of the pattern is explained in detail in Section 5.
	us, the objective of the tuning is to obtain such altitude
response which follows the reference pro
le with small error
to ensure the quadrotor is able to hover as commanded.

	e 
rst gain combination in the upper part of Table 1
results in the “Con
g 1” response drawn in black dash-
dotted line in Figure 5. 	e gain was the same as the “Con
g
2” whose responses are also displayed in the blue dotted
line. 	e signi
cant di
erence between them is the way of
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converting PID results into PWM values. In the “Con
g
1,” the PWMs are calculated using a single parameter of
the motor, assuming that they were similar to each other.
Unfortunately, each motor has their unique characteristic
which cannot be neglected, and the ANN system identi
ca-
tion captured this characteristic inside the quadrotor model.
Hence, each motor then separately measured again and each
of their parameters inputted the force-torsion converter to
PWM. A�er recognizing the characteristics of each motor
individually, the PID with the gain combinations in the
middle part of Table 1 yield better response as plotted in
“Con
g 2” curve. 	e further explanation of the PWM
converter will be presented in Section 4.3.

	e response of “Con
g 2” PID is still inadequate to bring
the quadrotor into the desired altitude. 	us, the gains were
increased again as in the combination in the lower part of
Table 1 to speed up the response, while the limiters added
and bound the controlling torsion and thrust inside the upper
and lower threshold to avoid divergence. In the 
nal trial,
the “Con
g 3” gains obtained and enabled the quadrotor
achieved the desired altitude shown with the red solid curve
in Figure 5. However, a superposition of oscillation occurred
as transient response. Nevertheless, since these gains are the
best result of extensive trial and error process, then the PID
with “Con
g 3” gains are chosen to be compared with the
DIC-ANN in the following section. 	e performance of this
PID controller is discussed in the comparative analysis at the
Section 4.

3. Direct Inverse Control: Artificial
Neural Network for Controlling Quadrotor
Attitude Dynamics

	is article will compare theDIC-ANNwith the conventional
control, which is represented by the PID method. 	e
arti
cial neural network’s direct inverse control (DIC-ANN)

method itself had shown terri
c achievement in controlling
nonlinear dynamics aspect of UAV [19, 23, 24]. Consider-
ing the quadrotor as a highly nonlinear, strongly coupled,
interacting in multivariable dynamics, and underactuated
system [4], the DIC-ANNwill be suitable for controlling such
system. 	us, this section will present the quadrotor �ight
data and then discuss the DIC-ANN method together with
the arti
cial neural-network-based modeling and control.

	e direct inverse control (DIC) is a method to obtain
the required input of a system to produce the desired output
by constructing its dynamics inversion. In a linear system,
such inversion can be performed analytically, for example,
the dynamic inversion control method [48]. However, since
quadrotor �ight is a dynamic system with strong nonlin-
earity [4], the dynamic inversion will not be suitable to
be implemented. In addition, the dynamic inversion can-
not be performed alone for quadrotor because the system
underactuated condition cannot guarantee that the vehicle
will achieve the desired outputs [33]. 	us, the inversion of
quadrotor’s dynamic needs to be constructed in suchmanner
to accommodate its strong nonlinearity and underactuated
condition. In this work, the DIC-ANN were implemented to
control the quadrotor for a better �ight performance.

3.1. �e Direct Inverse Control of the ANN-Based Controller
Design. 	e DIC-ANN applies the arti
cial neural network
controller for a nonlinear process. Generally, the arti
cial
neural network has been utilized for system identi
cation
and controller in wide areas of applications from the indus-
trial nonlinear process to the vehicle control system. 	ese
included the thermal dynamic of pulsating heat pipe [49]
and greenhouse temperature [50] to the autonomous vehicle
control [51] and UAVs [19, 23, 24].

	e DIC-ANN was constructed by directly cascading the
system’s inverse, which consists of the arti
cial neural net-
work controller, with the plant or the controlled system. 	e
arrangement provides an identity that mapped the reference
signal to the output of the controlled system. Consequently,
the cascaded arrangement allows the arti
cial neural network
to directly control the system’s dynamic and achieve the
desired response. 	e cascaded arrangement illustrated in
Figure 6 was developed to control the quadrotor in this
article. 	e DIC produce required control command �, to
bring the quadrotor states �, in achieving the reference states,�.

