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Abstract: Flexible pressure sensors have been studied as wearable voice-recognition devices to
be utilized in human-machine interaction. However, the development of highly sensitive, skin-
attachable, and comfortable sensing devices to achieve clear voice detection remains a considerable
challenge. Herein, we present a wearable and flexible pressure and temperature sensor with a
sensitive response to vibration, which can accurately recognize the human voice by combing with
the artificial neural network. The device consists of a polyethylene terephthalate (PET) printed
with a silver electrode, a filament-microstructured polydimethylsiloxane (PDMS) film embedded
with single-walled carbon nanotubes and a polyimide (PI) film sputtered with a patterned Ti/Pt
thermistor strip. The developed pressure sensor exhibited a pressure sensitivity of 0.398 kPa−1 in the
low-pressure regime, and the fabricated temperature sensor shows a desirable temperature coefficient
of resistance of 0.13% ◦C in the range of 25 ◦C to 105 ◦C. Through training and testing the neural
network model with the waveform data of the sensor obtained from human pronunciation, the vocal
fold vibrations of different words can be successfully recognized, and the total recognition accuracy
rate can reach 93.4%. Our results suggest that the fabricated sensor has substantial potential for
application in the human-computer interface fields, such as voice control, vocal healthcare monitoring,
and voice authentication.

Keywords: flexible pressure and temperature sensor; artificial neural network; filament-microstructured;
voice-recognition

1. Introduction

The human voice, as the main medium of communication with the outside world,
plays a significant role in various aspects such as telecommunication, human-machine
interaction, and the Internet of Things [1]. Conventional rigid microphones have been
developed for accurately detecting human voice, but their applications are limited in noisy
or windy environments. Recently, the flexible wearable pressure sensors that can provide
electrical feedback in response to external pressure stimuli have been used for monitoring
human voices [2–12]. By measuring vibrations in users’ neck skin and converting them
into readable signals, these sensors have advantages of clear voice detection and anti-
interference. In order to accurately obtain meaningful acoustic waveform, the sensors based
on various transduction mechanisms have been proposed, including triboelectricity [2,3],
capacitance [4], piezoelectricity [5,6], and piezoresistivity [7–10]. Among them, the sensors
that rely on piezoresistivity have attracted much attention due to their simple device assem-
bly and low energy consumption [11–13]. Although great achievements have been made
in the fabrication of piezoresistive-type sensors, such as skin-conformity and technology
compatibility, achieving high sensitivity in a wide measuring range remains a subject
worthy of intense study.
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In recent years, it was found that introducing various microstructure or nanostruc-
ture geometries, mainly including the molded bionic structure [14–18] and the regular
ordered-array microstructures [7,19–22], into the piezoresistive-type sensors is a relatively
effective method to achieve high sensitivity [11,18]. These microstructures can improve the
compressibility of elastic materials, resulting in large contact resistance change between
two conductive films when pressure is applied. However, the fabrication of these mi-
crostructures is based on the use of either complicated and time-consuming conventional
photolithography techniques [7,19–22] or low-cost but low-customizable techniques that
take advantage of certain naturally existing materials as molds [14–18]. There is, therefore,
a need to develop a low-cost, efficient, and highly customizable techniques for sensor
micro-structuration.

Several alternatives based on simple and low-cost techniques have been proposed,
such as laser engraving [23,24] and pre-stretching method [11] so that the sensing per-
formance of the devices could be improved in a quicker manner. Most recently, a robust
approach to achieve high-reproductive micro-structured flexible films composing the sen-
sors is developed by replicating honeycomb-like architecture from silicon molds that are
produced by femtosecond laser pulses in the self-channeling regime [25,26]. Meanwhile,
this fabrication approach is low-cost, ready for mass-production, and allows easy tailoring
of the size of microstructuration, thus providing a meaningful strategy for introducing
microstructures into the flexible sensor. Based on the specific structural design, high-
performance flexible pressure sensors microstructured with femtosecond filamentation
pulses are assembled and are used with success in detecting real-time artery waveforms
and throat muscle movement during a speech [26]. Moreover, with the assistance of the
principal component analysis (PCA) algorithm, the fabricated sensor can unambiguously
distinguish different phonations, which preliminarily shows remarkable potential in voice
recognition [26]. Although the fabricated sensor can unambiguously identify subtle vibra-
tion changes from the epidermis layer at the throat, voice recognition ability under a large
amount of data still needs to be further verified.

