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Abstract
The recently introduced deep parametric PDEmethod combines the efficiency of deep learn-
ing for high-dimensional problemswith the reliability of classical PDEmodels. The accuracy
of the deep parametric PDEmethod is determined by the best-approximation property of neu-
ral networks.We provide (to the best of our knowledge) the first approximation results, which
feature a dimension-independent rate of convergence for deep neural networks with a hyper-
bolic tangent as the activation function. Numerical results confirm that the deep parametric
PDEmethod performs well in high-dimensional settings by presenting in a risk management
problem of high interest for the financial industry.

Keywords Deep neural networks · Deep parametric PDE method · DNN approximation
theory · DNN expression rates · High-dimensional partial differential equations · Option
pricing · Exposure calculation

1 Introduction

In this article, we expand the analysis of the deep parametric PDE method, provide further
numerical results and demonstrate performance gains in a core computational problem in
counterparty credit risk. The deep learning-based solver introduced in Glau and Wunderlich
(2022) offers efficient approximations to high-dimensional parametric partial differential
equations (PDEs) and builds on Sirignano and Spiliopoulos (2018). For instance to comply
with regulatory policies, financial institutions have to regularly evaluate a massively large
number of high-dimensional PDEs. Particularly, large portfolios and scenario calculations
demand for PDE solutions for different parameters in one stochastic model. In order to
advance these calculations in risk management, efficient high-dimensional parametric PDE
solvers are required. The efficiency of classical PDE solvers deteriorates for high dimensions
due to the curse of dimensionality. We show that the approximation rate of deep neural
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networks (DNNs) used in the deep parametric PDE solver is independent of the dimension
of the problem.

The deep parametric PDE method has a strong mathematical foundation as it was shown
to be converging to the exact solution, provided perfect numerical minimisation. However,
there are currently no approximation rates available for the underlying DNN which reflect
the efficiency in high dimensions.While the approximation theory for DNN is an active field,
see, e.g., Elbrächter et al. (2021), Gühring et al. (2020) most results are only available for
rectified linear units (ReLU) as the activation functions. Their lack of smoothness makes
them unsuitable for the approximation of PDEs in the given framework. We therefore extend
the approximation theory for neural networks with smooth activation functions and prove for
the first time (to the best of our knowledge) an approximation rate which is independent of
the dimensionality of the problem, thus lessening the curse of dimensionality. This result is
shown by providing best-approximation rates for the L2-norm which can be applied flexibly
to the approximation over a variable state space, a time-state space as well as to the full
parametric solutions.

In order to confirm this theoretical insight in a numerical example of practical relevance,
we consider credit exposure calculations. Here financial institutions have to evaluate the risk
they face in case counterparties of a derivative deal default. The common use of Monte-Carlo
simulations to generate risk factors in exposure calculations requires frequent calls of the
pricer. In particular for derivatives depending on several risk factors, this leads to unsus-
tainably long run-times, rendering e.g. real-time nowcasting infeasible. As a prototypical
example, we consider multi-asset option pricing and evaluate the expected exposure as well
as the potential future exposure with up to ten underlying assets.

1.1 Literature review

The mathematical analysis of deep neural networks has significantly advanced in the recent
years, see, e.g. Berner et al. (2021). In parts this is due to the increased attention of the topic
thanks to impressive results of deep learning (LeCun et al., 2015) .