As an advantage, the DIC-ANN was able to use the most
powerful feature of the arti
cial neural networks learning
mechanism to synthesize its controller parameters. However,
the initial output depended on the semirandomly initial
weight matrix of the arti
cial neural network, which may
reduce the controller robustness [52]. 	e block diagram
illustrated in Figure 6 also showed that the direct inverse
controller will depend solely on the reliability of the ANN
controller in the inverse block.

In general, problems might be showed up and arisen
severely because of no feedback signal involved, and further-
more, the absence of the feedback line will cause the lack of
the ANN controller robustness. To optimize the open loop
arrangement of the DIC, a feedback line was then equipped



Journal of Advanced Transportation 7

Inverse

controller

Controlled 

system

(plant or 

vehicle)

r(k) u(k) y(k)

Figure 6: 	e DIC-ANN scheme.

ANN
inverse

Quadrotor

system

ID

D

D

D

D

D

r(k) u(k) y(k)

Figure 7: 	e concept of ANN inverse control cascaded with the
quadrotor system identi
cation.

into the input channel of the ANN controller so the closed

loop system is achieved as illustrated in Figure 7.	e required

control command �, quadrotor states �, and the reference

states � become the input for DIC-ANN with their delayed

values symbolized by the D blocks.

	e DIC applied the multilayer perceptron in its ANN

controller which consists of an input layer, one hidden layer,

and an output layer while the learning mechanism employed

the backpropagation of error method. 	e learning process
was conducted iteratively by adjusting the ANN weights that
connect the neurons in the hidden layer with the output
layer, according to the vector of the quadrotor input pattern
and its desired output vector, that is, the corresponding
set of the quadrotor output patterns. In parallel with the
iteration, an input vector propagated forward in the network
to temporarily calculate the output vector of the output
layer. 	e di
erence of this output vector with its reference
value will be de
ned as the error to be minimized by
adjusting the connections weights. 	e backpropagation of
error determines these adjustments by using the function of
the neuron’s mathematical model. As the learning process
converges tominimize themean square root error (MSE), the
iteration stopped once theMSE fall below a chosen threshold.

3.2. �e Quadrotor Telemetry Data. 	e arti
cial neural
network (ANN) is a suitable method for modeling nonlinear
systems, for example, quadrotor’s �ight dynamic. To obtain
the model of the system’s dynamics, the ANN runs a learning
algorithm which iteratively relates the output of the system
with its input until the acceptable error is achieved. 	us,

to obtain the quadrotor ANN model, the �ight test must be
conducted in gathering the �ight data.

	e UAV �ight test is di
erent from the common aircra�
�ight test. Due to the small dimension of the quadrotor
UAV, its �ight test becomes less in risk and less in the e
ort.
	e popularity of quadrotor had brought many practitioners
which become a skilled pilot to �y the quadrotor for required
maneuvers. 	e commercial controller device also equipped
with data logging feature to record the gyro and accelerator
output. Since conducting �ight test has become feasible, the
system identi
cation for quadrotor can be performed to
model its dynamics directly from the logged �ight data.

	e scope of this article is the altitude dynamics which
involved the inner loop of the quadrotor �ight control.Hence,
the �ight data to be processed consist of the quadrotor’s
altitude, its Euler �ight angles, and its command signal for the
motors. 	e Euler angles were roll, pitch, and yaw angle, and
the commanded motor was PWM values for all the motor.
	e 4 minutes of the test result was presented in the green
dash-dotted thick lines in Figure 9.

While the quadrotor was hovering, the test pilot excited
the control stick to oscillate the quadrotor in rolling and
pitching. In the green dash-dotted thick lines in roll and
pitch graph of Figure 9, these variations logged between −20
and +20 degrees of �ight angle. Before ending the �ight test,
the test pilot performs circular movement to vary the yaw
angle from the direction of 100 to direction 120 (both in
degrees). 	e altitude response showed the take-o
, hover,
and landing in the �ight test. 	ese �ight data, especially
the variations recorded, identi
ed the quadrotor dynamics
system by training the ANN model. A�er obtaining the
sophisticated model, the ANN-DIC and PID controller can
be compared head to head using this twin quadrotor dynamic
model.

