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Abstract 

We use two co-evolving neural networks to determine new classes 
of protein secondary structure which are significantly more pre­
dictable from local amino sequence than the conventional secondary 
structure classification. Accurate prediction of the conventional 
secondary structure classes: alpha helix, beta strand, and coil, from 
primary sequence has long been an important problem in compu­
tational molecular biology. Neural networks have been a popular 
method to attempt to predict these conventional secondary struc­
ture classes. Accuracy has been disappointingly low. The algo­
rithm presented here uses neural networks to similtaneously exam­
ine both sequence and structure data, and to evolve new classes 
of secondary structure that can be predicted from sequence with 
significantly higher accuracy than the conventional classes. These 
new classes have both similarities to, and differences with the con­
ventional alpha helix, beta strand and coil. 
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The conventional classes of protein secondary structure, alpha helix and beta 
sheet, were first introduced in 1951 by Linus Pauling and Robert Corey 
[Pauling, 1951] on the basis of molecular modeling. Prediction of secondary 
structure from the amino acid sequence has long been an important problem 
in computational molecular biology. There have been numerous attempts to 
predict locally defined secondary structure classes using only a local window 
of sequence information. The prediction methodology ranges from a combina­
tion of statistical and rule-based methods [Chou, 1978] to neural net methods 
[Qian, 1988], [Maclin, 1992], [Kneller, 1990], [Stolorz, 1992]. Despite a variety of 
intense efforts, the accuracy of prediction of conventional secondary structure is 
still distressingly low. 

In this paper we will use neural networks to generalize the notion of protein sec­
ondary structure and to find new classes of structure that are significantly more 
predictable. We define protein "secondary structure" to be any classification of 
protein structure that can be defined using only local "windows" of structural in­
formation about the protein. Such structural information could be, e.g., the classic 
cI>'lf angles [Schulz, 1979] that describe the relative orientation of peptide units along 
the protein backbone, or any other representation of local backbone structure. A 
classification of local structure into "secondary structure classes", is defined to be 
the result of any algorithm that uses a representation of local structure as Input, 
and which produces discrete classification labels as Output. This is a very general 
definition of local secondary structure that subsumes all previous definitions. 

We develop classifications that are more predictable than the standard classifica­
tions [Pauling, 1951] [Kabsch, 1983] which were used in previous machine learning 
projects, as well as in other analyses of protein shape. We show that these new, 
predictable classes of secondary structure bear some relation to the conventional 
category of "helix", but also display significant differences. 

We consider the definition, and prediction from sequence, of just two classes of 
structure. The extension to multiple classes is not difficult, but will not be made 
explicit here for reasons of clarity. We won't discuss details concerning construction 
of a representative training set, or details of conventional neural network train­
ing algorithms, such as backpropagation. These are well studied subjects that 
are addressed in e.g., [Stolorz, 1992] in the context of protein secondary struc­
ture prediction. We note in passing that one can employ complicated network 
architectures containing many output neurons (e.g. three output neurons for pre­
dicting alpha helix, beta chain, random coil), or many hidden units etc. (c.f. 
[Stolorz, 1992], [Qian, 1988], [Kneller, 1990]). However, explanatory figures pre­
sented in the next section employ only one output unit per net, and no hidden 
units, for clarity. 
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A widely adopted definition of protein secondary structure classes is due to Kabsch 
and Sander [Kabsch, 1983]. It has become conventional to use the Kabsch and 
Sander definition to define, via local structural information, three classes of sec­
ondary structure: alpha helix, beta strand, and a default class called random coil. 
The Kabsch and Sander alpha helix and beta strand classification captures in large 
part the classification first introduced by Pauling and Corey [Pauling, 1951]. Soft­
ware implementing the Kabsch and Sander definitions, which take a local window 
of structural information as Input, and produce the Kabsch and Sander secondary 
structure classification of the window as Output, is widely available. 

The key ideas of this paper are contained in Fig. (1). 

[ 
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Left Net 
Maps AA sequence to "secondary 

structure" . 

Right Net 

Maps <l>.\f' to "secondary 

structure". 

In this figure the Kabsch and Sander rules are represented by a second neural net­
work. The Kabsch and Sander rules are just an Input/Output mapping (from a 
local window of structure to a classification of that structure) and may in princi­
ple be replaced with an equivalent neural net representing the same Input/Output 
mapping. We explicitly demonstrated that a simple neural net is capable of repre­
senting rules of the complexity of the Kabsch and Sander rules by training a network 
to perform the same structure classification as the Kabsch and Sander rules, and 
obtained high accuracy. 

The representation of the structure data in the right-hand network uses cI>\i' angles. 
The right-hand net sees a window of cI>\i' angles corresponding to the window of 
amino acids in the left-hand network. Problems due to the angular periodicity of 
the cI>\i' angles (i.e ., 360 degrees and 0 degrees are different numbers, but represent 
the same angle) are eliminated by utilizing both the sin and cos of each angle. 
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The representation of the amino acids in the left-hand network is the usual unary 
representation employing twenty bits per amino acid . Results quoted in this paper 
do not use a special twenty-first bit to represent positions in a window extending 
past the ends of a protein. 