Applications in deep learning andDNN-based PDE solver share the need for results on the
best-approximation property of neural networks. For an overview over current results (mainly
based on ReLU networks) see Elbrächter et al. (2021); Gühring et al. (2020). Approximation
results for ReLU networks are shown in Yarotsky (2017) and were subsequently improved,
e.g. specifically for solutions of PDEs (Grohs et al., 2019; Beck et al., 2020; Elbrächter et al.,
2021), or in Sobolev spaces which include the first derivative (Gühring et al., 2020). Errors
in Sobolev spaces for similar activations functions, rectified cubic units, were considered in
Abdeljawad and Grohs (2022). For Kolmogorov PDEs it has furthermore been shown that
the solution in the state-space can be approximated without the curse of dimensionality, see
for example (Jentzen et al., 2021; Grohs et al., 2018; Reisinger & Zhang, 2020). We note
that in this article, we have chosen the more general approach of best-approximation rates, as
the deep parametric PDE method can be used to solve non-Kolmogorov PDEs. Exponential
convergence rates for analytic functions were shown in low dimensions (E & Wang, 2018)
and in high dimensions (Opschoor et al., 2021). Also constructive approaches based on
Chebyshev interpolation were investigated in Tang et al. (2019); Herrmann et al. (2022).

The deep parametric PDE method was first introduced in Glau and Wunderlich (2022)
and is based on the deep Galerkin method (Sirignano & Spiliopoulos, 2018). For a detailed
literature review, we refer the reader to these articles. Related ideas led to the development
of physics-informed neural networks (Raissi et al., 2019; Karniadakis et al., 2021). The

123



Annals of Operations Research

interest for DNN-based methods is large, few recent examples are applications to Hamilton-
Jacobi-Bellman equations (Grohs & Herrmann, 2021) and stochastic control in finance
(Germain et al., 2021). In addition the current research into high-dimensional problems has
inspired approaches beyond neural networks, see, e.g. Antonov and Piterbarg (2021).

Due to the second order derivative terms, somePDE solvers (including the deep parametric
PDEmethod) require smooth activation functions. However, for smooth activation functions,
there are less results available than for ReLU networks. For single-layer networks (Barron,
1993; Siegel & Xu, 2020) have shown approximation estimates in the L2-norm which
do not exceed those of standard Monte-Carlo methods. Expression rates for deep neural
networks are investigated in Ohn and Kim (2019); Langer (2021), but these rates deteriorate
in high-dimensions due to the remaining curse of dimensionality.

To the best of our knowledge, this article presents the first approximation rates for DNNs
with smooth activation functions which are not deteriorating with the number of dimensions.
The analysis is based on a sparse grid approach (Bungartz & Griebel, 2004; Garcke &
Griebel, 2013). It is motivated by related results for ReLU activation functions (Montanelli
& Du, 2019) .

While the approximative power is a major contribution to the numerical error, research
into the remaining factors is highly important, too. Some gaps between theory and practice
are demonstrated in Adcock and Dexter (2021). Approximation results which include the
sampling error are considered, e.g., in Shin et al. (2020). First investigations into the con-
vergence of the optimiser are also available, see, e.g. Jentzen and Riekert (2021) and the
references therein.

For an overview on counterparty credit risk and exposure calculations, seeGregory (2010);
Green (2015). Several articles have proposed techniques to speeding up its calculation. For
low-dimensions, the dynamic Chebyshevmethods introduced inGlau et al. (2019) has proven
highly suited for exposure calculations (Glau et al., 2021). For higher dimensions some
machine learning algorithms have been considered: a proof of concept for a supervised
learning-based approach in Welack (2019), calculations based on Deep BSDE solver in
Gnoatto et al. (2020), and based on the deep optimal stopping algorithm for Bermudan
options in Andersson and Oosterlee (2021a, b). Besides DNN-based approaches for example
sparse grid methods have recently been proposed for use in exposure calculations (Grzelak,
2021). In this article, we demonstrate the performance of the deep parametric PDE method
for exposure calculations including high-dimensional pricing problems.

1.2 Structure of the article

In Sect. 2, we briefly recall the deep parametric PDE method. The theoretical analysis of
the approximation through neural networks with smooth activation functions is presented in
Sect. 3. Then in Sect. 4, we present the performance of the deep parametric PDE method in
exposure calculations. Finally, we summarise and conclude the article in Sect. 5.