3.3. Modeling Quadrotor Using Arti�cial Neural Network Sys-
tem Identi�cation. 	e quadrotor dynamics can be modeled
by many ways, such as the physical based modeling which
derived from the 
rst principle or using the system identi-

cation methods which relied on the �ight data. In a con-
ventional way, the model from the 
rst principle depended
on the accuracy of its physical properties such as dimension,
weight, andmoments of inertia. However,moments of inertia
can only be estimated by geometrical approximation [37,
53], CAD [54, 55], or pendulum method [56]. While the
estimation relied on the measurement precision, dimension,
and the construction of the pendulum [57], it also su
ers
from unmodeled phenomena when oscillating the UAV [58].
	us, a system identi
cation performed to build a reliable
model for quadrotor dynamics which accommodated the
nonlinearity, coupled and underactuated dynamics, that is,
the ANN system identi
cation.

Arti
cial neural network can be envisaged as a nonlinear
transformation between multidimensional input and output
[59]. In this work, the implemented ANN related the output
of a system as the function of its input to be processed inter-
relatedly into a set of activation functions via an optimum
combination of weights. 	e weights then were iteratively
tuned by the backpropagation of error algorithm using the
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di
erence between the models’ output from the system real
output to adjust the weights.

A nonlinear dynamic system, which processes input �
into output�, can be approximated with the followingmodel:

� (8) = 9 (Φ (8) , Θ) . (7)

�(8) denotes the model’s output,Φ(8) denotes the regression
vector, and Θ denotes the parameter vector. Choose the
Nonlinear AutoRegressive networks with eXogeneous inputs
(NARX) structure using the 
nite amount of past inputs
and past outputs as expressed by the regression function as
follows:

Φ (8) = (� (8 − 1) , . . . , � (8 − 6�) , � (8 − 1) , . . . ,
� (8 − 6�)) , (8)

where 6� is the maximum lag of input and 6� is the
maximum lag of output.

As the learning mechanism, the back propagation of
error will approximate the nonlinear mapping for the NARX
identi
cation model as illustrated in Figure 8. 	e arti
cial
neural network to identify the quadrotor dynamics will be
de
ned by the input neuron including the input and output
signal with 6� = 2 and 6� = 2, followed by a hidden
layer consisting of 20 neurons and 4 output neurons. Each
of the input elements (�(8 − 1), . . . , �(8 − 6�) and �(8 −1), . . . , �(8 − 6�)) is multiplied with the weight V��
 or V��

and summed into each neuron in the hidden layer.	e index< = 1, 2, . . . , 6 denotes the number of input neurons and! = 1, 2, . . . ,? denotes the number of the hidden neurons.

	ese summed values were then inputted into the sig-
moid activation function to obtain the output of the hidden
neuron �
(8).	e next step ismultiplying the hidden neuron�
(8) with the weights @
, then summing them all into
the sigmoid function, and yielding the output neuron �(8)
according to the following expression:

� (8) = �∑

=1

@
(1 − exp {− (∑��1 � (8 − <�) V��� + ∑�	1 � (8 − <�) V���)}1 + exp {− (∑��1 � (8 − <�) V��� + ∑�	1 � (8 − <�) V���)}) . (9)

	e system identi
cation from the ANN has modeled the
quadrotor dynamics in the 
ne result as shown in Figure 9.
	e measured values were plotted in the green dash-dotted
line, while the modeling results were displayed in the solid
red line. By using the PWM logged as input, the results
showed that the ANN system identi
cation hasmimicked the
quadrotor dynamics.	us, the ANNmodel obtained became
the Quadrotor Twin ANN ID to be controlled for both PID
and DIC-ANN for the comparative simulation.