Here, we demonstrate a flexible wearable pressure and temperature sensor to achieve
accurate human voice detection, which is composed of the patterned Ti/Pt thermistor strip
by magnetron sputtering, high-conductivity Ag thin-film electrodes, and honeycomb-like
microarchitecture polydimethylsiloxane (PDMS) elastomers embedded with electrically
conductive SWNTs (single-walled carbon nanotubes). The assembled sensor exhibits
a sensitivity to pressure and vibration, which could achieve a pressure sensitivity of
0.398 kPa−1 and a temperature coefficient of resistance (TCR) of 0.13% ◦C. A large number
of resistance change waveforms were recorded by noninvasively monitoring vocal fold
vibrations during the speech and input to a neural network model for further training
and testing. An artificial neural network, as one of the most powerful machine learning
methods based on data representation, has made a huge impact in a variety of application
domains such as image segmentation [27], diagnosis [28], price forecast [29], and so on.
By combining the neural network model with the fabricated device, we have successfully
realized the recognition of vocal fold vibrations of different words during the pronunciation,
and the total recognition accuracy rate can reach 93.4%. The above results mean that the
developed neural network-enabled device exhibits remarkable application potential in the
voice-recognition field.

2. Experiments

Sensor Fabrication. Figure 1a illustrates a schematic of the fabrication process for
flexible pressure and temperature sensor with honeycomb-like architecture.
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Figure 1. (a) Schematic of the preparation procedure for flexible pressure and temperature sensor
with honeycomb-like architecture. Insets: (a’) Photograph of the flexible sensor taken by a digital
camera. (a”) The photograph of the fabricated device under bending. (b) Relative resistance changes
under increasingly applied pressure. Inset: SEM image of the filament-processed silicon mold. (c) The
stability cycling test of the pressure sensor under the pressure of 3 kPa. (d) The nominal resistance
change versus the applied temperature. (e) The nominal resistance change of the temperature sensor
under different bending states. Inset: Schematic diagram of the device length under a specific
bending state.

Fabrication of the temperature sensor: A 200-micrometer-thick polyimide (PI) film was
ultrasonically cleaned, successively, with acetone, ethanol, and deionized water and then
dried with a nitrogen gun. Then, the PI film was treated with oxygen plasma to increase the
surface adhesion. Next, a patterned mask based on the laser processing was placed onto
the PI film, and then a 20-nm-thick titanium (Ti) film and a 100-nanometre-thick platinum
(Pt) film were sequentially deposited on the surface of the PI film by sputtering. In order to
protect the fabricated Ti/Pt thermistor strip, a 500-nanometer-thick parylene polymer film
was vapor-deposited on the surface of the PI film. After that, the sample was placed on a hot
plate to rapidly raise the temperature to 120 ◦C and naturally cooled to room temperature
to improve the stability of metal-sensitive materials. Finally, the temperature sensor with a
specific shape was obtained by cutting with an electronic film cutting machine.

Fabrication of the pressure sensor: Firstly, the honeycomb-like architecture silicon mold
can be rapidly fabricated based on femtosecond laser filament processing technology, and
then the PDMS films inked with micro-nano structures can be prepared. After that, SWNTs
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aqueous dispersion was drop coated onto the fabricated PDMS film surface and desiccated
to fabricate a patterned SWNTs/PDMS conducting film, and the patterned Ag/PET thin
film was prepared by using the printing process. Finally, the flexible sensing device was
conducted with SWNTs/PDMS-conducting film and the Ag/PET thin film. The detailed
fabrication steps of the device can refer to previous work [26].

The assembly of the pressure and temperature sensor: The edges of the obtained polyimide
(PI) film sputtered with Ti/Pt thermistor strip and the flexible piezoresistive sensor with
honeycomb-like architecture were bonded with 3M tape. The inset(a’) in Figure 1a exhibits
the photograph of the fabricated flexible pressure and temperature sensor taken by a digital
camera. In order to demonstrate the great flexibility of the sensor, the inset(a”) in Figure 1a
shows the photograph of the fabricated device under bending.

Sensing Performance Measurements. The performance of the temperature sensor
was tested by a homemade test platform, which is composed of a source meter (Keithley
2612B system from a Tektronix company, Beaverton, Oregon United States) and a temper-
ature controller. The test temperature is set from 25 ◦C to 105 ◦C, and 10 ◦C is used as
a test node. After reaching the given temperature, keep it for 5 min, and use the source
meter to test the sensor resistance value at this working temperature. To measure the
sensors’ response to pressure variations, a force gauge was used to apply external pressures
with a data acquisition instrument (Keithley DAQ6510) to detect resistance changes in
real time. The bending test of the device was carried out on a motorized platform with a
scale. Artificial neural network modeling uses Pytorch as the framework in the Python 3.6
environment.