2 The deep parametric PDEmethod for option pricing

The deep parametric PDE method was recently introduced in Glau and Wunderlich (2022)
as a neural network-based method to simultaneous compute the option price at all time, state
and parameter value of interest. For convenience of the reader, we recall its main properties.
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Expressing the option price in logarithmic asset variables, u(τ, x;μ) denotes the fair price
of an option at time to maturity τ for the asset prices si = exi :

u(τ, x;μ) = Price(T − τ, ex ;μ),

Price(t, s;μ) = e−r(T−t)
E(G(ST (μ)) | St (μ) = s),

with d underlyings St (μ) = (S1t (μ), . . . , Sdt (μ)) and the physical time t = T − τ . G
denotes the payoff function at maturity and the assets S are modelled by a multivariate
geometric Brownian motion. The parameter μ can describe model parameters as well as
option parameters. In our setting the parameter vector μ contains the risk-free rate of return,
volatilities and correlations, each with a smooth parameter dependency.

The option price solves the Black-Scholes PDE

∂τu(τ, x;μ) + Lμ
x u(τ, x;μ) = 0, (τ, x) ∈ Q = (0, T ) × �,

u(0, x;μ) = g(x), x ∈ �,

u(τ, x;μ) = u�(t, x;μ), (τ, x) ∈ � = (0, T ) × ∂�,

with � = (xmin, xmax)
d , g(x1, . . . , xd) = G(ex1 , . . . , exd ) and

Lμ
x u(τ, x;μ) = r(μ)u(τ, x;μ) −

d∑

i=1

(
r(μ) − σi (μ)2

2

)
∂xi u(τ, x;μ)

−
d∑

i, j=1

ρi j (μ)σi (μ)σ j (μ)

2
∂xi x j u(τ, x;μ).

For a given function u : Q × P → R of sufficient smoothness, we define the loss based
on the PDE’s residuals:

J (u) = Jint(u) + Jic(u).

The interior residual is defined as

Jint(u) = |Q × P|−1
∫

P

∫

Q

(
∂τu(τ, x;μ) + Lμ

x u(τ, x;μ)
)2 d(τ, x) dμ,

with |Q × P| the size of the domain, and the initial residual as

Jic(u) = |� × P|−1
∫

P

∫

�

(u(0, x;μ) − g(x))2 dx dμ.

The deep parametric PDE method minimises the residual over the space of deep neural
networks of a given size:

uDPDE = argmin
uDNN

J (uDNN).

The integrals are numerically evaluated byMonte-Carlo quadrature, which yields a similarity
to mean squared error-residuals often used in machine learning:

Jint(u) ≈
N∑

i=1

(
∂τu

(
τ (i), x (i);μ(i)) + Lμ

x u
(
τ (i), x (i);μ(i)) − f

(
τ (i), x (i);μ(i)))2/N ,

Jic(u) ≈
N∑

i=1

(
u
(
0, x̂ (i); μ̂(i)) − g

(
x̂ (i); μ̂(i)))2/N ,
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where (τ (i), x (i), μ(i)) ∈ Q × P and (x̂ (i), μ̂(i)) ∈ � × P for i = 1, . . . , N are chosen
randomly with a uniform distribution. In our experiment, we choose N = 10, 000 as we
observed less accurate approximations with smaller values of N .

In (Glau & Wunderlich, 2022, Theorem 1), it was shown that for sufficiently large net-
works, the L2-error of the deep parametric PDEmethod can be arbitrarily small. However, no
estimates on the required network size were given. In this article, we investigate this question
in more details and provide new results on the approximation of functions by neural networks
with smooth activation functions. In particular, we provide (to the best of our knowledge)
the first approximation rates which do not deteriorate for higher dimensions, thus reducing
the curse of dimensionality. We then discuss the consequences of these results to the deep
parametric PDE method in more details.

3 Function approximation by neural networks

Weconsider dense neural networkswithd input nodes, a single output node and the hyperbolic
tangent as the activation function. Results for several output nodes can be shown in an
analogue way.