Note that the right-hand neural network could implement extremely general def­
initions of secondary structure by changing the weights. We next show how to 
change the weights in a fashion so that new classifications of secondary structure 
are derived under the important restriction that they be predictable from amino 
acid sequence. In other words, we require that the synaptic weights be chosen so 
that the output of the left-hand network and the output of the right-hand network 
agree for each sequence-structure pair that is input to the two networks. 

To achieve this, both networks are trained simultaneously, starting from random 
initial weights in each net, under the sole constraint that the outputs of the two 
networks agree for each pattern in the training set. The mathematical implemen­
tation of this constraint is described in various versions below. This procedure 
is a general, effective method of evolving predictable secondary structure classifi­
cations of experimental data. The goal of this research is to use two mutually 
self-supervised networks to define new classes of protein secondary structure which 
are more predictable from sequence than the standard classes of alpha helix, beta 
sheet or coil. 

3 CONSTRAINING THE TWO NETS TO AGREE 

One way to impose agreement between the outputs of the two networks is to require 
that they covary when viewed as a stream of real numbers. Note that it is not 
sufficient to merely require that the outputs of the left-hand and right-hand nets 
agree by, e.g., minimizing the following objective function 

(1) 
P 

Here, LeftO(p) and RightO(p) represent the outputs of the left-hand and right­
hand networks, respectively, for the pth pair of input windows: (sequence window 
-left net) and (structure window -right net). It is necessary to avoid the trivial 
minimum of E obtained where the weights and thresholds are set so that each net 
presents a constant Output regardless of the input data. This is easily accomplished 
in Eqn (1) by merely setting all the weights and thresholds to 0.0. 

Demanding that the outputs vary, or more explicitly co-vary, is a viable solution 
to avoiding trivial local minima. Therefore, one can maximize the correlation, P, 
between the left-hand and right-hand network outputs. The standard correlation 
measure between two objects, LeftO(p) and RightO(p) is: 

p = '2:)LeftO(p) - LeftO)(RightO(p) - RightO) (3) 

P 

where LeftO denotes the mean of the left net's outputs over the training set, and 
respectively for the right net. p is zero if there is no variation, and is maximized 



Neural Network Definitions of Highly Predictable Protein Secondary Structure Classes 813 

if there is simultaneously both individual variation and joint agreement. In our 
situation it is equally desirable to have the networks maximally anti-correlated 
as it is for them to be correlated. (Whether the networks choose correlation, or 
anti-correlation, is evident from the behavior on the training set). Hence the min­
imization of E = _p2 would ensure that the outputs are maximally correlated 
(or anti-correlated). While this work was in progress we received a preprint by 
Schmidhuber [Schmidhuber, 1992] who essentially implemented Eqn. (1) with an 
additional variance term (in a totally different context). Our results using this mea­
sure seem quite susceptible to local minima and we prefer alternative measures to 
enforce agreement. 

One alternative to enforce agreement, since one ultimately measures predic­
tive performance on the basis of the Mathews correlation coefficient (see, e.g., 
[Stolorz, 1992]), is to simultaneously train the two networks to maximize this mea­
sure. The Mathews coefficient, Gi, for the ith state is defined as: 

c. _ Pini - UiOi 

I - [(ni + ui)(ni + Oi)(Pi + Ud(pi + Oi»)1/2 

where Pi is the number of examples where the left-hand net and right-hand net 
both predict class i, ni is the number of examples where neither net predicts ;, Ui 

counts the examples where the left net predicts i and the right net does not, and 0i 

counts the reverse. Minimizing E = -Gi 2 optimizes Gi. 

Other training measures forcing agreement of the left and right networks may be 
used. Particularly suitable for the situation of many outputs (i .e., more than two­
class discrimination) is "mutual information". Use of mutual information in this 
context is related to the IMAX algorithm for unsupervised detection of regularities 
across spatial or temporal data [Becker, 1992]. The mutual information is defined 
as 

'" p " M = LJ Pi; log ....!2L. 
. . Pi .P.; 
I,J 

(4) 

where Pij is the joint probability of occurrence of the states of the left and right 
networks. (In previous work [Stolorz, 1992] we showed how Pij may be defined 
in terms of neural networks) . Minimizing E = -M maximizes M. While M has 
many desirable properties as a measure of agreement between two or more variables 
[Stolorz, 1992] [Farber, 1992] [Lapedes, 1989] [Korber, 1993], our preliminary sim­
ulations show that maximizing M is often prone to poor local maxima. 

Finally, an alternative to using mutual information for multi-class, as opposed to 
dichotomous classification, is the Pearson correlation coefficient, X 2 • This is defined 
in terms of Pi; as 

(5) 

Our simulations indicate that X 2 , Gi and p are all less susceptible to local minima 
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than M. However, these other objective functions suffer the defect that predictabil­
ity is emphasized at the expense of utility. In other words, they can be maximal 
for the peculiar situation where a structural class is defined that occurs very rarely 
in the data, but when it occurs, it is predicted perfectly by the other network. The 
utility of this classification is therefore degraded by the fact that the predictable 
class only occurs rarely. Fortunately, this effect did not cause difficulties in the 
simulations we performed. Our best results to date have been obtained using the 
Mathews objective function (see Results). 