3. Results

In order to characterize the pressure sensing performance of the fabricated flexible
device, we investigated the relationship between resistance response and the applied
pressure. Sensitivity (S), as a key parameter of the pressure sensor, can be defined as
S = (∆R/R0)/∆P, where ∆R denotes a change in resistance before and after a certain
pressure is applied, R0 denotes the pristine resistance value, and ∆P represents the change
of the applied pressure. According to the test results in the previous work [26], the
fabricated sensor exhibits a desirable compression sensitivity of 0.266 kPa−1 when the
applied pressure is under 3.2 kPa, and a sensitivity of 4.02 × 10−4 kPa−1 over a wide range
of pressures from 20 to 160 kPa. The presence of two different sensitivities in the consecutive
pressure regions may be explained by the change in the contact area between the top and
bottom patterned films. To further observe the sensitivity of the device in the low-pressure
regime, we zoom into this range, as shown in Figure 1b, from which it can be observed that
the sensing range can be roughly divided into two linear regimes with different sensitivity
values, that is, 0.426 kPa−1 and 0.106 kPa−1, for the pressure region of 0–1.2 kPa and 1.2–
3.2 kPa. The existence of the two different sensitivities in the low-pressure range may be
due to inconsistency of the size and depth of the honeycomb-like microarchitecture formed
on the silicon surface fabricated by femtosecond laser filament, as shown in the inset of
Figure 1b. In order to evaluate the durability of the fabricated pressure sensor, the device
was applied with a stability cycling test under the pressure of 3 kPa at a 0.4-Hz repetition
rate, and the result is shown in Figure 1c. It can be observed that the relative resistance
change repeats with almost the same intensity and shape even after 5000 loadings and
unloading cycle tests, revealing that the device exhibits high repeatability.

Furthermore, we measured nominal resistance change versus the temperature loading
of the flexible temperature sensor, as shown in Figure 1d. Obtained data show that the
device exhibits excellent linearity (R2 = 0.99), with a slope of 2.9 Ω/◦C. The temperature
coefficient of resistance, as an important indicator of the temperature sensor, is defined as
TCR = (∆R/R0)/∆T, where ∆R denotes the resistance change before and after a certain
temperature is applied, R0 denotes the initial temperature value, and ∆T represents the
change of the applied temperature. The fitted TCR of the temperature sensor is 0.13% ◦C
for the range of 25 ◦C to 105 ◦C, which is comparable to that reported in the previous
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literature [30,31]. We further explore the mechanical properties of the flexible temperature
sensor by measuring nominal resistance change of the device under different bending
states, as shown in Figure 1e. It can be observed that the resistance value is approximately
the same during the bending process, indicating that the device can be used on different
occasions. The inset in Figure 1e exhibits the schematic diagram of the device length under
a specific bending state.

4. Application on Word Recognition

Next, we attached the fabricated flexible pressure and temperature sensor to the
tester’s (a 28-year-old Chinese male) neck skin for noninvasive monitoring vocal fold
vibrations to explore the feasibility of the device in voice recognition (Figure 2a). Here, it
should be pointed out that the influence of the tiny pressure caused by vocal cord vibration
on the resistance value of the temperature sensor can be ignored. During the experiment,
the measured temperature at the tester’s neck was 36.6 ◦C, which is in agreement with
the result obtained by the electronic thermometer. The temperature (36–37 ◦C) is used to
determine whether the device is worn for power management purposes, given that there
may be some fluctuations in human body temperature. Incidentally, the temperature sensor
needs a one-point calibration for different neck curvatures. As shown in Figure 2b, the
obtained resistance change waveforms exhibited distinct patterns when a tester speak the
words “application,” “attention,” “device,” “electronic,” and “flexible,” respectively. The
above results show that the prepared high-performance device can distinguish different
human pronunciations, and it is still unclear whether the recorded signal is sufficient for
voice recognition. Therefore, we further explore the performance of the fabricated devices
in speech recognition by combining them with the artificial neural network. In order to
ensure that the neural network model can fully learn the features of each word and reduce
the influence of human factors and the system noise of the sampling device, we repeatedly
sampled the resistance change waveforms of five words “application,” “attention,” “device,”
“electronic,” and “flexible” for 1000 times. Figure 2c shows the specific experiment flow
chart. It can be found from Figure 2c that the waveforms of repeated tests with the same
pronunciation show similar characteristic peaks and valleys, indicating the high reliability
of the device.

Figure 2. (a) Schematic diagram showing flexible pressure and temperature sensor attached to the
neck skin for monitoring vocal fold vibrations during speech. (b) Resistance change waveforms of
the fabricated device recorded for five words “application,” “attention,” “device,” “electronic,” and
“flexible.” (c) The specific experiment flow chart.

