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Abstract 

It is well-known that large neural networks with many 
unshared weights can be very difficult to train. A neu- 
ral network ensemble consisting of a number of indi- 
vidual neural networks usually performs better than a 
complex monolithic neural network. One of the moti- 
vations behind neural network ensembles is the divide- 
and-conquer strategy, where a complex problem is de- 
composed in60 different components each of which is 
tackled by an individual neural network. A promis- 
ing algorithm for training neural network ensembles is 
the negative correlation learning algorithm which pe- 
nalizes positive correlations among individual networks 
by introducing a penalty term in the error function. A 
penalty coefficient is used to balance the minimization 
of the error and the minimization of the correlation. It 
is often very difficult to  select an optimal penalty co- 
efficient for a given problem because as yet there is no 
systematic method available for setting the parameter. 
This paper first applies negative correlation learning 
to the traffic flow prediction problem, and then pro- 
poses an evolutionary approach to deciding the penalty 
coefficient automatically in negative correlation learn- 
ing. Experimental results on the traffic flow prediction 
problem will be presented. 

1 Introduction 

Neural network ensembles offer a number of advan- 
tages over a single neural network system. They have 
the potential for improved generalization, lower depen- 
dence on the training set, and reduced training time. 
Sharkey [SI provides a good summary of the literature, 

and states “Combining a set of  imperfect estimators 
can be thought of as a way of managing the recognized 
limitations of the individual estimators”. It is this man- 
agement that we address here. 

Training a neural network generally involves a delicate 
balance of various factors. The bias-variance decompo- 
sition [7] states that the mean square error (MSE) of 
a neural network is equal to the bias squared plus the 
variance. There is a trade-off between them - with 
more training, it is possible to achieve lower bias, but 
at the cost of a rise in variance. Krogh and Vedelsby 
[8] extend this concept to ensemble errors, showing how 
the bias can be seen as the extent to which the aver- 
aged output of the ensemble members differs from the 
target function, and the variance is the extent to which 
the ensemble members disagree. Ueda and Nakano [9] 
further provide a detailed proof of how the decomposi- 
tion can be extended to a bias-variance-covariance one. 
From this result, one way to decrease the error is clear: 
decrease the covariance, ideally making it strongly neg- 
ative. This means that an ideal ensemble consists of 
highly correct classifiers that disagree as much as pos- 
sible, empirically verified in [lo] among others. 

Ensembles have been successfully applied for both re- 
gression and classification problems in varied domains, 
such as time series prediction [ll], robotics [12], and 
medical diagnosis [13]. Here we apply them to pre- 
diction of network traffic flow in a telecommunications 
system [l]. 

Various algorithms have been proposed for training en- 
sembles to  achieve better generalisation. They can 
be broadly classified as manipulating the initial con- 
ditions, the network architectures, the training data, 
or the learning algorithm. 
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Early work trained networks independently, then aver- 
aged the results, hoping to achieve higher performance 
simply through differences in initial conditions (differ- 
ent weight initializations). The idea was that start- 
ing the networks in different areas of the weight space, 
they would follow different trajectories in the functional 
space. However, if a random initialization by chance 
gives a set of weights that are far from a solution, con- 
vergence can be exceedingly slow. 

Manipulation of training data has been the most widely 
investigated method. Boosting [14], bagging, disjoint 
input sources [15], nonlinear transformations of in- 
put [15], and noise injection [16] have all proved their 
worth. 

Manipulating the network topologies would mean hav- 
ing hybrid ensembles, consisting of estimators that 
work in different search spaces entirely. Different areas 
of functional (solution) space will be more accessible 
in certain search spaces than in others. Although this 
seems a promising path, not much work seems to  have 
been done in the area. 

The three methods mentioned so far are all implicit 
methods for achieving diverse errors, the nets may still 
converge to  be highly correlated, regardless of your 
efforts. Explicit methods manipulate the training al- 
gorithm itself to  produce decorrelated errors. Within 
this category ensemble methods are divided into those 
which train networks independently, then attempt to 
combine them, and those methods which take regard 
of the need for decorrelated errors during the train- 
ing. Rosen [17] used a penalty function] training an en- 
semble sequentially] to decorrelate nets from ones that 
had been trained before, although this did not guaran- 
tee negative correlation of all the networks. A recent 
advancement, Negative Correlation Learning [2, 3, 41, 
trained the networks in parallel and negatively corre- 
lated the networks. This had the advantage of remov- 
ing any bias in manipulation of the training data, as 
well as elimination of the need for a gating network. 
The negative correlation learning algorithm has shown 
marked improvements over other ensemble learning al- 
gorithms [a, 3, 41, but it does have a disadvantage in 
the need to adjust the penalty coefficient. 

