

Abstract— Choosing an appropriate size of a network is an

important issue for any neural network applications. The

common practice is to start with an “over-sized” network, then

gradually reduces its size to find the optimal solution. In this

paper, a new hybrid neural network pruning algorithm for

multi-layer feedforward neural networks is investigated.

Computer simulation results on system identification and

pattern classification problems show this algorithm can

significantly reduce the network dimension while still

maintaining satisfactory identification and classification

accuracy.

I. INTRODUCTION

T is well known that before a neural network can be

employed, its dimension (i.e., number of layers, number of

neurons in each layer, and how they are connected) must

be predetermined. In fact, a neural network is not fully

utilized until it is properly trained with an appropriate size.

However, finding the optimal dimension of a neural network

is a very difficult task and often comes down to a guess

work. A network that does not have enough parameters may

be unable to learn the presented task; on the other hand,

choosing a network that is larger than necessary may have

some other limitations. A larger network yields more nodes,

more weights, and more layers that result in additional

arithmetic operations and high computation cost. For real

time applications, the reduction of network size can save us

precious hardware implementation time.

The ability to generalize, or to produce accurate values for

the inputs not included in the training dataset, is one of the

major benefits of using neural networks. An oversized

network may over-fit the training data, and has poor

generalization ability for the testing data. Of course, this is

fine with a comprehensive training set since all possible

input/output pairs are present and no generalization is

needed. However, the amount of training data is usually

limited; thus a trained network is expected to be able to

perform well even on the previously unseen data. Therefore,

the choice of an optimal network dimension is an important

issue in neural network design and implementations. An

ideal neural network should be able to perform well on both

Manuscript received February 4, 2008. This work was supported in part

by the Department of the Navy, Office of Naval Research, under Award #

N00014-06-1-1111.

Devin Sabo was with the Department of Electrical Engineering,

California Polytechnic State University, San Luis Obispo, CA 93407, USA.

He is now with Lockheed Martin Corporation, CA, USA.

Xiao-Hua Yu is with the Department of Electrical Engineering,

California Polytechnic State University, San Luis Obispo, CA 93407, USA

(e-mail: xhyu@calpoly.edu).

the training data and the unknown testing data while

maintaining as compact a form as possible.

 Aside from lucky guesses and extensive trial and error,

there are two fundamental approaches to finding the

appropriate size of a neural network. The first one is to start

with a small network and slowly add more connections to it

until an appropriate stopping criterion is satisfied [11]. The

network is first trained at its minimum size; then more

weights/nodes can be added and the new network will be

retrained. This process can be repeated until certain

performance index is met. The difficulties of this approach

include when to start the growing process, and where to add

the new connections/nodes in the network. In addition, the

above procedures may be very tedious and time-consuming.

The second approach is to start with a network that is

knowingly too large for the data, and then trim it down to the

appropriate size. This is called “neural network pruning” and

has been studied by many researchers in recent years ([1] [6]

[9] [10] [12] [13]).

In this paper, a new pruning algorithm is investigated and

compared with three existing ones, including the local

sensitivity analysis method [13], the local variance

sensitivity analysis [1], and the cross validation pruning

algorithm [9]. This new algorithm combines the advantages

of the above three methods, re-evaluates the network

performance during pruning process, and iteratively prunes

the neural network on a reduced set of connections if a

pruning error occurs. Different data sets and various network

configurations are studied in computer simulations. The

results show that this new algorithm can significantly reduces

the neural network size while still maintaining satisfactory

generalization accuracy of the network, for both system

identification and classification applications.

II. REVIEW ON NEURAL NETWORK PRUNING ALGORITHMS

A typical neural network contains an input layer, an output

layer, and one or more hidden layers. The number of outputs

and inputs are usually fixed; while the number of hidden

layers and number of hidden neurons in each hidden layer

can be varied. In this research, we focus on the studies of

pruning algorithms for multi-layer feedforward neural

networks.

