
 

 

 

  

Abstract— Choosing an appropriate size of a network is an 

important issue for any neural network applications. The 

common practice is to start with an “over-sized” network, then 

gradually reduces its size to find the optimal solution. In this 

paper, a new hybrid neural network pruning algorithm for 

multi-layer feedforward neural networks is investigated. 

Computer simulation results on system identification and 

pattern classification problems show this algorithm can 

significantly reduce the network dimension while still 

maintaining satisfactory identification and classification 

accuracy. 

I. INTRODUCTION 

T is well known that before a neural network can be 

employed, its dimension (i.e., number of layers, number of 

neurons in each layer, and how they are connected) must 

be predetermined. In fact, a neural network is not fully 

utilized until it is properly trained with an appropriate size. 

However, finding the optimal dimension of a neural network 

is a very difficult task and often comes down to a guess 

work. A network that does not have enough parameters may 

be unable to learn the presented task; on the other hand, 

choosing a network that is larger than necessary may have 

some other limitations. A larger network yields more nodes, 

more weights, and more layers that result in additional 

arithmetic operations and high computation cost. For real 

time applications, the reduction of network size can save us 

precious hardware implementation time. 

The ability to generalize, or to produce accurate values for 

the inputs not included in the training dataset, is one of the 

major benefits of using neural networks. An oversized 

network may over-fit the training data, and has poor 

generalization ability for the testing data. Of course, this is 

fine with a comprehensive training set since all possible 

input/output pairs are present and no generalization is 

needed. However, the amount of training data is usually 

limited; thus a trained network is expected to be able to 

perform well even on the previously unseen data. Therefore, 

the choice of an optimal network dimension is an important 

issue in neural network design and implementations. An 

ideal neural network should be able to perform well on both 
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the training data and the unknown testing data while 

maintaining as compact a form as possible. 

 Aside from lucky guesses and extensive trial and error, 

there are two fundamental approaches to finding the 

appropriate size of a neural network. The first one is to start 

with a small network and slowly add more connections to it 

until an appropriate stopping criterion is satisfied [11].  The 

network is first trained at its minimum size; then more 

weights/nodes can be added and the new network will be 

retrained. This process can be repeated until certain 

performance index is met. The difficulties of this approach 

include when to start the growing process, and where to add 

the new connections/nodes in the network. In addition, the 

above procedures may be very tedious and time-consuming. 

The second approach is to start with a network that is 

knowingly too large for the data, and then trim it down to the 

appropriate size. This is called “neural network pruning” and 

has been studied by many researchers in recent years ([1] [6] 

[9] [10] [12] [13]). 

In this paper, a new pruning algorithm is investigated and 

compared with three existing ones, including the local 

sensitivity analysis method [13], the local variance 

sensitivity analysis [1], and the cross validation pruning 

algorithm [9]. This new algorithm combines the advantages 

of the above three methods, re-evaluates the network 

performance during pruning process, and iteratively prunes 

the neural network on a reduced set of connections if a 

pruning error occurs. Different data sets and various network 

configurations are studied in computer simulations. The 

results show that this new algorithm can significantly reduces 

the neural network size while still maintaining satisfactory 

generalization accuracy of the network, for both system 

identification and classification applications. 

II. REVIEW ON NEURAL NETWORK PRUNING ALGORITHMS 

A typical neural network contains an input layer, an output 

layer, and one or more hidden layers. The number of outputs 

and inputs are usually fixed; while the number of hidden 

layers and number of hidden neurons in each hidden layer 

can be varied. In this research, we focus on the studies of 

pruning algorithms for multi-layer feedforward neural 

networks. 

The simplest way to find the optimum network size is to 

use a brute force approach that produces all the combinations 

of networks within a desirable range, trains them, and 

chooses the best one. This process is usually not an efficient 
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way to solve the problem. Another approach, the weight 

decay method (or the penalty method), is based on the 

assumption that smaller weights in a network have relatively 

small effect on the output of a node, especially when 

surrounded by significantly larger weights. This method adds 

a penalty term to the objective function to be minimized so 

that these smaller weights can eventually be forced to zero. 