In this chapter, we are going to improve the available approximation rates for a smooth
activation function, based on available results for ReLU networks. There are two alternative
pathways: based on a given ReLU approximation or by a direct construction of a network
with smooth activation functions. For a proof based on a given ReLU approximation, we
would first construct an auxiliary ReLU network which can then be approximated by a
network with a smooth activation function. This was shown, for example in Boulle et al.
(2020); Telgarsky (2017) using rational activation functions. For the direct construction, we
construct the network with a smooth activation function without the auxiliary network, but
in a similar way to the construction of the ReLU network. This way is technically more
challenging, but results in sharper bounds. For this reason, we are going to directly construct
the neural network with a smooth activation function. In addition to sharper bounds, this way
also allows us to provide bounds of the magnitude of the parameters.

3.1 Deep neural networks

We consider neural networks with input h0 ∈ R
n , output dimensionm, widthw, depth L and

activation functionσ : R
w → R

w . Here σ is the component-wise evaluation of the hyperbolic
tangent. The mapping from one layer to the next is an affine transformation combined with
the activation function:

hl = σ(Wlhl−1 + bl) ∈ R
w.

The output is given by an affine transformation of the last hidden layer:

WL+1hL + bL+1 ∈ R
m .

Here the weights are W 1 ∈ R
w×n , Wl ∈ R

w×w , l = 2, . . . , L , WL+1 ∈ R
m×w and the

biases are bl ∈ R
w , l = 1, . . . , L and bL+1 ∈ R

m . Their values will be set by a numerical
optimisation.

We are particularly interested in deep neural networks and their ability of function approx-
imation. While the exact threshold between deep and shallow networks is rather arbitrary,
we consider networks with L ≥ 4 as deep neural networks.
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We denote by �(L, w, n,m) the set of all weights corresponding to a neural network of
depth L and width w mapping R

n to R
m :

�(L, w, n,m) = { (
W 1, . . . ,WL+1, b1, . . . bL+1

)
:

W 1 ∈ R
w×n,Wl ∈ R

w×w, l = 2, . . . , L,WL+1 ∈ R
m×w,

bl ∈ R
w, l = 1, . . . , L, bL+1 ∈ R

m .
}

Note that we will frequently drop the arguments n,m when they are clear from the context.
Typically we will consider an input dimension n = d and an output dimension m = 1.

Next to the dimension of the network, also the magnitude of the weights and biases
is important. Too large parameters can cause numerical instabilities and may lead to slow
convergence by an iterative solver. Therefore, we will also show bounds for the maximal
parameter value of θ ∈ �(L, w, n,m) as

|θ |∞ = max
{
|Wl

i, j |, |bli | : i, j, l
}

.

The evaluation of the neural network is denoted as N (· | θ):

N (x | θ) = WL+1σ

(
WLσ

(
· · · σ (

W 2σ(W 1x + b1) + b2
) + · · ·

)
+ bL

)
+ bL+1.

Lemma 1 We can manipulate neural networks in the following ways:

(a) For N ≥ n, we can trivially embed�(L, w, n,m) in�(L, w, N ,m). I.e. for an injective
index mapping π : {1, . . . , n} → {1, . . . , N }, we can extend a neural network θ ∈
�(L, w, n,m) to a neural network θ̃ ∈ �(L, w, N ,m), such that

N (x | θ) = N (x̃ | θ̃ ),

for all x ∈ R
n, x̃ ∈ R

N with xi = x̃π(i), i = 1, . . . , n. In particular
∣∣∣θ̃

∣∣∣∞ = |θ |∞ .