The simplest way to find the optimum network size is to

use a brute force approach that produces all the combinations

of networks within a desirable range, trains them, and

chooses the best one. This process is usually not an efficient

Neural Network Dimension Selection for Dynamical System

Identification

Devin Sabo, Xiao-Hua Yu

I

17th IEEE International Conference on Control Applications
Part of 2008 IEEE Multi-conference on Systems and Control
San Antonio, Texas, USA, September 3-5, 2008

FrA02.6

978-1-4244-2223-4/08/$25.00 ©2008 IEEE. 972

way to solve the problem. Another approach, the weight

decay method (or the penalty method), is based on the

assumption that smaller weights in a network have relatively

small effect on the output of a node, especially when

surrounded by significantly larger weights. This method adds

a penalty term to the objective function to be minimized so

that these smaller weights can eventually be forced to zero.

However, this approach may eliminate weights that are

actually crucial to the overall architecture of the network and

thus produce a network with poor performance. Also, the

added penalty term may create additional local minima on

the error surface during training.

Huynh and Setiono [9] introduced the concept of cross-

validation. The whole dataset is divided into two parts, i.e.,

the training set T and the cross validation set C. The pruning

criterion is still based on the magnitude of each weight;

however, a validation step is added to test the pruned

network. At every pruning step, the performance of the

network with reduced size is compared with the performance

of the network before the current pruning phase. Let the

performance criterion (objective function) on set T and set C

be TRJ and CVJ , respectively (where J(•) can be the root-

mean-square error (RMS), or the percentage of misclassified

patterns). After pruning, a smaller neural network is obtained

and the error on set T and set C be TRJ ′ and CVJ ′ ,

respectively. If

)JJ()JJ(CVTRCVTR +<′+′ (1)

i.e., the pruned network outperforms the un-pruned one; then

the pruned network is accepted and the pruning process can

be continued. Otherwise, the network is restored to the size

before the current pruning step. Obviously, the use of an

additional cross validation set at each phase of the pruning

takes into account that pruning is meant to not only reduce

the size of a network, but also improve the network

generalization capacity.

Rather than focusing on the magnitude of the weights in

the network, the sensitivity based approach attempts to find

the contribution of each weight in the network and then

prunes the weights that have the least effect on the objective

function. Mozer and Smolensky [12] suggested that the

sensitivity of each weight can be found by measuring the

difference on the performance of the network with/without

that weight, i.e.,:

i,js = J (ij,w = 0) - J (ij,w =
f
ij,w)

= J (without ij,w) - J (with ij,w) (2)

where i,js is the sensitivity (with respect to the removal of

connection ij,w); ij,w is the weight of the neural network

from node i to node j;
f
ij,w is the final value of weight ij,w

when training is finished; and J(•) is the objective function.

 Calculating Eq. (2) directly may be very time-consuming.

Karnin [10] found an effective way to approximate it for the

back-propagation algorithm:

)w(w

w
(t)]w[s

i
ij,

f
ij,

f
ij,

1T

0t

2
ij,ij,

−
∆=¦

−

= η
 (3)

where T is the total number of iterations (training epochs)

needed to minimize the objective function J; η is the

learning rate and ij,w∆ is the change on weight ij,w in one

training iteration. The absolute value of the estimated

sensitivity for each weight, ij,s , is then compared with a

pre-determined threshold to determine whether the weight

should be pruned or not. Note that this algorithm relies

heavily on the selection of a threshold which must be

determined beforehand which may differ between data sets

and applications. If the threshold is too high, too many

weights will be pruned and the pruned network may not

function as desired; but if the threshold is too small, no

weights will be pruned at all. Also, in this method, all the

sensitivities in the network are compared with the same

threshold, i.e., they are treated equally for pruning.

Ponnapelli et al. [13] suggested that the sensitivities of

weights should only be compared with those related with the

same node in the same layer. Thus, the concept of local

relative sensitivity index (LRSI) is defined as the ratio of the

sensitivity of a particular weight and the sum of all the

sensitivities of the weights that are connected to the same

node from the previous layer:

¦
=

=
M

m

m,j

i,j

i,j

s

s
LRSI

1

 (4)

where M is the total number of connections to node j from

the previous layer. For each node, any weight that has a local

sensitivity less than a threshold will be pruned:

 β≤i,jLRSI (5)

Even though the choice of the threshold (i.e., β) still

depends on the rule of thumb, it is now a percentage which is

relatively easier to be chosen. Note that this algorithm only

considers weight removal; node pruning is not included.