3.4. Performance of Quadrotor DIC-ANN. 	e DIC-ANN
is composed of arti
cial neural network structures which
represented the inverse of the system dynamics a�er 
nishing
a training process. Mathematically, the DIC-ANN can be
expressed in the following regression function:

� (8) = 9 (� (8 − 1) , . . . , � (8 − 6�) , � (8 + 1) , . . . ,
� (8 − 6�)) . (10)

	e schematic diagram in Figure 10 illustrates the itera-
tion to obtain the DIC-ANN with 6� = 2 and 6� = 2 as the
maximum lag of the input and output.	e ANN architecture
consists of a three-layer network with 28 neurons at the input
layer, 20 neurons in the hidden layer, and 4 neurons in the
output layer. 	e 28-20-4 network then trained to follow the
response of the quadrotor by using the backpropagation of
error algorithm.

A�er training the inverse block, the simulation of DIC-
ANN showing satisfactory results in directing the quadrotor
to achieve its desired reference. By cascading the DIC-ANN
block with the system identi
cation block and using a �ight
pro
le as the references for altitude, roll, pitch, and yaw,

the DIC showed coinciding curve between simulation results
with the desired values in Figure 11. 	e altitude, roll, pitch,
and yaw responses in the red dotted line following the
variation of the reference are given in the green dashed line.

	e quadrotor UAV �ight responses in Figure 11 have
validated the DIC-ANN performance. 	e ability to execute
curvy and oscillatory pro
le as their references indicated that
the DIC-ANN has accommodated the strong nonlinearity
and the cross-coupling of the quadrotor dynamics. 	e
constructed inverse block has mapped the targeted quadro-
tor output into a proper PWM command [19]. To assess
the advantages of DIC-ANN over the conventional control
method, the following sections will design the comparative
method and conclude the results.

4. Deriving Comparative Methods of
DIC-ANN and PID

	e DIC-ANN has been reported as a promising method for
the UAV �ight dynamics control [19]. Beginning from the
application in pattern recognition, the ANN developed into
intelligent control systems and furthermore to autonomous
technology in the intelligent transportation system [60].
	is autonomous concept aimed to be the backbone of
transportation technology to overcome the human error
problem and increase the safety level of vehicle operation
[60]. In current transportation applications, the autonomous
technology was also implemented in UAV application for
tra�c monitoring [61].

	is condition initiates a curiosity to analyze the incre-
ment of the performance of intelligent control method from
its predecessor, the conventional control method. Moreover,
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cation plot.

the investigation of quantifying the advantage of intelligent
control method over conventional method becomes a signif-
icant research. 	is article initiates addressing those issues
by proposing a comparative methodology and, to be speci
c,
comparatively simulating the DIC-ANN with PID control in
quadrotor UAV.

4.1. �e Proposed Method of Comparison. In control engi-
neering research, there are many comparative studies
between ANN-based control and conventional method that
were reported, from the simple comparison of ANN control
with classical control (including the comparison between
ANN modeling with state space modeling) [62] to the
comparison with PD control [63]. Since the PID control is
widely applied, there are also several comparative studies
between ANN-based control and PID at industrial purposes,
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Figure 11: 	e DIC-ANN response of altitude, roll, pitch, and yaw.

that is, in kiln [64], water bath temperature [65], compressor
[66], gas production [67], and air conditioning [68].

	ese studies show satisfactory performance of theANN-
based method in controlling the nonlinear plants. Since
quadrotor UAVs were governed in a nonlinear fashion,
the implementation of ANN-based control should also be
performed better than the PID. To prove such hypothesis,
a proper comparative study was required in analyzing the
advantages and performance increment of DIC-ANN con-
troller from the PID.

	ere are many comparative studies performed between
ANN-based and PID controller and hence, various method-
ologies are also applied.	us, in this article, amethodology of
comparison will be developed to obtain a proper conclusion.
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	e method to perform the comparison was designed to
achieve the “apple to apple,” the “head to head,” and the
“ceteris paribus” condition.

A good comparison must handle the “apple to apple”
condition; that is, both control methods should be applied to
the exact same quadrotor so their response will make sense to
be comparable to each other.	us, both controllersmust have
similar functionality in controlling the quadrotor dynamics.
	ey must process the same type of input and produce the
same type of output.

	e second achievement is the “head to head” condition;
that is, both control methods responses must be compared
directly with each other. Consequently, both controllers will
process exactly the same reference to be executed by the
quadrotor. 	eir response will be plotted in the same graph
to be directly compared and analyzed.

	e last achievement is the “ceteris paribus” condition;
that is, each comparison in a certain �ight parameter will
be held by exciting that parameter and keeping the other
unexcited. 	e technique is applied to isolate the responses
of a certain �ight parameter from the rest of them.

