
Neural Network Ensembles and Their Application to
Traffic Flow Prediction in Telecommunications Networks

Xin Yaot, Manfred Fischert and Gavin Brown+

+School of Computer Science, the University of Birmingham
Edgbaston, Birmingham B15 2TT, U.K.
Email: {x.yao,g.brown}@cs.bham.ac.uk

$Department of Economic Geography and Geoinformatics
Vienna University of Economics and Business Administration

Rossauer Lande 23/1, A-1090 Vienna, Austria
Email: Manfred. FischerQwu-wien. ac. at

Abstract

It is well-known that large neural networks with many
unshared weights can be very difficult to train. A neu-
ral network ensemble consisting of a number of indi-
vidual neural networks usually performs better than a
complex monolithic neural network. One of the moti-
vations behind neural network ensembles is the divide-
and-conquer strategy, where a complex problem is de-
composed in60 different components each of which is
tackled by an individual neural network. A promis-
ing algorithm for training neural network ensembles is
the negative correlation learning algorithm which pe-
nalizes positive correlations among individual networks
by introducing a penalty term in the error function. A
penalty coefficient is used to balance the minimization
of the error and the minimization of the correlation. It
is often very difficult to select an optimal penalty co-
efficient for a given problem because as yet there is no
systematic method available for setting the parameter.
This paper first applies negative correlation learning
to the traffic flow prediction problem, and then pro-
poses an evolutionary approach to deciding the penalty
coefficient automatically in negative correlation learn-
ing. Experimental results on the traffic flow prediction
problem will be presented.

1 Introduction

Neural network ensembles offer a number of advan-
tages over a single neural network system. They have
the potential for improved generalization, lower depen-
dence on the training set, and reduced training time.
Sharkey [SI provides a good summary of the literature,

and states “Combining a set of imperfect estimators
can be thought of as a way of managing the recognized
limitations of the individual estimators”. It is this man-
agement that we address here.

Training a neural network generally involves a delicate
balance of various factors. The bias-variance decompo-
sition [7] states that the mean square error (MSE) of
a neural network is equal to the bias squared plus the
variance. There is a trade-off between them - with
more training, it is possible to achieve lower bias, but
at the cost of a rise in variance. Krogh and Vedelsby
[8] extend this concept to ensemble errors, showing how
the bias can be seen as the extent to which the aver-
aged output of the ensemble members differs from the
target function, and the variance is the extent to which
the ensemble members disagree. Ueda and Nakano [9]
further provide a detailed proof of how the decomposi-
tion can be extended to a bias-variance-covariance one.
From this result, one way to decrease the error is clear:
decrease the covariance, ideally making it strongly neg-
ative. This means that an ideal ensemble consists of
highly correct classifiers that disagree as much as pos-
sible, empirically verified in [lo] among others.

Ensembles have been successfully applied for both re-
gression and classification problems in varied domains,
such as time series prediction [ll], robotics [12], and
medical diagnosis [13]. Here we apply them to pre-
diction of network traffic flow in a telecommunications
system [l].

Various algorithms have been proposed for training en-
sembles to achieve better generalisation. They can
be broadly classified as manipulating the initial con-
ditions, the network architectures, the training data,
or the learning algorithm.

0-7803-7O44-9/0 1/$10.00 0200 1 IEEE 693

mailto:x.yao,g.brown}@cs.bham.ac.uk

Early work trained networks independently, then aver-
aged the results, hoping to achieve higher performance
simply through differences in initial conditions (differ-
ent weight initializations). The idea was that start-
ing the networks in different areas of the weight space,
they would follow different trajectories in the functional
space. However, if a random initialization by chance
gives a set of weights that are far from a solution, con-
vergence can be exceedingly slow.

Manipulation of training data has been the most widely
investigated method. Boosting [14], bagging, disjoint
input sources [15], nonlinear transformations of in-
put [15], and noise injection [16] have all proved their
worth.

Manipulating the network topologies would mean hav-
ing hybrid ensembles, consisting of estimators that
work in different search spaces entirely. Different areas
of functional (solution) space will be more accessible
in certain search spaces than in others. Although this
seems a promising path, not much work seems to have
been done in the area.