Theoretically, if all the weights that are connected to a single

node are pruned, then this node can also be eliminated.

However, this may take several rounds of pruning and

training so it may not be a feasible solution in practice.

 Engelbrecht [6] proposed a modified approach to

sensitivity analysis. Instead of using the value of the

sensitivity directly, Engelbrecht found the average sensitivity

of a network parameter (e.g., weight or node) over all the

patterns, and then developed a new measure called variance

nullity. That is, if the variance of sensitivity of a network

parameter over all the patterns (denoted by
2

kθσ for

parameter kθ) is close to zero and the average sensitivity

(also over all the patterns) is small, then we conclude that

this parameter has little or no effect on the output of the

neural network over all patterns and therefore can be

eliminated. The variance of sensitivity is defined as:

973

1

1

2

2

−

−

=

¦
=

P

)s~s(
P

p

)p(

kk

k

θθ

θσ (6)

where P is the total number of patterns under consideration

and
i

s~θ is the average sensitivity over all the patterns:

P

s

s~

P

p

)p(

k

k

¦
=

=
1

θ

θ (7)

The parameter variance nullity (PVN) for each parameter is

then defined as:

2
0

21

σ

σ
γ

θ
θ

k

k

)P(−
= (8)

where
2
0σ is a small constant value related with hypothesis

test
2
0

2 σσθ <
k

:H [6].

This algorithm allows for pruning of both nodes and

weights, with each parameter having a separate formula for

the sensitivity calculation. The extension of a sensitivity

measurement to nodes (not just weights) allows for the

possibility of finding a smaller network, and also decreases

the number of times to retrain the network before obtaining

its final size.

However, as we discussed earlier, relying on one single

value of
2
0σ for the entire network can lead to problems.

Fnaiech et. al. [1] suggested that parameters within the same

layer should be considered “locally” rather than “globally”,

and defined a new pruning index called the local parameter

variance nullity (LPVN). The PVN for all parameters in the

same layer are summed up; then the LPVN for each

parameter (which represents the relative importance of PVN

of a parameter in the layer) can be obtained and used for

pruning:

¦
=

=
K

k

]l[
k

]l[
k

]l[
k

L

1
θ

θ

θ

γ

γ
γ (9)

where]l[
k

L
θ

γ is the LPVN for layer l, and K is the total

number of parameters in layer l. Note that in this algorithm,

the pruning decision is still based on the hypothesis test H;

thus choosing the appropriate threshold for LPVN is crucial

to the success of this algorithm.

As a summary, all the above algorithms have their own

advantages and limitations. For example, in the cross

validation pruning algorithm (CVP) [9], the concept of

cross-validation is introduced to provide a better criterion to

evaluate the neural network performance (before and after

pruning) at every step; however, this criterion still depends

on the magnitudes of neural network weights. To avoid this

problem, in the local sensitivity analysis method (KLSA)

[13], local relative sensitivity is suggested; however, only

weight pruning is considered in this algorithm (node removal

is not included). The local variance sensitivity analysis

(LVSA) [1] overcomes this limitation, but it still relies on the

value of a threshold related with the hypothesis test.

III. THE NOVEL HYBRID PRUNING ALGORITHM

In this section, a novel pruning algorithm called hybrid

sensitivity analysis with re-pruning (HSAR) is investigated.

Both weight pruning and node pruning are considered.

Pruning is based on sensitivity calculation and local variance

nullity, and the performance of the neural network is re-

evaluated using cross-validation at every pruning step.