However, this approach may eliminate weights that are 

actually crucial to the overall architecture of the network and 

thus produce a network with poor performance. Also, the 

added penalty term may create additional local minima on 

the error surface during training. 

Huynh and Setiono [9] introduced the concept of cross-

validation. The whole dataset is divided into two parts, i.e., 

the training set T and the cross validation set C. The pruning 

criterion is still based on the magnitude of each weight; 

however, a validation step is added to test the pruned 

network. At every pruning step, the performance of the 

network with reduced size is compared with the performance 

of the network before the current pruning phase. Let the 

performance criterion (objective function) on set T and set C 

be TRJ  and CVJ , respectively (where J(•) can be the root-

mean-square error (RMS), or the percentage of misclassified 

patterns). After pruning, a smaller neural network is obtained 

and the error on set T and set C be TRJ ′  and CVJ ′ , 

respectively. If 

)JJ()JJ( CVTRCVTR +<′+′           (1) 

i.e., the pruned network outperforms the un-pruned one; then 

the pruned network is accepted and the pruning process can 

be continued. Otherwise, the network is restored to the size 

before the current pruning step. Obviously, the use of an 

additional cross validation set at each phase of the pruning 

takes into account that pruning is meant to not only reduce 

the size of a network, but also improve the network 

generalization capacity. 

Rather than focusing on the magnitude of the weights in 

the network, the sensitivity based approach attempts to find 

the contribution of each weight in the network and then 

prunes the weights that have the least effect on the objective 

function. Mozer and Smolensky [12] suggested that the 

sensitivity of each weight can be found by measuring the 

difference on the performance of the network with/without 

that weight, i.e.,: 

i,js  = J ( ij,w  = 0) - J ( ij,w  =
f
ij,w ) 

= J (without ij,w ) - J (with ij,w )        (2) 

where i,js is the sensitivity   (with respect to the removal of 

connection ij,w ); ij,w  is the weight of the neural network 

from node i to node j; 
f
ij,w  is the final value of weight ij,w  

when training is finished; and J(•) is the objective function. 

 Calculating Eq. (2) directly may be very time-consuming. 

Karnin [10] found an effective way to approximate it for the 

back-propagation algorithm: 
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where T is the total number of iterations (training epochs) 

needed to minimize the objective function J; η  is the 

learning rate and ij,w∆  is the change on weight ij,w  in one 

training iteration. The absolute value of the estimated 

sensitivity for each weight, ij,s , is then compared with a 

pre-determined threshold to determine whether the weight 

should be pruned or not. Note that this algorithm relies 

heavily on the selection of a threshold which must be 

determined beforehand which may differ between data sets 

and applications. If the threshold is too high, too many 

weights will be pruned and the pruned network may not 

function as desired; but if the threshold is too small, no 

weights will be pruned at all. Also, in this method, all the 

sensitivities in the network are compared with the same 

threshold, i.e., they are treated equally for pruning. 

Ponnapelli et al. [13] suggested that the sensitivities of 

weights should only be compared with those related with the 

same node in the same layer. Thus, the concept of local 

relative sensitivity index (LRSI) is defined as the ratio of the 

sensitivity of a particular weight and the sum of all the 

sensitivities of the weights that are connected to the same 

node from the previous layer: 
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where M is the total number of connections to node j from 

the previous layer. For each node, any weight that has a local 

sensitivity less than a threshold will be pruned: 

 β≤i,jLRSI                  (5) 

Even though the choice of the threshold (i.e., β ) still 

depends on the rule of thumb, it is now a percentage which is 

relatively easier to be chosen. Note that this algorithm only 

considers weight removal; node pruning is not included. 

Theoretically, if all the weights that are connected to a single 

node are pruned, then this node can also be eliminated. 

However, this may take several rounds of pruning and 

training so it may not be a feasible solution in practice. 