The three methods mentioned so far are all implicit
methods for achieving diverse errors, the nets may still
converge to be highly correlated, regardless of your
efforts. Explicit methods manipulate the training al-
gorithm itself to produce decorrelated errors. Within
this category ensemble methods are divided into those
which train networks independently, then attempt to
combine them, and those methods which take regard
of the need for decorrelated errors during the train-
ing. Rosen [17] used a penalty function] training an en-
semble sequentially] to decorrelate nets from ones that
had been trained before, although this did not guaran-
tee negative correlation of all the networks. A recent
advancement, Negative Correlation Learning [2, 3, 41,
trained the networks in parallel and negatively corre-
lated the networks. This had the advantage of remov-
ing any bias in manipulation of the training data, as
well as elimination of the need for a gating network.
The negative correlation learning algorithm has shown
marked improvements over other ensemble learning al-
gorithms [a, 3, 41, but it does have a disadvantage in
the need to adjust the penalty coefficient.

The rest of this paper is organised as follows. Section 2
introduces the basic ideas behind negative correlation
learning. Section 3 explains how to evolve the penalty
coefficient in negative correlation learning using the
improved fast evolutionary programming (IFEP) [19].
Section 4 presents our experimental work. Finally, Sec-
tion 5 concludes the paper.

2 Negative Correlation Learning

Negative correlation (NC) learning [2, 3, 41 is an ef-
ficient ensemble training method which can easily be
implemented on top of standard backpropagation in
feedforward networks. Take a set of neural networks
N and a training pattern set P , each pattern in P is
presented and backpropagated on, simultaneously, by
the networks. A penalty term is introduced to the error
function for the individual networks] which takes into
account the error of the other networks in the ensem-
ble. In the standard backpropagation algorithm, the
error function for the output layer nodes is

where Fi(n) is the output of network i on pattern n,
and d (n) is the desired response for that pattern. In
NC learning, the error function becomes

where p i (n) is

and F (n) is the output of the ensemble on pattern n. A
common ensemble output function is a simple average
of the networks in the ensemble, i.e.,

- N
F(n) = '-pi(.).

i= 1
N

In this case we have an overall error function of

1
- (Fi(n) - ~ (T L)) ~ - X(Fi(n) - 2 (3)

where X is an adjustable parameter for the penalty. As
can be seen from the equation] each network receives
lower error for moving its response closer to the target
response, and away from the mean response of all the
other networks - this is a trade-off] controlled by the
penalty parameter A.

3 An Evolutionary Approach to Selecting X

Although NC learning has been shown to be very effec-
tive and efficient in solving many problems [2, 3, 41, it
can be time-consuming to select a near optimal A. If it
is too small, individual networks will not be sufficiently
different and negatively correlated. The advantage of
using ensembles will not be fully exploited. If X is too

694

large, individual networks may sacrifice the accuracy in
exchange of negative correlation. Hence we may end up
with an ensemble of very different networks, but none
of them is good at the task to be learned.

Obviously, the answer to the question of which X is
the optimum is highly problem-dependent. The set-
ting of X is the classic problem of finding the trade-off
between objective and penalty functions, and could be
tackled effectively by an evolutionary approach. In this
paper, we will apply an improved fast evolutionary pro-
gramming (IFEP) algorithm [19] to evolve X for a real
world problem - the traffic flow prediction problem in
a telecommunications network. The IFEP algorithm
can be described as follows:

1. Generate the initial population of p individuals,
and set k = 1. Each individual is taken as a pair
of real-valued vectors, (xi, vi), Vi E (1, . . . , p } ,
where xi’s are objective variables and vi’s are
strategy parameters that determine the search
step size of mutation.

2. Evaluate the fitness score for each individual
(xi,qi), Vi E { l , . . . , , ~ } , of the population based
on the objective function, f(x;).