(b) Two neural networks can be evaluated in parallel. There is an operator⊎ : �(L, w1, n,m1) × �(L, w2, n,m2) → �(L, w1 + w2, n,m1 + m2) producing
the evaluation of two networks of at the same time, i.e. such that for θu = θ1 � θ2:

N (x | θu) =
(
N (x | θ1)

N (x | θ2)

)

for all x ∈ R
n. It furthermore holds

|θu|∞ = max{|θ1|∞ , |θ2|∞}.
(c) There exists an addition operator

⊕ : �(L, w1, n,m)×�(L, w2, n,m) → �(L, w1 +
w2, n,m) producing the sum of two networks with the same output size, i.e. such that for
θ+ = θ1 ⊕ θ2:

N (x | θ+) = N (x | θ1) + N (x | θ2)

for all x ∈ R
d . It furthermore holds

|θ+|∞ ≤ max{|θ1|∞ , |θ2|∞ ,

∣∣∣bL+1
1

∣∣∣∞ +
∣∣∣bL+1

2

∣∣∣∞},
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where bL+1
1 and bL+1

2 are the final biases of θ1 and θ2, respectively. The input weights and
biases W 1, b1 of θ+ can be boundmore strictly bymax{∣∣W 1

1

∣∣∞ ,
∣∣b11

∣∣∞ ,
∣∣W 2

1

∣∣∞ ,
∣∣b21

∣∣∞},
where W 1

1 , b11 and W 1
2 , b12 are the input weights and biases of θ1 and θ2, respectively.

(d) There exists a composition operator
⊙ : �(L1, w1,m, l)×�(L2, w2, n,m) → �(L1+

L2,max{w1, w2}, n, l) producing the composition of two networks, i.e. such that for
θ
 = θ1 
 θ2:

N (x | θ
) = N (N (x | θ2) | θ1)

for all x ∈ R
d . We can estimate the new weights:

|θ
|∞ ≤ max
{
|θ1|∞ , |θ2|∞ ,

∣∣W 1
2

∣∣∞
∣∣∣WL1+1

1

∣∣∣∞ ,
∣∣W 1

2

∣∣∞
∣∣∣bL1+1

1

∣∣∣∞ + ∣∣b12
∣∣∞

}
,

where W L1+1
1 and bL1+1

1 are the final layer weights and biases of θ1 and W 1
2 , b12 are the

first layer weights and biases of θ2.
The weights of the first and final layer of θ
 are equal to the weights of the first layer of
θ1 and the final layer of θ2, respectively:

W 1 = W 1
1 , b1 = b11, WL1+L2+1 = WL2+1

2 , bL1+L2+1 = bL2+1
2 .

Proof The four statements are shown by constructing the respective networks.
Part a Adding columns of zero and permuting all columns according to π allows us to

construct weights W̃ 1 ∈ R
w×N such that

W 1x = W̃ 1 x̃

for x ∈ R
n , x̃ ∈ R

N with xi = x̃π(i), i = 1, . . . , n. Leaving all remaining weights and biases
equal, yields the desired network.

Part b Let θ1 ∈ �(L, w1, n,m1) with weights Wl
1 and biases bl1, as well as θ2 ∈

�(L, w2, n,m2) with weights Wl
2 and biases bl2 be given. We construct the new weights

block-wise as

W 1 =
(
W 1

1
W 1

2

)
∈ R

w1+w2×n,

bl =
(
bl1
bl2

)
∈ R

w1+w2 for l = 2, . . . , L,

Wl =
(
Wl

1 0
0 Wl

2

)
∈ R

w1+w2×w1+w2 for l = 2, . . . , L,

bL+1 =
(
bL+1
1

bL+1
2

)
∈ R

m1+m2 ,

WL+1 =
(
WL+1

1 0
0 WL+1

2

)
∈ R

m1+m2×w1+w2 .

Clearly the absolute value of the new weights and biases are bounded by the maximal value
in the networks θ1 and θ2.