Then, resistance data are sampled at 40 Hz. It should be noted that the sensor does
not sample voice but the vibration of the vocal cord, which is caused by air from the lung
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passing through the vocal cord. Therefore, unlike the voice signal sampling requiring a
high sampling frequency, the vibrations of the vocal cord are mainly on low frequency
and can be sampled with a low sampling rate through the sensor attached to the neck. To
balance the precision of sampling and the workload of data processing, the amount of
the sampled data must be carefully considered. The higher sampling rate ensures a more
precise signal, but it also brings a heavier workload of data processing. We have scanned
the sampling rate from 10 to 100 Hz and found that 40 Hz is a proper sampling rate that
can balance the precision and the accuracy of classification. The vibrations are transformed
directly into changes of resistance with the pressure sensor and are measured 40 times per
second, which is equivalent to a 40 Hz sampling rate. The advantage of this measurement
is that it effectively avoids the disturbance of ambient sounds and the electrical noise of
voice pickup equipment; thus, there is little noise.

The sampled data are directly used to train a typical three-layer fully connected
perceptron for classification, which consists of an input layer (915 nodes), a hidden layer
(five nodes), and an output layer (five nodes). In the dataset, the five words are labeled
in one-hot code as class 1–5, corresponding to the output nodes of the perceptron. The
input of the NN is the sampled resistance changes, and the targeted output is the one-hot
encoded label of the vocabularies.The dataset is divided into a train set (70%), a validation
set (15%), and a test set (15%). The train set is further divided into 10 batches to find
the best hyperparameters. The idea of the 10-fold cross-validation is that 1 of the 10 is
used as the validation set each time, and all the others are used as the train set. After
10 times of training, 10 different models are evaluated to select the best hyperparameters
from them. The final model is obtained by using the optimal hyperparameters and all
of the 10 as the train set to retrain the model. The loss function adopted is cross entropy,
the activation function is sigmoid, and the backpropagation method is scaled conjugate
gradient (SCG). The training of the supervised learning is shown in Figure 3. In each batch,
the resistance change data X sampled from the sensor are input into the artificial intelligent
network (ANN) to calculate a predicted output P. Then, P is compared with the target label
Y to calculate a loss L with the loss function Llog(Y,P), which is then used to update the
weights of the ANN with the SCG method. Instead of using random hyperparameters
as initialization, after 10 batches of training, a set of the obtained hyperparameters that
achieved the best performance is selected as the initial weights of the ANN for further
training it with the entire train set. Namely, the aim of the 10-fold cross-validation is to find
a set of hyperparameters having the best performance and to train the ANN based on the
set to achieve a satisfying performance when the database is small. During prediction, the
proposed ANN calculates the inferred output by multiplying input X with the matrix of
the weights obtained during training.

Figure 4 shows the performance of the trained model. The downward trend of the
curves of train, validation, and test is almost the same, meaning that there is no over-fitting
problem. As the number of iterations increases, the loss gradually decreases, and the
model converges. The best performance is achieved at the 604th epoch when the loss is
the smallest (see Figure 4b). The receiver operation characteristic (ROC) curves in Figure 5
illustrates that the true positive rates (TPR) have already been greater than 0.9 when the
false-positive rates (FPR) are less than 0.1. Namely, the correct classification rate (CCR) has
already been very high even when the false positive rate is very low, which shows that the
model is very sensitive to the input waveforms data of the words. Meanwhile, the area
under the curve (AOC) of each word is very close to 1, indicating that the accuracy of the
model is very high. Table 1 shows the confusion matrix of the classification results that
the total classification accuracy rate of word recognition can reach 93.4% when checked
with the validation set, which is relatively desirable compared with the previously reported
literature with the stabilized value of 75% (an MXene-based sound detector combined
with a more complicated deep learning network model for recognition the long vowels and
short vowels of human pronunciation) [32].
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Figure 3. The training procedure of the proposed ANN. Training of the ANN is performed by using
measured resistance changes data of the sensor.

Figure 4. (a) The performances of the model training with epochs increasing. (b) The enlarged curves
from epoch 570 to 610, where the best validation performance is at epoch 604.

Table 1. The confusion matrix of the classification results (unit: %). Test Confusion Matrix,
CCR = 93.4%.

Output Class
Target Class

1 2 3 4 5

1 18.9 0.6 0.0 0.0 0.0
2 1.3 18.7 0.6 0.4 0.0
3 0.2 1.9 15.3 0.8 0.2
4 0.0 0.0 0.4 19.9 0.0
5 0.0 0.0 0.0 0.4 20.7
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Figure 5. The receiver operating characteristic curve of the trained model.