The rest of this paper is organised as follows. Section 2 
introduces the basic ideas behind negative correlation 
learning. Section 3 explains how to evolve the penalty 
coefficient in negative correlation learning using the 
improved fast evolutionary programming (IFEP) [19]. 
Section 4 presents our experimental work. Finally, Sec- 
tion 5 concludes the paper. 

2 Negative Correlation Learning 

Negative correlation (NC) learning [2, 3, 41 is an ef- 
ficient ensemble training method which can easily be 
implemented on top of standard backpropagation in 
feedforward networks. Take a set of neural networks 
N and a training pattern set P ,  each pattern in P is 
presented and backpropagated on, simultaneously, by 
the networks. A penalty term is introduced to the error 
function for the individual networks] which takes into 
account the error of the other networks in the ensem- 
ble. In the standard backpropagation algorithm, the 
error function for the output layer nodes is 

where Fi(n) is the output of network i on pattern n, 
and d ( n )  is the desired response for that pattern. In 
NC learning, the error function becomes 

where p i ( n )  is 

and F (n )  is the output of the ensemble on pattern n. A 
common ensemble output function is a simple average 
of the networks in the ensemble, i.e., 

- N  
F(n)  = '-pi(.). 

i= 1 
N 

In this case we have an overall error function of 

1 
- (Fi(n)  - ~ ( T L ) ) ~  - X(Fi(n) - 2 (3) 

where X is an adjustable parameter for the penalty. As 
can be seen from the equation] each network receives 
lower error for moving its response closer to the target 
response, and away from the mean response of all the 
other networks - this is a trade-off] controlled by the 
penalty parameter A. 

3 An Evolutionary Approach to Selecting X 

Although NC learning has been shown to be very effec- 
tive and efficient in solving many problems [2, 3, 41, it 
can be time-consuming to select a near optimal A. If it 
is too small, individual networks will not be sufficiently 
different and negatively correlated. The advantage of 
using ensembles will not be fully exploited. If X is too 
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large, individual networks may sacrifice the accuracy in 
exchange of negative correlation. Hence we may end up 
with an ensemble of very different networks, but none 
of them is good at  the task to be learned. 

Obviously, the answer to the question of which X is 
the optimum is highly problem-dependent. The set- 
ting of X is the classic problem of finding the trade-off 
between objective and penalty functions, and could be 
tackled effectively by an evolutionary approach. In this 
paper, we will apply an improved fast evolutionary pro- 
gramming (IFEP) algorithm [19] to  evolve X for a real 
world problem - the traffic flow prediction problem in 
a telecommunications network. The IFEP algorithm 
can be described as follows: 

1. Generate the initial population of p individuals, 
and set k = 1. Each individual is taken as a pair 
of real-valued vectors, (xi, vi), Vi E (1, .  . . , p } ,  
where xi’s are objective variables and vi’s are 
strategy parameters that determine the search 
step size of mutation. 

2. Evaluate the fitness score for each individual 
(xi,qi), Vi E { l , . . . , , ~ } ,  of the population based 
on the objective function, f(x;). 

3. Each parent (xi, vi), i = 1, . . . , p ,  creates a single 
offspring (xi‘,qi’) by: for j = 1, ..-,n, 

Vi’(j) = v i w  eXP(T’N(O,l) + TNj(O,l))X4) 
Z i ’ ( j )  = % ( j )  + qz’( j )Q(O, 11, (5) 

where zi(j), xi’(j), qi(j) and qi’(j) denote the 
j- th component of the vectors xi, xi’, qi and 
vi’, respectively. N ( 0 , l )  denotes a normally dis- 
tributed one-dimensional random number with 
mean 0 and standard deviation 1. Nj(O,l) in- 
dicates that the random number is generated 
anew for each value of j. The factors T and T’ 

are commonly set to (m)-’ and (fi)-’ 
[5]. Dj(0,l) means either Nj(0,l) or C(1) (i.e., 
Cauchy distributed random number with scaling 
parameter t = 1). 