 Engelbrecht [6] proposed a modified approach to 

sensitivity analysis. Instead of using the value of the 

sensitivity directly, Engelbrecht found the average sensitivity 

of a network parameter (e.g., weight or node) over all the 

patterns, and then developed a new measure called variance 

nullity. That is, if the variance of sensitivity of a network 

parameter over all the patterns (denoted by 
2

kθσ  for 

parameter kθ ) is close to zero and the average sensitivity 

(also over all the patterns) is small, then we conclude that 

this parameter has little or no effect on the output of the 

neural network over all patterns and therefore can be 

eliminated. The variance of sensitivity is defined as: 
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where P is the total number of patterns under consideration 

and 
i

s~θ  is the average sensitivity over all the patterns: 
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The parameter variance nullity (PVN) for each parameter is 

then defined as: 
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where 
2
0σ  is a small constant value related with hypothesis 

test
2
0

2 σσθ <
k

:H  [6]. 

This algorithm allows for pruning of both nodes and 

weights, with each parameter having a separate formula for 

the sensitivity calculation. The extension of a sensitivity 

measurement to nodes (not just weights) allows for the 

possibility of finding a smaller network, and also decreases 

the number of times to retrain the network before obtaining 

its final size. 

However, as we discussed earlier, relying on one single 

value of 
2
0σ  for the entire network can lead to problems. 

Fnaiech et. al. [1] suggested that parameters within the same 

layer should be considered “locally” rather than “globally”, 

and defined a new pruning index called the local parameter 

variance nullity (LPVN). The PVN for all parameters in the 

same layer are summed up; then the LPVN for each 

parameter (which represents the relative importance of PVN 

of a parameter in the layer) can be obtained and used for 

pruning: 
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where ]l[
k

L
θ

γ  is the LPVN for layer l, and K is the total 

number of parameters in layer l. Note that in this algorithm, 

the pruning decision is still based on the hypothesis test H; 

thus choosing the appropriate threshold for LPVN is crucial 

to the success of this algorithm. 

As a summary, all the above algorithms have their own 

advantages and limitations. For example, in the cross 

validation pruning algorithm (CVP) [9], the concept of 

cross-validation is introduced to provide a better criterion to 

evaluate the neural network performance (before and after 

pruning) at every step; however, this criterion still depends 

on the magnitudes of neural network weights. To avoid this 

problem, in the local sensitivity analysis method (KLSA) 

[13], local relative sensitivity is suggested; however, only 

weight pruning is considered in this algorithm (node removal 

is not included). The local variance sensitivity analysis 

(LVSA) [1] overcomes this limitation, but it still relies on the 

value of a threshold related with the hypothesis test. 

III. THE NOVEL HYBRID PRUNING ALGORITHM 

In this section, a novel pruning algorithm called hybrid 

sensitivity analysis with re-pruning (HSAR) is investigated. 

Both weight pruning and node pruning are considered. 

Pruning is based on sensitivity calculation and local variance 

nullity, and the performance of the neural network is re-

evaluated using cross-validation at every pruning step. 

One of the disadvantages of the existing algorithms is the 

tendency to get carried away with too many parameters 

pruned from the network in one step. Testing revealed that 

when pruning too many parameters in any single step leads 

to poor network performance, a pruning restoration is 

required. That is, all the nodes, weights, and biases in the 

network need to be restored from the configuration in the 

previous step. Therefore, in a multi-step algorithm (such as 

LVSA and CVP), more than one pruning restorations may be 

required before the pruning process could finish. Weights 

and nodes originally selected for elimination would remain 

in the network due to these pruning restorations. To 

overcome this limitation, the proposed algorithm iteratively 

prunes the neural network on a reduced set of connections if 

a pruning error occurs. 

In this algorithm, the performances of the newly pruned 

and trained network are evaluated using the following: 

)JJ()JJ( CVTRCVTR +<′+′ ζζρ        (10) 

where ρ  is a constant that gives priority to pruned networks, 

ζ  (ζ  < 1) is another constant that encourages 

generalization capacity by favoring the cross validation error 

over the training error. If the new network fails to show an 

improvement over the old network, then restore the network 

to its last working configuration and start the re-pruning 

process; otherwise continue to the next pruning mode (either 

pruning weight or node). 