5. Discussion

In order to explore the reason behind the obtained high recognition accuracy rate with
a 3-layer perceptron, we conducted data analyses with the principal component analysis
(PCA). With the PCA method, the acquired waveform dataset can be converted into a new
space, which is composed of several principal components. The results of the randomly
selected resistance change waveform data set by the PCA method are demonstrated in
Figure 6. Figure 6a is drawn with the first three principal components, accounting for
74.1% of the total components (PCA-1 is 33.8%, PCA-2 is 28.3%, and PCA-3 is 12.0%). It
can be seen that the sensor’s data from the same word are basically in the same cluster,
and the clusters of different words are of a distance in space. That is to say, the principal
components of the resistance change waveform of different words sampled with the sensor
are of low correlation, indicating that the prepared high-performance pressure sensor is
capable of accurately capturing the difference in the vibration of the vocal cords when
different words are pronounced.

Figure 6. (a) PCA results of the randomly selected resistance change waveform data for the vocal cord
vibrations in the coordinate system founded by the first three principal components. (b) Explained
variance ratio of the randomly selected resistance change waveform data.

In word recognition tasks, the longer words contain more features, which usually
require more complex network structures to recognize. The long words refer to those having
at least two vowel syllables, relative to short words that contain only one vowel syllable,
such as “cat,” “dog,” etc. Most word recognition tasks require complicated structures, such
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as convolutional neural networks (CNN) or recurrent neural networks (RNN), to realize.
In this experiment, the vibrations are transformed directly into the changes of resistance
with the pressure sensor, which effectively avoids the disturbance of ambient sounds and
the electrical noise of voice pickup equipment; thus, the ANN can easily find patterns
under little disturbance of noise. Therefore, a simple perceptron is sufficient to realize the
recognition of long words with a good classification result with the help of the proposed
sensor. Compared with voice signal processing, where filter banks, such as Mel-cepstral
filter bank, are frequently used, voice filtering can be omitted, or at least the number of
filters can be decreased with our sensor, which hugely reduces the computational workload
of the on-chip system. Namely, pre-processing procedures of data cleaning, such as noise
filtering, will be of little workload. Considering the fact that the sensor is designed for
wearable devices, the reduction in computational workload can provide huge savings
on power consumption. Therefore, the fabricated sensor and its simple-structured back-
end neural network model is feasible for realizing the recognition of sound signals with
lightweight preprocessing procedures, thereby exhibiting the substantial potential for
application in a wearable device to assist voice recognition.

Regarding large-scale complicated word recognition tasks, PCA can be assigned
on sampled waveform data for dimensionality reduction before inputting data into the
ANN, which can efficiently decrease the size of the input layer, although it increases
the computational complexity of the system. For example, as shown in Figure 6b, the
first five components have already accounted for the dominant and the first 10 principal
components account for 98.6% of all components. Therefore, the first ten components
should be capable of representing a sampled waveform of a word, thus hugely reducing
input dimensionality. Considering that the number of words is very large, the labels of
vocabularies can be mapped to a fix-length hash sequence with a hash function to reduce
the size of the output layer.

6. Conclusions

In conclusion, a wearable, flexible and neural network-enabled pressure and tem-
perature sensor has been developed by integrating a PET film printed with the silver
electrode, a filament-microstructured PDMS film embedded with single-walled carbon
nanotubes, and a PI film sputtered with patterned Ti/Pt thermistor strip. The fabricated
device could achieve a compression sensitivity of 0.398 kPa−1 in the low-pressure regime,
with a temperature coefficient of resistance of 0.13% ◦C from 25 ◦C to 105 ◦C, which has
been demonstrated to be able to distinguish different human pronunciations and perform
well in repeated tests. With the assistance of a lightweight artificial neural network, we have
achieved the recognition of the vocal fold vibrations of different words with a total recogni-
tion accuracy rate of 93.4% without data pre-processing procedures. Analyses with the aid
of the PCA method indicate that a good classification result is attributed to the capability
of the fabricated device to accurately capture the vibration of the vocal cords. The above
results suggest that with the continuous enrichment of waveform datasets, the fabricated
sensor and its simple-structured back-end neural network model has significant potential as
the next generation voice-recognition device for applications in human–computer interface
and many other fields, such as voice control and vocal healthcare monitoring.

Our next step of work is to implement a wearable device based on the sensor for voice
recognition and build a large dataset of vocal fold vibrations for the device.
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