To achieve the “apple to apple,” the “head to head,” and
the “ceteris paribus” condition, the following methods are
generated:

(1) Using twin model (the ANN system identi
cation of
quadrotor dynamics) for both controllers

(2) Converting the control force and torsion in PID
output into PWM values

(3) Simultaneously performing numerical simulation of
both control methods

(4) Using equivalent reference pro
le for both DIC-ANN
and PID controller and then plotting their responses
in a joint graph.

	ese steps guided the numerical simulation in producing the
comparable results for analysis purposes.

4.2. Using the Quadrotor ANN System Identi�cation as the
Twin Model. 	e twin model was applied to obtain the
“apple to apple” condition in the comparative simulation.
	e practice of using twin model in the joint simulation
will ensure that both controllers experienced the exact same
environment while interacting with one quadrotor dynamics.
	is type of equality will be unachievable if the comparison
was held in the �ight test. 	e controlled aerial environ-
ment will almost be impossible to be attained in the open
space. Although the weather can be predicted with certain
accuracy, the instantaneous wind condition is unpredicted
in its direction and speed. For small dimension aircra�
like UAVs, any wind occurring is not negligible for the
vehicle’s dynamics. Such unexpected disturbances made the
comparison be better performed in a simulation than in �ight
test.

Most of the studies of the PID controller applied the
linearized state space model. On the other hand, most of the
studies of DIC-ANN applied the ANN system identi
cation
for modeling the quadrotor dynamics. However, the use

of state space model will eliminate the nonlinear aspect
which is the challenge to overcome. 	us, the ANN system
identi
cation becomes a suitable model of quadrotor dynam-
ics for both control methods to be compared. 	e ANN
model captured the strong nonlinearity, highly coupled, and
underactuated system of quadrotor dynamics. In previous
studies, besides the quadrotor, the comparison of ANN
control and PID was using the ANN mutual model due to
the strong nonlinearity in their plant [64, 68].

In the previous section, the quadrotor dynamics for the
comparative simulation has been modeled with the ANN
system identi
cation scheme. 	e previous studies which
modeled the UAV by the ANN system identi
cation had
proved the model’s high accuracy due to the very small
value of mean of squared error [19, 23, 24]. 	e quadrotor
ANN model in this comparative simulation receives PWM
values as input and produces the roll, pitch, yaw, and altitude
as the output. 	us, the ANN model becomes a more
realistic representation of the quadrotor controller since the
model directly processed command values to its 
nal states
which accommodate all aspects of nonlinearities and coupled
dynamics to the internal mechanical interactions.

4.3. Converting Force-Torsion into PWM Signal. 	e quadro-
tor in this workwas �own by four propellers and each of them
was driven by BLDC motor. 	ese motors receive command
in the form of PWM signals from the main controller. 	ese
PWM signals were recorded in the �ight data log and then
together with the roll, pitch, yaw, and altitude were used to
build the common ANN dynamic model of the quadrotor.

Consequently, amore realistic simulation can be achieved
by using the PWM quantities as the controller’s output to
be fed into the quadrotor dynamics model. Such arrange-
ment was applied in directly converting the PID’s output to
be PWM quantities without calculating the control forces
and torsion [46]. However, such arrangement cannot be
implemented here, since the output of PID was the control
force and torsion. 	us, an inverse mechanism was required
to convert these control force and torsion to be individual
motor thrust and then invert the thrust to the motor’s PWM
quantities.

In this article, the inverter mechanism was named as the
“Torsion-Force-PWMconverter” to denotes its input, output,
and function. Similar PWM generator block was known with
di
erent terms since they have a di
erent construction from
each other, such as rotational speed inverter [11], inverted
movement matrix [69], PPM converter [70], or RPM-PWM
mapping function [42]. 	e steps of generating PWM values
were summarized as follows:

(1) Convert the control force-torsion to individual rotor
thrust.