In the re-pruning process, pruning is performed on a 

reduced parameter list: 

)()t(n)t(n rprp λ−=+ 11           (11) 

where rpn  is the number of weights to re-prune and λ  is the 

percentage of weights to deduct at each re-pruning step. For 

node, we have: 

 11 −=+ )t(n)t(n rprp             (12) 

i.e., each successive re-pruning step only subtracts one node 

from the previous attempt. If there are no possible 

parameters to re-prune, go to the next layer; otherwise 

continue to prune the network using the reduced pruning list 

in Eq. (11) and (12). The flow chart of the algorithm is 

shown in Fig. 1. 

IV. COMPUTER SIMULATION RESULTS 

In this section, the proposed algorithm is applied to solve 

different pattern classification problems and compared with 

three existing algorithms described above (i.e, the local 
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sensitivity analysis method (KLSA) [13], the local variance 

sensitivity analysis (LVSA) [1], and the cross validation 

pruning algorithm (CVP) [9]). The datasets used in 

simulation can be found in [4], which is available from the 

machine learning repository, University of California, Irvine. 

The “Computer hardware data set” (CPU test) describes the 

relationship between the CPU performance and computer 

parameters such as machine cycle time, main memory and 

cache memory size, number of channels, etc. The “Iris data 

set” (Iris test), one of the best known data set in pattern 

classification applications, classifies the types of iris based 

on the width and length of its petals and sepals. 

 

 
 

Fig. 1. Flow chart of the algorithm 

 

In the following simulation examples, different initial 

network configurations are considered to fully test the 

abilities of each pruning algorithm on a variety of hidden 

node and hidden layer setups. Configuration 1 has one 

hidden layer with fifteen hidden nodes; configuration 2 has 

two hidden layers with ten nodes in each hidden layer; and 

configuration 3 has three hidden layers with five nodes in 

each hidden layer. Furthermore, each of the two data sets is 

divided into ten equal sub-sets, where eight of them are used 

for training, one is used for validation, and the remaining one 

is for testing. Each of the sub-dataset is used for training, 

validation, and testing on a rotation basis, resulting in a total 

of ten different data configurations. For example, the CPU 

test dataset contains totally 209 instances (with 9 attributes in 

each instance); so for each sub-dataset, there are about 21 

instances. Similarly, the Iris data set contains totally 150 

instances (with 4 attributes in each instance), results in 15 

instances per sub-dataset. 

The weights of all the neural networks are initialized at 

random before training. The same initial conditions are 

applied to all the pruning algorithms in each test. To 

minimize the influences of initial conditions to the test 

results, ten different sets of initial conditions are chosen for 

each neural network configuration and each data 

configuration. Therefore, for each neural network 

configuration, a total of 10*10 = 100 simulation runs are 

performed. This process is repeated for each of the four 

pruning algorithms for both CPU and Iris tests. 

In the applications presented in this paper, the system 

outputs are all positive; so the following sigmoid (or logistic) 

function is chosen to be the activation function for each 

neuron: 

u
e

)u(g
−+

=
1

1                 (13) 

For system identification problem (CPU test dataset), the 

objective function is to minimize the following performance 

index: 
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where kmy  is the output at node k for pattern m, kmd  is the 

target or desired value at node k for pattern m, M is total 

number of patterns or samples, and K is the total number of 

outputs. 

The Iris dataset is a multi-class classification problem. 

Similar to [9], we define the cross-entropy objective function 

as: 
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The backpropagation with momentum algorithm is 

employed for neural network training: 

)()1()( twtwtw ∆+−=            (16) 

)1()( −∆+
∂
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=∆ tw

w

E
tw βη           (17) 

As we discussed in section 2, one of the drawbacks of the 

existing algorithms is that they intend to prune too many 

parameters in one step. Multiple pruning restorations may be 

needed in a multi-step algorithm (such as LVSA and CVP) 

before the pruning process could finish. This is verified in 

Fig. 2 – 4 for LVSA algorithm, where Fig. 2 illustrates the 

average number of restorations needed in the CPU test for 

configuration 1 (i.e., 3-layer network), Fig. 3 shows the 

results of configuration 2 (i.e., 4-layer network) and Fig. 4 

shows the results of configuration 3 (i.e., 5-layer network) 