3. Each parent (xi, vi), i = 1, . . . , p , creates a single
offspring (xi‘,qi’) by: for j = 1, ..-,n,

Vi’(j) = v i w eXP(T’N(O,l) + TNj(O,l))X4)
Z i ’ (j) = % (j) + qz’(j)Q(O, 11, (5)

where zi(j), xi’(j), qi(j) and qi’(j) denote the
j- th component of the vectors xi, xi’, qi and
vi’, respectively. N (0 , l) denotes a normally dis-
tributed one-dimensional random number with
mean 0 and standard deviation 1. Nj(O,l) in-
dicates that the random number is generated
anew for each value of j. The factors T and T’

are commonly set to (m)-’ and (fi)-’
[5]. Dj(0,l) means either Nj(0,l) or C(1) (i.e.,
Cauchy distributed random number with scaling
parameter t = 1).

4. Calculate the fitness of each offspring (xi’,qi’),
vi E {l , - - . , ,U}.

5 . Conduct pairwise comparison over the union of
parents (xi,qi) and offspring (x i ’ ,q i ’) , Vi E
{ 1,. . . , ,U}. For each individual, q opponents are
chosen uniformly at random from all the parents
and offspring. For each comparison, if the indi-
vidual’s fitness is no smaller than the opponent’s,
it receives a “win.”

6. Select the ,U individuals out of (xi,qi) and
(xi‘, vi’), Vi E (1,. . - , p}, that have the most wins
to be parents of the next generation.

7. Stop if the halting criterion is satisfied; otherwise,
k = k + 1 and go to Step 3.

IFEP has been shown to be effective and efficient for
many benchmark problems [19]. In evolving X by IFEP,
fitness evaluation will be based on the training error of
ensemble learning.

4 Traffic Flow Prediction

4.1 The Dataset
The experiments were conducted using Austrian
telecommunication flow data [l]. The data set
was constructed from three data sources: a
(32,32)-interregional telecommunication flow matrix, a
(32,32)-distance matrix, and gross regional products
for the 32 telecommunication regions. It contains 992 4-
tuples (2 1 , 2 2 , 2 3 , y), where the first three components
represent the input vector x = (q , x 2 , 5 3) and the last
component the target output, i.e. the telecommunica-
tion intensity from one region of origin to another re-
gion of destination. Input and target output data were
preprocessed to be within [O, 11. The telecommunica-
tion data stem from network measurements of carried
telecommunication traffic in Austria in 1991, in terms
of erlang, which is defined as the number of phone calls
(including facsimile transmission) multiplied by the av-
erage length of the call (transfer) divided by the dura-
tion of measurement.

The neural network ensemble performance is measured
in this study by the average relative variance ARV(S)
of a set S of patterns [I]:

~

where yk denotes the target value and the average
over the K desired values in S. The averaging, i.e. di-
vision by NS makes ARV(S) independent of the size of
the set S. Thus ARV(S) provides a normalized mean
squared error metric for assessing the in-sample and
out-of-sample performance of trained neural network
ensembles. ARV(S) = 1 if the estimate is equivalent
to the mean of the data (i.e, OL(Z‘, w) = jj). The divi-
sion by the estimated variance b2 of the data removes
the dependence on the dynamic range of the data.

..-

695

X mean ARV
0.0 0.273486
0.5 0.271116
1.0 0.327312

min max
0.258218 0.293902
0.256660 0.283344
0.262347 ' 0.404953

Table 1: Performance of the ensemble with 3 networks and
2 hidden nodes in each. Results were averaged
over 30 trials.

Table 3: Performance of the ensemble with 3 networks and
4 hidden nodes in each. Results were averaged
over 30 trials.