(2) Convert the rotor thrust into its PWM values.

	e 
rst step is converting the control force-torsion to
individual rotor thrust.	e controlling torsion can be derived
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and showed from eachmotor thrust by using Figure 2 in these
relations:

�� = I1 + I2 + I3 + I4
�� = ℓ (−I2 + I4)
�� = ℓ (−I1 + I3)
�� = K (I1 − I2 + I3 − I4) .

(11)

	e notations I1, I2, I3, I4 are the thrust of motor numbers 1
to 4, respectively, ℓ are the distance between propeller’s center
hub and the quadrotor center point, and K is the constant of
drag moment. Hence, each motor thrust can be computed as
follows:

{{{{{{{{{{{

I1I2I3I4

}}}}}}}}}}}
= [[[[[[

1 1 1 10 −ℓ 0 ℓ−ℓ 0 ℓ 0K K K K
]]]]]]

−1{{{{{{{{{{{

��������

}}}}}}}}}}}
. (12)

	e second step is converting the rotor thrust into the
motor’s PWMvalues.	is conversionwas obtained by the aid
of polynomial regression to invert the PWMcommand values
as a function of its thrust. 	e regression curve in Figure 12
was obtained a�ermeasuring the rotor’s thrust in a bench test.
	e similar description about the thrust measurement can be
viewed in [71, 72].

To obtain the K constant, the coe�cient for rotor’s drag
moment as a function of its thrust, the measurement result
was mapped in a linear curve. By using the tachometer, the
rotor thrust can be 
tted with a linear curve when plotted
with the squared values rotor’s speed, Ω2, in Figure 13 and
continued with 
tting the drag moment with the squared

values rotor’s speed, Ω2, in Figure 14. 	us, by combining
their gradient, the K constant can be obtained.

	us, the Torsion-Force-PWM converter generates the
PWM in the linear approximation. A�er 
nishing the
Torsion-Force-PWM converter, the PID gains can be tuned
in the conventional technique. However, the plots of mea-
surement results were showing the existence of nonlinear
e
ect in the small amount. While the “Torsion-Force-PWM
converter” excludes the existence of this nonlinearity, the
DIC-ANN embedded them.

4.4. Simultaneous Numerical Simulation. Parallel with the
aim of using the twin model, the simultaneous simulation
also performed to ensure an “apple to apple” comparison.
	us, the simulation should run in the discrete time domain
with the equivalent reference pro
le, each into the twin
model. In simultaneous simulation it was meant that each
control method runs on its own model, which is an equal
model of quadrotor dynamics. 	e simultaneous simulation
treats both control methods with an equal condition; that
is, both are isolated from disturbance or environmental
e
ect. Figure 15 showed the illustration of this simultaneous
simulation.
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Using the equivalent reference pro
le, into the twin
model, for the simultaneously numerical simulation there is
a series of method designs to ensure the “apple to apple”
comparison. In this work, the input was applied to the
altitude channel in the ramp and constant height pro
le.	is
combination of reference pro
les was designed to excite the
responses of DIC-ANN and PID controller at the transient
and steady condition.

Although there are many studies that compared the PID
and ANN-based control systems, most of them are not
directly comparing the results. Each controller’s performance
was plotted in the separate graph and separately analyzed
[64, 65]. However, a direct comparison will produce a sharp
analysis and unambiguous results. 	us, by placing the
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results of DIC-ANN and PID controller in the, respectively,
mutual plot, they will be directly compared and identify their
advantages or disadvantages to each other.

5. Comparison Result of DIC-ANN and PID
Control Method

	e comparison of DIC-ANN and PID control method is
performed in the following description: 
rst, each controller
is using the twin model, second, for PID, the controlling
force and torsion converted to obtain PWM values, third,
the numerical simulation was executed simultaneously, and
fourth, both controllers were excited with equivalent altitude
pro
le as their reference and the responses plotted in joint
graphs. Since the early descriptions have been revealed, this
section compared the results in “head to head” fashion.
Several published studies analyzed their comparison in the
joint graph [62, 67, 68], as adopted in the following analysis.