One of the disadvantages of the existing algorithms is the

tendency to get carried away with too many parameters

pruned from the network in one step. Testing revealed that

when pruning too many parameters in any single step leads

to poor network performance, a pruning restoration is

required. That is, all the nodes, weights, and biases in the

network need to be restored from the configuration in the

previous step. Therefore, in a multi-step algorithm (such as

LVSA and CVP), more than one pruning restorations may be

required before the pruning process could finish. Weights

and nodes originally selected for elimination would remain

in the network due to these pruning restorations. To

overcome this limitation, the proposed algorithm iteratively

prunes the neural network on a reduced set of connections if

a pruning error occurs.

In this algorithm, the performances of the newly pruned

and trained network are evaluated using the following:

)JJ()JJ(CVTRCVTR +<′+′ ζζρ (10)

where ρ is a constant that gives priority to pruned networks,

ζ (ζ < 1) is another constant that encourages

generalization capacity by favoring the cross validation error

over the training error. If the new network fails to show an

improvement over the old network, then restore the network

to its last working configuration and start the re-pruning

process; otherwise continue to the next pruning mode (either

pruning weight or node).

In the re-pruning process, pruning is performed on a

reduced parameter list:

)()t(n)t(n rprp λ−=+ 11 (11)

where rpn is the number of weights to re-prune and λ is the

percentage of weights to deduct at each re-pruning step. For

node, we have:

 11 −=+)t(n)t(n rprp (12)

i.e., each successive re-pruning step only subtracts one node

from the previous attempt. If there are no possible

parameters to re-prune, go to the next layer; otherwise

continue to prune the network using the reduced pruning list

in Eq. (11) and (12). The flow chart of the algorithm is

shown in Fig. 1.

IV. COMPUTER SIMULATION RESULTS

In this section, the proposed algorithm is applied to solve

different pattern classification problems and compared with

three existing algorithms described above (i.e, the local

974

sensitivity analysis method (KLSA) [13], the local variance

sensitivity analysis (LVSA) [1], and the cross validation

pruning algorithm (CVP) [9]). The datasets used in

simulation can be found in [4], which is available from the

machine learning repository, University of California, Irvine.

The “Computer hardware data set” (CPU test) describes the

relationship between the CPU performance and computer

parameters such as machine cycle time, main memory and

cache memory size, number of channels, etc. The “Iris data

set” (Iris test), one of the best known data set in pattern

classification applications, classifies the types of iris based

on the width and length of its petals and sepals.

Fig. 1. Flow chart of the algorithm

In the following simulation examples, different initial

network configurations are considered to fully test the

abilities of each pruning algorithm on a variety of hidden

node and hidden layer setups. Configuration 1 has one

hidden layer with fifteen hidden nodes; configuration 2 has

two hidden layers with ten nodes in each hidden layer; and

configuration 3 has three hidden layers with five nodes in

each hidden layer. Furthermore, each of the two data sets is

divided into ten equal sub-sets, where eight of them are used

for training, one is used for validation, and the remaining one

is for testing. Each of the sub-dataset is used for training,

validation, and testing on a rotation basis, resulting in a total

of ten different data configurations. For example, the CPU

test dataset contains totally 209 instances (with 9 attributes in

each instance); so for each sub-dataset, there are about 21

instances. Similarly, the Iris data set contains totally 150

instances (with 4 attributes in each instance), results in 15

instances per sub-dataset.

The weights of all the neural networks are initialized at

random before training. The same initial conditions are

applied to all the pruning algorithms in each test. To

minimize the influences of initial conditions to the test

results, ten different sets of initial conditions are chosen for

each neural network configuration and each data

configuration. Therefore, for each neural network

configuration, a total of 10*10 = 100 simulation runs are

performed. This process is repeated for each of the four

pruning algorithms for both CPU and Iris tests.

In the applications presented in this paper, the system

outputs are all positive; so the following sigmoid (or logistic)

function is chosen to be the activation function for each

neuron:

u
e

)u(g
−+

=
1

1 (13)

For system identification problem (CPU test dataset), the

objective function is to minimize the following performance

index:

»
¼

º
«
¬

ª
−= ¦¦

= =

M

m

K

k

kmkm dy
MK

E
1 1

2)(
2

11
 (14)

where kmy is the output at node k for pattern m, kmd is the

target or desired value at node k for pattern m, M is total

number of patterns or samples, and K is the total number of

outputs.