Fig. 2 indicates that for a typical 3-layer feedforward 

neural network and LVSA algorithm, the ideal case, i.e., zero 

pruning restoration only has 6% rate of occurrence; while the 

percentages for 1-, 2-, 3-, and 4-restoration are 25%, 29%, 

25%, and 15%, respectively. For configuration 2 and 3, the 
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percentage of zero (or non-) restoration is 0. In Fig. 3, the 

percentages for 1-, 2-, 3-, 4-, 5-, and even 6-restoration are 

7%, 22%, 39%, 21%, 8%, and 3%, respectively. Similarly, in 

Fig. 4, the percentages for 1-, 2-, 3-, 4-, 5-, and even 6-

restoration are 4%, 10%, 20%, 31%, 18%, and 17%, 

respectively. In other words, the chances of having pruning 

restorations increase as the sizes of the original networks 

increase. 

 

 
 

Fig. 2. Average pruning restores (CPU test, LVSA, configuration 1) 

 

 
 

Fig. 3. Average pruning restores (CPU test, LVSA, configuration 2) 

 

 
 

Fig. 4. Average pruning restores (CPU test, LVSA, configuration 3) 

 

Similar trend can also be found in CVP algorithm. In fact, 

CVP is a two stage process (pruning the weights and then the 

nodes); so two is the largest possible number of restorations 

it may have. Simulation results show that all the neural 

networks have to experience at least one restoration during 

pruning; i.e., for all three configurations and data sets, the 

percentage of non-restoration is 0. For the first configuration, 

39% for 1-restoration and 61% for 2-restorations; for the 

second configuration, the percentage for 1-restoration is 

reduced to 19% while the percentage for 2-restorations is 

increased to 81%. In configuration 3, the percentages for 1-

restoration and 2-restoration are 22% and 78%, respectively. 

Table 1 below shows the overall pruning capability of 

each of the four tested algorithms by displaying the mean 

and standard deviation (presented as (mean) ± (std)) of the 

pruning percentage (with respect to the original network). 

For example, in the CPU test, for the first neural network 

configuration, the KLSA algorithm can prune about 14.97% 

of the total neural network weights (an average for 100 runs 

with different initial conditions and data rotations), with the 

standard deviation of 14.55%. Similarly, under the same 

condition, the proposed HSAR algorithm can prune about 

55.21% of the total neural network weights, with a standard 

deviation of 21.90%. Obviously, the new algorithm 

outperforms the KLSA algorithm. 

Table 2 outlines the performance of each algorithm in 

terms of identification error (for the CPU test) and 

classification accuracy (for the Iris test) on the test dataset. 

The identification error gives a measure of the mean-square-

error of the desired output and NN output; while the 

classification accuracy gives the percentage of the correct 

classification over the total patterns. It is shown that the 

overall accuracy of the new algorithm is similar or even 

better than other algorithms.  

In table 3 and 4, the detailed information of where pruning 

occurs for each configuration and each algorithm is shown, 

where the first column shows the configuration, the second 

column shows the number on layers (e.g., layer 1 is the input 

layer, layer 2 is the first hidden layer, and layer 3 (if 

applicable) is the second hidden layer, etc.). Note that when 

a specific input doesn’t have much effect on the network 

output performance, the input node or weight can also be 

removed. In column 3, “N” represents pruning on nodes and 

“W” represents pruning on weights. The rest of the columns 

show the numbers of nodes or weights pruned for different 

algorithms (average over 100 simulation runs as described 

before). For example, for the first NN configuration in CPU 

test, the average number of weights that can be pruned by 

CVP algorithm is about 28.38 while the average number of 

weights that can be pruned by the proposed algorithm is 

about 47.27. Note that the KLSA algorithm doesn’t remove 

any NN node. 