5.1. Flight Pro�le for the Altitude Response Comparison. 	e
�ight simulation aimed tomimic the �ight test of a quadrotor
as illustrated in Figure 16.	e simulated �ight consists of four
phases, 
rst, the “take-o
 and climb” phase at 0 < 3 < 10 s,
second, the “hovering” phase at 10 < 3 < 20 s, third the “climb
in ramp” phase at 20 < 3 < 22.5 s, and fourth, the “
nal
altitude” phase at 22.5 < 3 < 50 s. Initially, the quadrotor
is simulated to take-o
 from the ground and climb to a
safety altitude preferable for a test pilot to execute required
maneuvers. In the numerical quantities, the quadrotor is
simulated to �y from zero to 5m of height in the “take-o

and climb” phase and then “hovering” to maintain the 5m
of height. Such �ight pro
le had enabled both controllers
to achieve a steady hovering condition; thus, an equivalent
excitation can be induced to stimulate the time response
especially in the altitude to be observed. 	e excitation was
enforced by li�ing the quadrotor in the “climb in ramp” phase
to achieve the 7.5m height of “
nal altitude” phase. 	e slope
in the “climb in ramp” phase is 1m/s to give a 2.5m of altitude
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le for altitude’s response comparison.

increment from 3 = 20 s to 3 = 22.5 s. Finally, the simulation
stopped at 3 = 50 s a�er the quadrotor altitude achieved the
steady state of the “
nal altitude” phase.

Although, in the 
rst 10 seconds of simulation, the DIC-
ANN showed a remarkable response in following the take-o

pro
le, no further comparison will be studied in this segment
since the maneuver was meant to bring the quadrotor to the
safety altitude. 	e comparisons are started a�er 3 = 20 s
when the hovering quadrotor was excited by the 1m/s of
ramp. 	e comparisons also covered the transient response
at 3 = 22.5 s and the steady state response right a�er the ramp
ended at the 7.5m of constant height.

5.2. Comparison of the Ramp Response and Steady State.
	e ramp maneuver was chosen to obtain a more realistic
simulation of �ight compared to the standard step function
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for exciting the modes of quadrotor motion. 	e ramp
response of quadrotor altitude is shown in Figure 17(b)
entitled “ramp for climbing.” 	e steady state response was
shown in Figure 17(c) entitled “maintain 
nal altitude.” 	e
reference altitude pro
le is displayed as the green dashed
line, and the DIC-ANN response was represented by the red
dotted curve while the PID response was presented by the
solid blue curve.

Along with the reference pro
le, the DIC-ANN altitude
response was quickly damped and rising to follow the ref-
erence slope without signi
cant oscillation observed. While
the oscillation in PID controller response was observed for
2.5 s until the ramp ended. A closer examination in the
Figure 17(b) showed that the PID controller produced a lower
error when following the ramp maneuver compared to the
DIC-ANN altitude response.

A�er the ramp completed at 3 = 22.5 s and becomes
constant altitude in the reference pro
le, the altitude response
shows the transient oscillatory mode until it damped and
achieved the steady state condition. 	e steady state achieve-
ment can be seen in Figure 17(c), while the transient response
is discussed in the following subsection. Although the

simulation runs 37.5 s a�er the transient occurrence at the
edge of the ramp, the PID controller is still unable to damp
the oscillatorymode.	is residual oscillatorymode forms the
PID resulting in a vertical vibration with 0.04m or 4 cm of
amplitude and 1Hz of frequency, that is, signi
cant enough
with the quadrotor dimension and its potential mission
performance.On the contrary, theDIChas a shorter transient
response and achieves its steady state for 3 s a�er the ramp is
completed, shown in Figure 18(b) at the following subsection.
	us, the DIC-ANN has settling time equal to 3 s while the
PID controller fails to settle a�er 37.5 s due to the residual
oscillatory mode with 0.04m or 4 cm of amplitude and 1
Hertz of frequency.