The Iris dataset is a multi-class classification problem.

Similar to [9], we define the cross-entropy objective function

as:

¦¦
= =

−=
M

m

K

k

kmkm ydE
1 1

)ln((15)

The backpropagation with momentum algorithm is

employed for neural network training:

)()1()(twtwtw ∆+−= (16)

)1()(−∆+
∂

∂
=∆ tw

w

E
tw βη (17)

As we discussed in section 2, one of the drawbacks of the

existing algorithms is that they intend to prune too many

parameters in one step. Multiple pruning restorations may be

needed in a multi-step algorithm (such as LVSA and CVP)

before the pruning process could finish. This is verified in

Fig. 2 – 4 for LVSA algorithm, where Fig. 2 illustrates the

average number of restorations needed in the CPU test for

configuration 1 (i.e., 3-layer network), Fig. 3 shows the

results of configuration 2 (i.e., 4-layer network) and Fig. 4

shows the results of configuration 3 (i.e., 5-layer network)

Fig. 2 indicates that for a typical 3-layer feedforward

neural network and LVSA algorithm, the ideal case, i.e., zero

pruning restoration only has 6% rate of occurrence; while the

percentages for 1-, 2-, 3-, and 4-restoration are 25%, 29%,

25%, and 15%, respectively. For configuration 2 and 3, the

975

..
Soon t:.>o<b'> No"'"........

Tnl.. Ot>t EP<><h,. , ,

(;_1_ ..
R...or.h",1 C I,,",

T.-.I""'

".
[ulu... '""" J>..1om.. " ...

-<>----,
y"

hoi"".. I'nmln~ pm"m..n""

".
".

percentage of zero (or non-) restoration is 0. In Fig. 3, the

percentages for 1-, 2-, 3-, 4-, 5-, and even 6-restoration are

7%, 22%, 39%, 21%, 8%, and 3%, respectively. Similarly, in

Fig. 4, the percentages for 1-, 2-, 3-, 4-, 5-, and even 6-

restoration are 4%, 10%, 20%, 31%, 18%, and 17%,

respectively. In other words, the chances of having pruning

restorations increase as the sizes of the original networks

increase.

Fig. 2. Average pruning restores (CPU test, LVSA, configuration 1)

Fig. 3. Average pruning restores (CPU test, LVSA, configuration 2)

Fig. 4. Average pruning restores (CPU test, LVSA, configuration 3)

Similar trend can also be found in CVP algorithm. In fact,

CVP is a two stage process (pruning the weights and then the

nodes); so two is the largest possible number of restorations

it may have. Simulation results show that all the neural

networks have to experience at least one restoration during

pruning; i.e., for all three configurations and data sets, the

percentage of non-restoration is 0. For the first configuration,

39% for 1-restoration and 61% for 2-restorations; for the

second configuration, the percentage for 1-restoration is

reduced to 19% while the percentage for 2-restorations is

increased to 81%. In configuration 3, the percentages for 1-

restoration and 2-restoration are 22% and 78%, respectively.

Table 1 below shows the overall pruning capability of

each of the four tested algorithms by displaying the mean

and standard deviation (presented as (mean) ± (std)) of the

pruning percentage (with respect to the original network).

For example, in the CPU test, for the first neural network

configuration, the KLSA algorithm can prune about 14.97%

of the total neural network weights (an average for 100 runs

with different initial conditions and data rotations), with the

standard deviation of 14.55%. Similarly, under the same

condition, the proposed HSAR algorithm can prune about

55.21% of the total neural network weights, with a standard

deviation of 21.90%. Obviously, the new algorithm

outperforms the KLSA algorithm.

Table 2 outlines the performance of each algorithm in

terms of identification error (for the CPU test) and

classification accuracy (for the Iris test) on the test dataset.

The identification error gives a measure of the mean-square-

error of the desired output and NN output; while the

classification accuracy gives the percentage of the correct

classification over the total patterns. It is shown that the

overall accuracy of the new algorithm is similar or even

better than other algorithms.