X mean ARV
0.0 0.271376
0.5 0.277429
1.0 0.307329

min max
0.263476 0.300811
0.265054 0.301111
0.271044 0.393888

Table 2: Performance of the ensemble with 3 networks and

X
0.0
0.5
1.0

mean ARV min max
0.271567 0.250356 0.300830
0.271058 0.255322 0.289233
0.312576 0.273501 0.401188

3 hidden nodes in each. Results were averaged Table 4: Performance of the ensemble with 4 networks and

X
0.0
0.5
1.0

over 30 trials.

mean ARV min max
0.271189 0.256071 0.295975
0.273534 0.259535 0.292354
0.302880 0.253121 0.372399

4.2 Experimental Results with Fixed X
Various ensemble architectures were tested, all con-
sisted of feedforward multilayer perceptrons, all nodes
using the logistic activation function. Learning rate
0.1 and momentum 0.8 were used. The error on the
validation set was measured every 64 epochs. Fitness

mance. It is also noticeable that ensembles trained with
X = 1 did not give the best performance in all cases.

2 hidden nodes in each. Results were averaged
over 30 trials.

J

0.5 0.272294 0.258569 1 0.291968
1.0 0.287234 0.256833 I 0.357884

X I mean ARV I min

any single networks. If a single network is sufficiently
powerful in solving a problem, negative correlation is
less useful to an ensemble.

of an individual is defined as the negative of the ARV
averaged over 30 random weight initialisations. Table 5: Performance of the ensemble with 4 networks and

3 hidden nodes in each. Results were averaged

H X mean ARV min max
2 0.746758525 0.269623 0.257804 0.287183
3 -4.960063612 0.268442 0.256066 0.275976
4 -16.45343198 0.268519 0.262368 0.288764

Six different ensemble architectures were tested using
three different X values in order to evaluate the impact
of the architecture and X on the ensemble performance.
Tables 1 to 6 summarise the training results obtained
using NC learning. It is clear from these results that
different X may lead to very different ensemble perfor-

over 30 trials.

1 X 1 mean ARV 1 min 1 max
1 0.0 I 0.270545 I 0.259860 1 0.298174

696

/ H I X I mean ARV I min I max I
1 I

2 0.714460568 0.268436 I 0.252264 0.289648
3 -1.553750871 0.266609 I 0.254209 0.282119

" -"
%P.arO' -
%3,1' -
.v*rT

0 WO7 .var3- -

0 WO6

0 WO5

0 WO4

0 WO3

0 WO2

OMXI1

1 4 I -1.327186364 I 0.266315 I 0.252610 I 0.274487 I
Table 8: Near optimal values for A, for an ensemble with 4

networks, as discovered by IFEP. H is the num-
ber of hidden nodes in each network.

Figure 1: Fitness trace for ensembles of 3 networks with
2 hidden nodes in each.

ing the place of steps 4 and 5 in the IFEP algorithm.
All ensemble architectures started with the same ran-
dom initial population between -1 and f l .

Tables 7 and 8 show the near optimal X values found by
evolution using different ensemble architectures. Fig-
ures 1 to 4 show the evolution of fitness, A, bias, vari-
ance and covariance for an ensemble of 3 networks with
2 hidden nodes in each.

5 Conclusions

This work has presented an evolutionary approach for
setting the penalty coefficient in NC learning [2, 3, 41.
This technique has been applied to a network traffic
flow prediction problem, allowing better performance
than a monolithic neural network solution.

A highly desirable future work would be to adapt X dur-
ing the training, according to the characteristics of the
dataset and the other networks' current performances.
Even for a single problem, different learning stages may
require different X values. For example, in the initial
stage of ensemble learning, we may prefer a small X
to encourage all individual networks to perform above

0 5 10 15 20 25 30 35 40 45 50

Figure 2: X trace for ensembles of 3 networks with 2 hid-
den nodes in each.

OW117 1 , I

I 000116

OW115 1

I
0 5 1 0 1 5 2 0 2 5 X) 3 5 4 0 4 5 k)

000107 I

Figure 3: Bias trace for ensembles of 3 networks with 2
hidden nodes in each.

n l J
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

Figure 4: Variance trace for ensembles of 3 networks with
2 hidden nodes in each.

697

o m 1 , , I

Figure 5: Covariance trace for ensembles of 3 networks
with 2 hidden nodes in each.

a minimum standard (in terms of accuracy). As the
learning progresses, we may want to increase A such
that individual networks can specialise without sacri-
ficing individual accuracies. An adaptive method that
can adjust X automatically is needed to achieve this.