 
TABLE I 

A Comparison of Each Algorithm’s Pruning Percentages 

Data NN KLSA LVSA CVP HSAR 

CPU 1 

14.97 ± 

14.55 

35.15 ± 

26.03 

27.70 ± 

17.50 

55.21 ± 

21.90 

Test 

  2 

13.41 ± 

12.64 

31.38 ± 

22.16 

16.92 ± 

31.94 

46.18 ± 

21.72 

  3 

9.26 ± 

6.69 

28.21 ± 

15.70 

19.75 ± 

28.40 

40.20 ± 

19.07 

Iris Test 1 

4.71 ± 

5.76 

18.53 ± 

16.90 

12.37 ± 

14.46 

55.26 ± 

12.14 

  2 

5.98 ± 

6.79 

16.94 ± 

18.20 

24.42 ± 

28.90 

65.62 ± 

13.26 

  3 

2.22 ± 

3.96 

15.44 ± 

13.48 

15.86 ± 

18.59 

62.60 ± 

11.48 

 
TABLE II 

A Comparison of Each Algorithm’s Accuracy 

 KLSA LVSA CVP HSAR 

CPU Test     

NN 1 0.0037 0.0027 0.0035 0.0025 

NN 2 0.0034 0.0031 0.0034 0.0030 

NN 3 0.0055 0.0034 0.0052 0.0032 

Iris Test     

NN 1 93.67% 93.53% 93.57% 92.73% 

NN 2 94.17% 94.60% 94.52% 95.40% 

NN 3 93.93% 93.50% 93.84% 93.60% 
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TABLE III 

The Detailed Results for the CPU Test 

Config Layer 

Node/ 

Weight KLSA LVSA CVP HSAR 

1 1 N - 1.20 0.05 0.97 

  1 W 11.83 27.76 28.38 47.27 

  2 N - 0.07 0.00 0.06 

  2 W 2.18 4.65 0.19 5.63 

2 1 N - 0.74 0.00 0.77 

  1 W 5.16 18.6 14.15 23.96 

  2 N - 0.36 0.06 0.34 

  2 W 12.83 33.9 8.61 46.92 

  3 N - 0.03 0.00 0.01 

  3 W 0.93 2.03 0.07 3.60 

3 1 N - 0.56 0.00 1.00 

  1 W 2.96 9.62 8.60 12.49 

  2 N - 0.32 0.04 0.39 

  2 W 1.79 7.58 7.31 9.26 

  3 N - 0.21 0.02 0.17 

  3 W 2.76 7.65 3.69 12.92 

  4 N - 0.04 0.00 0.06 

  4 W 0.44 0.69 0.08 1.25 

 

 
TABLE IV 

The Detailed Results for the Iris Test 

Config Layer 

Node/ 

Weight KLSA LVSA CVP HSAR 

1 1 N - 0.31 0.01 0.57 

  1 W 0.61 9.44 7.31 30.51 

  2 N - 0.08 0.01 0.03 

  2 W 2.78 12.41 0.61 32.64 

2 1 N - 0.31 0.05 1.03 

  1 W 0.36 4.7 7.27 23.94 

  2 N - 0.2 0.01 0.6 

  2 W 3.65 17.49 11.1 71.65 

  3 N - 0 0 0.07 

  3 W 1.35 3.26 0.5 21.39 

3 1 N - 0.14 0 0.52 

  1 W 0.5 2.03 4.12 9.35 

  2 N - 0.07 0.02 0.27 

  2 W 0.63 3.81 4.46 14.6 

  3 N - 0.05 0.03 0.2 

  3 W 1.01 5.02 2.75 14.54 

  4 N - 0 0.01 0.05 

  4 W 0.45 2.78 0.5 8.38 

 

In summary, the simulation results consistently indicate 

the HSAR algorithm can reduce the neural network size 

significantly without sacrificing the network performance. 

V. CONCLUSION 

In this research, a novel hybrid iterative pruning algorithm 

that can prune multi-layer feedforward artificial neural 

networks very effectively is presented and tested. Based on 

sensitivity analysis, cross validation, and iterative pruning, 

this algorithm outperforms three other existing pruning 

algorithms. Satisfactory simulation results are demonstrated 

in this paper; and more tests will be conducted to further 

investigate the performance of this new algorithm. 
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