For this new network we can show that the first hidden layer indeed combines the values
of both networks as the activation function is applied element-wise and

W 1h0 + b1 =
(
W 1

1 h
0 + b11

W 1
2 h

0 + b12

)
.
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Inductively the same argument shows the final result.
Part c We follow the construction from part (b), but change the final layer to obtain the sum
of the output values:

WL+1 = (
WL+1

1 WL+1
2

) ∈ R
m×w1+w2 ,

bL+1 = bL+1
1 + bL+1

2 ∈ R
m .

Clearly the newly constructed weights can be bounded by the maximum of the original
network weights and the sum of the output biases.

We consider the final hidden layers of both networks hL1 ∈ R
w1 and hL2 ∈ R

w2 and for
the newly constructed network:

hL =
(
hL1
hL2

)
∈ R

w+1.

Then the output of the network is given as

WL+1hL + bL+1 = WL+1
1 hL1 + bL+1

1 + WL+1
2 hL2 + bL+1

2

= N (x | θ1) + N (x | θ2).

Part d We consider the case where w1 = w2 = w as similar to the construction in (a) the
networks can trivially be extended. The first L1 and last L2 weights can be set equal to the
networks θ1 and θ2 respectively:

Wl = Wl
1 for l = 1, . . . , L1,

bl = bl1 for l = 1, . . . , L1,

WL1+l = Wl
2 for l = 2, . . . , L2 + 1,

bL1+l = bl2 for l = 2, . . . , L2 + 1,

and it remains to construct the interface of both networks WL1+1, bL2+1:

WL1+1 = W 1
2W

L1+1
1 ∈ R

w×w

bL1+1 = W 1
2 b

L1+1
1 + b12 ∈ R

w.

Note that as WL1+1
1 ∈ R

m×w , bL1+1
1 ∈ R

m and W 1
2 ∈ R

w×m , the products are well-defined.
Theweights are clearly bounded by themaximumof theweights of θ1 and θ2 and the products
at the interface.

The hidden layer hL1 coincides with the final hidden layer of θ1, thus

N (x | θ1) = WL1+1
1 hL1 + bL1+1

1 .

Having N (x | θ1) as the input to the network θ2 yields the first hidden layer as

h12 = σ
(
W 1

2 N (x | θ1) + b12
)

= σ
(
W 1

2 (WL1+1
1 hL1 + bL1+1

1 ) + b12

)

= σ
(
WL1+1hL1 + bL1+1

)
= hL1+1.

This means that the value of the hidden layer L1 +1 equals the first layer of θ2 with the input
N (x | θ1). As the remaining weights are equal, the output of θ equals the composition of the
two networks θ1 and θ2. ��
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3.2 Sparse grid theory

We show approximation results for neural networks in two steps: first, we approximate
a function by a sparse grid function; then, the sparse grid function is approximated by a
neural network. Therefore, we briefly recall basic results from sparse grid theory. For further
information, we refer the reader to Bungartz and Griebel (2004); Garcke and Griebel (2013).

We consider a tensor-product space of W 2,∞([0, 1]) functions:
X∞,2
0 =

{
f ∈ L∞ (

[0, 1]d
)

: Dα f ∈ L∞ (
[0, 1]d

)
for α ∈ N

d≥0, |α|∞ ≤ 2,

u|∂[0,1]d = 0
}

with the semi-norm

| f |2,∞ = ‖D(2,...,2) f ‖L2(�).

Here Dα refers to the derivative with respect to a multi-index α ∈ N
d≥0, i.e. for each i =

1, . . . , d the derivative with respect to the variable xi is taken αi -times.
Sparse grids are based on a tensor grid with hierarchical refinements in each direction.

In contrast to a full grid, only a reduced number of combinations are considered. For a
multi-index l = (l1, . . . , ld) ∈ N

d
>0, we consider the grid created by the points xl,i =

(i1hl1 , . . . , idhld ) ∈ [0, 1]d for i ∈ Il, where hl = 2−l and

Il =
{
i = (i1, . . . , id) : i j = 2k j − 1, k j = 1, . . . , 2l j−1

}
.