4. Calculate the fitness of each offspring (xi’,qi’), 
vi E {l , - - . , ,U}.  

5 .  Conduct pairwise comparison over the union of 
parents (xi,qi) and offspring (x i ’ ,q i ’ ) ,  Vi E 
{ 1,. . . , ,U}. For each individual, q opponents are 
chosen uniformly at  random from all the parents 
and offspring. For each comparison, if the indi- 
vidual’s fitness is no smaller than the opponent’s, 
it receives a “win.” 

6. Select the ,U individuals out of (xi,qi) and 
(xi‘, vi’), Vi E (1,. . - , p}, that have the most wins 
to be parents of the next generation. 

7. Stop if the halting criterion is satisfied; otherwise, 
k = k + 1 and go to Step 3. 

IFEP has been shown to be effective and efficient for 
many benchmark problems [19]. In evolving X by IFEP, 
fitness evaluation will be based on the training error of 
ensemble learning. 

4 Traffic Flow Prediction 

4.1 The Dataset 
The experiments were conducted using Austrian 
telecommunication flow data [l]. The data set 
was constructed from three data sources: a 
(32,32)-interregional telecommunication flow matrix, a 
(32,32)-distance matrix, and gross regional products 
for the 32 telecommunication regions. It contains 992 4- 
tuples ( 2 1 ,  2 2 , 2 3 ,  y), where the first three components 
represent the input vector x = ( q , x 2 , 5 3 )  and the last 
component the target output, i.e. the telecommunica- 
tion intensity from one region of origin to another re- 
gion of destination. Input and target output data were 
preprocessed to  be within [O, 11. The telecommunica- 
tion data stem from network measurements of carried 
telecommunication traffic in Austria in 1991, in terms 
of erlang, which is defined as the number of phone calls 
(including facsimile transmission) multiplied by the av- 
erage length of the call (transfer) divided by the dura- 
tion of measurement. 

The neural network ensemble performance is measured 
in this study by the average relative variance ARV(S) 
of a set S of patterns [I]: 

~ 

where yk denotes the target value and the average 
over the K desired values in S. The averaging, i.e. di- 
vision by NS makes ARV(S) independent of the size of 
the set S. Thus ARV(S) provides a normalized mean 
squared error metric for assessing the in-sample and 
out-of-sample performance of trained neural network 
ensembles. ARV(S) = 1 if the estimate is equivalent 
to the mean of the data (i.e, OL(Z‘,  w) = jj). The divi- 
sion by the estimated variance b2 of the data removes 
the dependence on the dynamic range of the data. 

..- 
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X mean ARV 
0.0 0.273486 
0.5 0.271116 
1.0 0.327312 

min max 
0.258218 0.293902 
0.256660 0.283344 
0.262347 ' 0.404953 

Table 1: Performance of the ensemble with 3 networks and 
2 hidden nodes in each. Results were averaged 
over 30 trials. 

Table 3: Performance of the ensemble with 3 networks and 
4 hidden nodes in each. Results were averaged 
over 30 trials. 

X mean ARV 
0.0 0.271376 
0.5 0.277429 
1.0 0.307329 

min max 
0.263476 0.300811 
0.265054 0.301111 
0.271044 0.393888 

Table 2: Performance of the ensemble with 3 networks and 

X 
0.0 
0.5 
1.0 

mean ARV min max 
0.271567 0.250356 0.300830 
0.271058 0.255322 0.289233 
0.312576 0.273501 0.401188 

3 hidden nodes in each. Results were averaged Table 4: Performance of the ensemble with 4 networks and 

X 
0.0 
0.5 
1.0 

over 30 trials. 

mean ARV min max 
0.271189 0.256071 0.295975 
0.273534 0.259535 0.292354 
0.302880 0.253121 0.372399 

4.2 Experimental Results with Fixed X 
Various ensemble architectures were tested, all con- 
sisted of feedforward multilayer perceptrons, all nodes 
using the logistic activation function. Learning rate 
0.1 and momentum 0.8 were used. The error on the 
validation set was measured every 64 epochs. Fitness 

mance. It is also noticeable that ensembles trained with 
X = 1 did not give the best performance in all cases. 