4 RESULTS 

The database we used consisted of 105 proteins and is identical to that used in 
previous investigations [Kneller, 1990] [Stolorz, 1992]. The proteins were divided 
into two groups: a set of 91 "training" proteins, and a distinct "prediction" set 
of 14 proteins. The resulting database is similar to the database used by Qian & 
Sejnowski [Qian, 1988] in their neural network studies of conventional secondary 
structure prediction. When comparison to predictability of conventional secondary 
structure classes was needed, we defined the conventional alpha, beta and coil states 
using the Kabsch and Sander definitions and therefore these states are identical to 
those used in previous work [Kneller, 1990] [Stolorz, 1992]. A window size of 13 
residues resulted in 16028 train set examples and 3005 predict set examples. Effects 
of other windows sizes have not yet been extensively tested. All results, including 
conventional backpropagation training of Kabsch and Sander classifications, as well 
as two-net training of our new secondary structure classifications, did not employ 
an extra symbol denoting positions in a window that extended past the ends of a 
protein. Use of such a symbol could further increase accuracy. 

We found that random initial conditions are necessary for the development of in­
teresting new classes. However, random initial conditions also suffer to a certain 
extent from local minima. The mutual information function, in particular, often 
gets trapped quickly in uninteresting local minima when evolved from random initial 
conditions. More success was obtained with the other objective functions discussed 
above. We have not exhaustively investigated strategies to avoid local minima, 
and usually just chose new initial conditions if an uninteresting local minimum was 
encountered. 

Results were best for two class discrimination using the Mathews objective function 
and a layer of five hidden units in each net. If one assigns the name "Xclass" to the 
newly defined structural class, then the Mathews coefficient on the prediction set 
for the Xclass dichotomy is -0.425. The Mathews coefficient on the train set for the 
Xclass dichotomy is -0.508. For comparison, the Mathews coefficient on the same 
predict set data for dichotomization (using standard backpropagation training with 
no hidden units), into the standard secondary structure classes Alpha/NotAlpha, 
Beta/NotBeta, and CoilJNotCoil is 0.33, 0.26, and 0.39, respectively. Adding hid­
den units gives negligible accuracy increase in predicting the conventional classes, 
but is important for improved prediction of the new classes. The negative sign of 
the two-net result indicates anti-correlation - a feature allowed by our objective 
function. The sign of the correlation is easily assessed on the train set and then can 
be trivially compensated for in prediction. 
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A natural question to ask is whether the new classes are simply related to the more 
conventional classes of alpha helix, beta, coil. A simple answer is to compute the 
Mathews correlation coefficient of the new secondary structure classes with each 
of the three Kabsch and Sander classes, for those examples in which the sequence 
network agreed with the structure network's classification. The correlation with 
Kabsch and Sander's alpha helix is highest: a Mathews coefficient of 0.248 was 
obtained on the train set, while a Mathews coefficient of 0.247 was obtained on 
the predict set. There is therefore a significant degree of correlation with the con­
ventional classification of alpha helix, but significant differences exist as well. The 
new classes are a mixture of the conventional classes, and are not solely dominated 
by either alpha, beta or coil. Conventional alpha-helices comprise roughly 25% of 
the data (for both train and predict sets), while the new Xclass comprises 10%. It 
is quite interesting that an evolution of secondary structure classifications starting 
from random initial conditions, and hence completely unbiased towards the conven­
tional classifications, results in a classification that has significant relationship to 
conventional helices but is more predictable from amino acid sequence than conven­
tional helices. Graphical analysis (not shown here) of the new Xclass shows that 
the Xclass that is most closely related to helix typically extends the definition of 
helix past the standard boundaries of an alpha-helix. 

5 CONCLUSIONS 

A primary goal of this investigation is to evolve highly predictable secondary struc­
ture classes. Ultimately, such classes could be used, e.g., to provide constraints 
on tertiary structure calculations. Further work remains to derive even more pre­
dictable classes and to analyze their physical meaning. However, it is now clear 
that the use of two, co-evolving, adaptive networks defines a novel and useful ma­
chine learning paradigm that allows the evolution of new definitions of secondary 
structure that are significantly more predictable from primary amino acid sequence 
than the conventional definitions. 

Related work is that of [Hunter, 1992], [Hunter, 1992], [Zhang, 1992], [Zhang, 1993] 
in which clustering either only in sequence space, or only in structure space, is 
attempted. However, no condition on the compatibility of the clustering is required, 
so new classes of structure are not guaranteed to be predictable from sequence. 

Finally, we note that the methods described here might be usefully applied to 
other cognitive/perceptual or engineering tasks in which correlation of two or more 
different representations of the same data is required. In this regard the relation of 
our work to that of independent work of Becker [Becker, 1992], and of Schmidhuber 
[Schmidhuber, 1992], should be noted. 
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