In table 3 and 4, the detailed information of where pruning

occurs for each configuration and each algorithm is shown,

where the first column shows the configuration, the second

column shows the number on layers (e.g., layer 1 is the input

layer, layer 2 is the first hidden layer, and layer 3 (if

applicable) is the second hidden layer, etc.). Note that when

a specific input doesn’t have much effect on the network

output performance, the input node or weight can also be

removed. In column 3, “N” represents pruning on nodes and

“W” represents pruning on weights. The rest of the columns

show the numbers of nodes or weights pruned for different

algorithms (average over 100 simulation runs as described

before). For example, for the first NN configuration in CPU

test, the average number of weights that can be pruned by

CVP algorithm is about 28.38 while the average number of

weights that can be pruned by the proposed algorithm is

about 47.27. Note that the KLSA algorithm doesn’t remove

any NN node.

TABLE I

A Comparison of Each Algorithm’s Pruning Percentages

Data NN KLSA LVSA CVP HSAR

CPU 1

14.97 ±

14.55

35.15 ±

26.03

27.70 ±

17.50

55.21 ±

21.90

Test

 2

13.41 ±

12.64

31.38 ±

22.16

16.92 ±

31.94

46.18 ±

21.72

 3

9.26 ±

6.69

28.21 ±

15.70

19.75 ±

28.40

40.20 ±

19.07

Iris Test 1

4.71 ±

5.76

18.53 ±

16.90

12.37 ±

14.46

55.26 ±

12.14

 2

5.98 ±

6.79

16.94 ±

18.20

24.42 ±

28.90

65.62 ±

13.26

 3

2.22 ±

3.96

15.44 ±

13.48

15.86 ±

18.59

62.60 ±

11.48

TABLE II

A Comparison of Each Algorithm’s Accuracy

 KLSA LVSA CVP HSAR

CPU Test

NN 1 0.0037 0.0027 0.0035 0.0025

NN 2 0.0034 0.0031 0.0034 0.0030

NN 3 0.0055 0.0034 0.0052 0.0032

Iris Test

NN 1 93.67% 93.53% 93.57% 92.73%

NN 2 94.17% 94.60% 94.52% 95.40%

NN 3 93.93% 93.50% 93.84% 93.60%

976

._.

TABLE III

The Detailed Results for the CPU Test

Config Layer

Node/

Weight KLSA LVSA CVP HSAR

1 1 N - 1.20 0.05 0.97

 1 W 11.83 27.76 28.38 47.27

 2 N - 0.07 0.00 0.06

 2 W 2.18 4.65 0.19 5.63

2 1 N - 0.74 0.00 0.77

 1 W 5.16 18.6 14.15 23.96

 2 N - 0.36 0.06 0.34

 2 W 12.83 33.9 8.61 46.92

 3 N - 0.03 0.00 0.01

 3 W 0.93 2.03 0.07 3.60

3 1 N - 0.56 0.00 1.00

 1 W 2.96 9.62 8.60 12.49

 2 N - 0.32 0.04 0.39

 2 W 1.79 7.58 7.31 9.26

 3 N - 0.21 0.02 0.17

 3 W 2.76 7.65 3.69 12.92

 4 N - 0.04 0.00 0.06

 4 W 0.44 0.69 0.08 1.25

TABLE IV

The Detailed Results for the Iris Test

Config Layer

Node/

Weight KLSA LVSA CVP HSAR

1 1 N - 0.31 0.01 0.57

 1 W 0.61 9.44 7.31 30.51

 2 N - 0.08 0.01 0.03

 2 W 2.78 12.41 0.61 32.64

2 1 N - 0.31 0.05 1.03

 1 W 0.36 4.7 7.27 23.94

 2 N - 0.2 0.01 0.6

 2 W 3.65 17.49 11.1 71.65

 3 N - 0 0 0.07

 3 W 1.35 3.26 0.5 21.39

3 1 N - 0.14 0 0.52

 1 W 0.5 2.03 4.12 9.35

 2 N - 0.07 0.02 0.27

 2 W 0.63 3.81 4.46 14.6

 3 N - 0.05 0.03 0.2

 3 W 1.01 5.02 2.75 14.54

 4 N - 0 0.01 0.05

 4 W 0.45 2.78 0.5 8.38

In summary, the simulation results consistently indicate

the HSAR algorithm can reduce the neural network size

significantly without sacrificing the network performance.