2 hidden nodes in each. Results were averaged 
over 30 trials. 

J 

0.5 0.272294 0.258569 1 0.291968 
1.0 0.287234 0.256833 I 0.357884 

X I mean ARV I min 

any single networks. If a single network is sufficiently 
powerful in solving a problem, negative correlation is 
less useful to  an ensemble. 

of an individual is defined as the negative of the ARV 
averaged over 30 random weight initialisations. Table 5: Performance of the ensemble with 4 networks and 

3 hidden nodes in each. Results were averaged 

H X mean ARV min max 
2 0.746758525 0.269623 0.257804 0.287183 
3 -4.960063612 0.268442 0.256066 0.275976 
4 -16.45343198 0.268519 0.262368 0.288764 

Six different ensemble architectures were tested using 
three different X values in order to  evaluate the impact 
of the architecture and X on the ensemble performance. 
Tables 1 to 6 summarise the training results obtained 
using NC learning. It is clear from these results that 
different X may lead to very different ensemble perfor- 

over 30 trials. 

1 X 1 mean ARV 1 min 1 max 
1 0.0 I 0.270545 I 0.259860 1 0.298174 
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/ H I  X I mean ARV I min I max I 
1 I 

2 0.714460568 0.268436 I 0.252264 0.289648 
3 -1.553750871 0.266609 I 0.254209 0.282119 

" -" 
%P.arO' - 
%3,1' - 
.v*rT 

0 WO7 .var3- - 

0 WO6 

0 WO5 

0 WO4 

0 WO3 

0 WO2 

OMXI1 

1 4 I -1.327186364 I 0.266315 I 0.252610 I 0.274487 I 
Table 8: Near optimal values for A, for an ensemble with 4 

networks, as discovered by IFEP. H is the num- 
ber of hidden nodes in each network. 

Figure 1: Fitness trace for ensembles of 3 networks with 
2 hidden nodes in each. 

ing the place of steps 4 and 5 in the IFEP algorithm. 
All ensemble architectures started with the same ran- 
dom initial population between -1 and f l .  

Tables 7 and 8 show the near optimal X values found by 
evolution using different ensemble architectures. Fig- 
ures 1 to 4 show the evolution of fitness, A, bias, vari- 
ance and covariance for an ensemble of 3 networks with 
2 hidden nodes in each. 

5 Conclusions 

This work has presented an evolutionary approach for 
setting the penalty coefficient in NC learning [2, 3, 41. 
This technique has been applied to a network traffic 
flow prediction problem, allowing better performance 
than a monolithic neural network solution. 

A highly desirable future work would be to adapt X dur- 
ing the training, according to the characteristics of the 
dataset and the other networks' current performances. 
Even for a single problem, different learning stages may 
require different X values. For example, in the initial 
stage of ensemble learning, we may prefer a small X 
to encourage all individual networks to perform above 

0 5 10 15 20 25 30 35 40 45 50 

Figure 2: X trace for ensembles of 3 networks with 2 hid- 
den nodes in each. 

OW117 1 , I 

I 000116 

OW115 1 

I 
0 5 1 0 1 5 2 0 2 5 X ) 3 5 4 0 4 5 k )  

000107 I 

Figure 3: Bias trace for ensembles of 3 networks with 2 
hidden nodes in each. 

n l  J 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0  

Figure 4: Variance trace for ensembles of 3 networks with 
2 hidden nodes in each. 
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o m 1 ,  , I 

Figure 5: Covariance trace for ensembles of 3 networks 
with 2 hidden nodes in each. 

a minimum standard (in terms of accuracy). As the 
learning progresses, we may want to increase A such 
that individual networks can specialise without sacri- 
ficing individual accuracies. An adaptive method that 
can adjust X automatically is needed to  achieve this. 

Another extension would be to  allow asymmetric cor- 
relations between networks, which would be desirable 
if the networks moved in different search spaces, this 
could be due to  differing architectures. In terms of 
NC learning, this would mean a different X for each 
network’s relationship with each other net. These ex- 
tensions are work-in-progress. 
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