Another extension would be to allow asymmetric cor-
relations between networks, which would be desirable
if the networks moved in different search spaces, this
could be due to differing architectures. In terms of
NC learning, this would mean a different X for each
network’s relationship with each other net. These ex-
tensions are work-in-progress.

References

[l] M. M. Fischer and S. Gopal, “Artificial neural
networks: a new approach to modelling interregional
telecommunication ~ ~ O W S , ~ , Journal of Regional Science,
vol. 34, no. 4, pp. 503-527, 1994.

[2] Y. Liu and X. Yao, “Negatively correlated neu-
ral networks can produce best ensembles,” Australian
Journal of Intelligent Information Processing Systems,
vol. 4, no. 3/4, pp. 176-185, 1997.

[3] Y. Liu and X. Yao, “Ensemble learning via neg-
ative correlation,” Neural Networks, vol. 12, pp. 1399-
1404, December 1999.

[4] Y. Liu and X. Yao, “Simultaneous training of
negatively correlated neural networks in an ensemble,”
IEEE Trans. on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 29, pp. 716-725, December 1999.

[5] T. Back and H.-P. Schwefel, “An overview of evo-
lutionary algorithms for parameter optimization,” Evo-
lutionary Computation, vol. 1, no. 1, pp. 1-23, 1993.

[6] A. Sharkey, Multi-Net Systems, ch. Combining
Artificial Neural Nets: Ensemble and Modular Multi-
Net Systems, pp. 1-30. Springer-Verlag, 1999.
[7] S. Geman, E. Bienenstock, and R. Doursat,
“Neural networks and the bias/variance dilemma,”
Neural Computation, vol. 4, pp. 1-58, 1992.

[8] A. Krogh and J. Vedelsby, “Neural network en-
sembles, cross validation and active learning,” Ad-
vances in Neural Information Processing Systems
(NIPS-7), vol. 7, 1995.

[9] N. Ueda and R. Nakano, “Generalization error of
ensemble estimators,” in Proceedings of International
Conference on Neural Networks (ICNN96), pp. 90-95,
1996.

[lo) D. Opitz and J. Shavlik, “Generating accurate
and diverse members of a neural-network ensemble,”
1996.

[ll] A. S. Weigend and M. Mangeas, “Nonlinear gated
experts for time series: discovering regimes and avoid-
ing overfitting,” International Journal of Neural Sys-
tems, vol. 6, pp. 373-399, 1995.

[12] M. Meng and A. C. Kak, “Mobile robot naviga-
tion using neural networks and nonmetrical environ-
ment models,” IEEE Control Systems, pp. 30-39, Oc-
tober 1993.

[13] A. Sharkey, N. Sharkey, and S. Cross, “Adapt-
ing an ensemble approach for the diagnosis of breast
cancer,” pp. 281-286, 1998.

[14] H. Drucker, C . Cortes, L. Jackel, Y. LeCun, and
V. Vapnik, “Boosting and other ensemble methods,”
1994.

[15] A. Sharkey, N. Sharkey, and G. Chandroth, “Di-
verse neural net solutions to a fault diagnosis problem,”
Neural Computing and Applications, vol. 4, pp. 218-
227, 1996.

[16] Y. Raviv and N. Intrator, “Bootstrapping with
noise: An effective regularisation technique,” Connec-
tion Science, vol. 8 , pp. 355-372, 1996.

[17] B. E. Rosen, “Ensemble learning using decorre-
lated neural networks,” Connection Science - Special
Issue on Combining Artificial Neural Networks: En-
semble Approaches, vol. 8, no. 3 and 4, pp. 373-384,
1996.

[18] Y. Liu and X. Yao, “Negatively correlated neu-
ral networks can produce best ensembles,” Australian
Journal of Intelligent Information Processing Systems,
vol. 4, no. 3/4, pp. 176-185, 1997.

[19] X. Yao, Y. Liu, and G. Lin, “Evolutionary pro-
gramming made faster,” IEEE Transactions on Evolu-
tionary Computation, vol. 3, pp. 82-102, July 1999.

*

698