V. CONCLUSION

In this research, a novel hybrid iterative pruning algorithm

that can prune multi-layer feedforward artificial neural

networks very effectively is presented and tested. Based on

sensitivity analysis, cross validation, and iterative pruning,

this algorithm outperforms three other existing pruning

algorithms. Satisfactory simulation results are demonstrated

in this paper; and more tests will be conducted to further

investigate the performance of this new algorithm.

REFERENCES

[1] Fnaiech, N., Abid, S., Fnaiech, F., and Cheriet, M., “A modified

version of a formal pruning algorithm based on local relative variance

analysis”, First International Symposium on Control,

Communications and Signal Processing (2004), pp.849-852

[2] Abid, S., Fnaiech, F., and Najim, M., “A fast Feed-Forward Training

Algorithm Using a Modified Form of the Standard Back-Propagation

Algorithm”, IEEE Transactions on Neural Network (2001), Volume

12, Issue 2, pp.424-430.

[3] Andrews, R., Diederich, J., Golea, M., and Tickle, A.B., “The truth

will come to light: Directions and challenges in extracting knowledge

embedded within trained artificial neural networks”, IEEE

Transactions on Neural Networks (1998), Volume 9, Issue 6,

pp.1057-1068.

[4] Blake, E. K. C. and Merz, C., “UCI repository of machine learning

databases”, University of California, Irvine, Department of

Information and Computer Science, 1998.

[5] Efe, M.O., Iplikci, S., Kayank, O., and Wilamowski, B., “An

Algorithm for Fast Convergence in Training Neural Networks”,

International Joint Conference on Neural Networks, pp. 1778-1782,

Washington DC, July 15-19, 2001.

[6] Engelbrecht, A.P., “A new pruning heuristic based on variance

analysis of sensitivity information”, IEEE Transactions on Neural

Networks (2001), Volume 12, Issue 6, pp.1389-1399.

[7] Giles, C.L. and Lawrence, S., “Overfitting and Neural Networks:

Conjugate Gradient and Backpropagation”, Proceedings of the IEEE

International Conference on Neural Networks (2000), pp.114-119.

[8] Haykin, S., “Neural networks: a comprehensive foundation,” Upper

Saddle River, N.J., Prentice Hall, 1999.

[9] Huynh, T.Q. and Setiono, R., “Effective neural network pruning using

cross-validation”, IEEE International Joint Conference on Neural

Networks (2005), Volume 2, pp.972-977.

[10] Karnin, E.D., “A simple procedure for pruning back-propagation

trained neural networks”, IEEE Transactions on Neural Networks

(1990), Volume 1, Issue 2, pp.239-242.

[11] Marsland, S., Nehmzow, S.U., and Shapiro, J., “A self-organizing

network that grows when required”, in Neural Networks, Volume 15

(2002), Isuue 8-9, pp.1041-1058.

[12] Mozer, M. C. and Smolensky, P., “Skeletonization: A technique for

trimming the fat from a network via relevance assessment,” in

Advances in Neural Information Processing (1989), D.S. Touretzky,

Ed., pp.107-115.

[13] Ponnapalli, P.V.S., Ho, K.C., and Thomson, M., “A formal selection

and pruning algorithm for feedforward artificial neural network

optimization”, IEEE Transactions on Neural Networks (1999),

Volume 10, Issue 4, pp.964-968.

[14] Fnaiech, N., Fnaiech, F., and Cheriet, M., “A new feedforward neural

network pruning algorithm: SSM-iterative pruning (SSMIP)”, IEEE

International Conference on Systems, Man and Cybernetics (2002)

[15] Fnaiech, F., Fnaiech, N., and Najim, M., “A new feedforward neural

network hidden layer neuron pruning algorithm”, IEEE International

Conference on Acoustics, Speech, and Signal (2001), pp.1277-1280.

977