5.3. Comparison of the Transient Responses. 	e quadrotor
was brought up from 5m of altitude to 7.5m by a 1m/s
ramp maneuver. Hence, the ramp is completed a�er 2.5 s
and the altitude is being constantly maintained. However, a
sudden discontinuity at the end of rampmaneuver excites the
oscillatory mode of the quadrotor �ight motion. 	ese oscil-
latory motions, known as the transient response, occurred
at both of DIC-ANN and PID controllers. 	e transient
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Figure 18: Comparison of the transient response.

responses of the quadrotor altitude are displayed in Figures
18(b) and 18(c). Although the DIC-ANN damped the tran-
sient response immediately, the PID controller still exhibits
its transient response involving multiple frequencies. 	ese
plural frequencies were exposed by splitting the display into
two sequential graphs, that is, Figure 18(b) entitled “Transient
A” for 21.5 s < 3 < 25 s and Figure 18(b) entitled “Transient
B” for 24 s < 3 < 40 s. 	e reference altitude pro
le is
depicted as the greendashed line, and theDIC-ANNresponse
is represented by the red dotted curve while the PID response
is represented by the blue solid curve.

As interpreted from Figure 18(b), the DIC-ANN suc-
cessfully damped the transient response and brought the
quadrotor altitude to its desired height. On the other hand,
the PID experienced 1Hz transient oscillation which was
undamped a�er 3 s. As the observation continued, the PID
controller in Figure 18(c) showed the superposition of the
short period (large frequencies) oscillation modulated with
the long period (rare frequencies), for example, the swing
with 16 s period. To be concluded, the DIC-ANN have better
performance in handling the transient response of quadrotor
altitude compared to the PID controller, since DIC-ANN
damped the oscillation a�er 3 s while PID was unable to do
so for 17.5 s a�er excitation occurred.

	e absolute error of both controllers presented in Fig-
ures 19(a), 19(b), and 19(c), while Figure 19(d) showed the
altitude pro
le to relate itself with the corresponding error
characteristic. 	e DIC-ANN absolute error is represented
by the red dash-dotted curve while the PID absolute error is
represented by the diamond-marked blue curve.	e absolute
error of ramp execution displayed in Figure 19(b) provides
the maximum error of DIC-ANN which does not exceed
0.2m. A�er 3 = 22 s, the DIC-ANN absolute error tends to
be reduced as shown in the slight decrement which ended
at 3 = 22.5 s when the ramp is completed. Since most
of the quadrotor mission required altitude precision in the
hovering maneuver, thus, the DIC-ANN ramp errors are still
acceptable although the PID have smaller error, i.e., a half
of the DIC-ANN. On the contrary, Figure 19(c) highlighted
the PID absolute error to 0.5m from the desired altitude in
the 
nal altitude aimed. A�er the quadrotor completed the
ramp, the DIC-ANN ramp error decreased immediately in
less than 3 s as shown in Figure 19(c) while the PID ramp
error increased and oscillated between 0 and 0.5m until 17.5 s
a�er the ramp completed. 	e absolute error characteristic
enhanced the DIC-ANN capability to overcome a sudden
change in the reference pro
le and following it with lower
oscillation than the PID.
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6. Concluding Remarks

	e method of comparison built in this article originated
from the satisfactory results of DIC-ANN controller in UAVs.
	us, the gap in the comparative research betweenDIC-ANN
and PID for quadrotor has been elaborated to pull out a
proper comparative method between these control systems.
	e comparison composed the twin ANN model usage, the
conversion into PWM values, the simultaneous numerical
simulation, and the equivalent reference pro
le to be plotted
on a joint graph. 	ese steps ensured the comparison to be
apple to apple, head to head, and ceteris paribus.

	e comparison result showed that the DIC-ANN per-
formance was better than the PID controller in handling the
quadrotor altitude dynamics. Although the DIC experienced

slight overshoot in following the ramp input given, the error
is not exceeding 0.2m while it tends to be decreased.

	e sudden changes from climbing to hover exhibit
the lower steady state error in the DIC-ANN controller
and the transient oscillation damped faster by the DIC-
ANN. 	ese results showed that DIC-ANN was better in
controlling the nonlinear vehicle than the PID controller
did. Equipped with the learning algorithm, the DIC-ANN
performed better compared to the PID that involved e
orts
of tuning. Such results will support the DIC-ANN application
for the autonomous technology. For further development,
the comparison will be suitable to be expanded to analyze
the translation responses. By analyzing the UAV responses in
the � and � direction, the trajectory can be compared and
validated.
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