The corresponding basis functions �l,i(x) = ∏d
j=1 ψl j ,i j (x j ) are created as a tensor product

of the univariate basis functions ψl,i (x) = (hl − |x − xl,i |)+ with xl,i = ihl . We also define
the multivariate mesh-size hl = 2−|l|1 and note that |Il| = 2|l|1−d .

On refinement level n, we consider the basis functions of all levels l with |l| ≤ n+ d − 1:
{
�l,i : i ∈ Il, |l| ≤ n + d − 1

}
.

Given coefficients vl,i, this yields a sparse grid function

fn =
∑

|l|1≤n+d−1

∑

i∈Il

vl,i�l,i.

Note that often a different scaling of the basis functions is used:

fn =
∑

|l|1≤n+d−1

∑

i∈Il

ṽl,iϕl,i,

where ϕl,i = ψl,i/hl and ṽl = hlvl,i. This is the scaling used for example in Bungartz and
Griebel (2004); Garcke and Griebel (2013).

For f ∈ X∞,2
0 with | f |2,∞ = 1, Bungartz and Griebel (2004) construct coefficients vl,i,

such that

| f (x) − fn(x)| ≤ ε,

for the number of degrees of freedom M = O (
ε−1/2|log2 ε|3/2(d−1)

)
, see (Bungartz &

Griebel, 2004, Lemma 3.13). In addition (Bungartz & Griebel, Bungartz and Griebel (2004),
Lemma 3.3) provides a bound of the coefficients:

|vl,i| = h−1
l |̃vl,i| ≤ h−1

l 2−d2−2|l|1 = 2−d−|l|1 , (1)

where we used hl = 2−|l|1 .
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3.3 Improved approximation result using sparse grids

We show approximation results for neural networks in two stages. First, we show that we
can approximate each basis function �l,i(x) by a neural network to the desired accuracy.
Then, we replace the basis functions in the sparse grid formulation by the constructed neural
networks. We show that this network approximates the function up to the accuracy ε and that
the size of the network grows at a rate that does not depend on the dimension. This reduces
the curse of dimensionality as the influence of the dimension is confined to the constant of
the estimate.

To approximate the basis functions, we first need to approximate some elementary func-
tions: the identity, a multiplication and the absolute value. Recall that throughout this article,
we consider the hyperbolic tangent as the activation function.

Lemma 2 For a ≥ 1, 1 > δ > 0, we can construct the following neural networks with
σ = tanh. The generic constant c is independent of a and δ.

(a) There is θid,a ∈ �(1, 1) with |θid,a|∞ ≤ δ−1/2a3/2, such that

sup
x∈[−a,a]

|x − N (x | θid,a)| ≤ δ/3.

(b) There is θ×,a ∈ �(1, 4) with |θ×,a |∞ ≤ 9
√
3

4 a6δ−2, such that

sup
x∈[−a,a]

|x1x2 − N ((x1, x2) | θ×,a)| ≤ δ.

(c) There is θabs,a ∈ �(2, 4) with |θabs,a|∞ ≤ ca3δ−2, such that

sup
x∈[−a,a]

∣∣|x | − N (x | θabs,a)
∣∣ ≤ δ.

Proof The proof is partially based on Ohn and Kim (2019), but shows improved results and
overcomes some technical difficulties.1 In the following, let 1 > δ > 0 and a ≥ 1.

Part a To construct the identity network with a single node, we consider for t > 0

N (x | θ) = 1

t
σ(t x).

We use the Taylor expansion with Lagrange remainder to represent σ(t x) as

σ(t x) = σ(0) + σ ′(0)t x + 1

2
σ ′′(0)(t x)2 + 1

6
σ ′′′(ξ)(t x)3 = t x + 1

6
σ ′′′(ξ)(t x)3,

for some ξ ∈ R.
Using σ(0) = 1 and |σ ′′′(ξ)| ≤ 2 for all ξ ∈ R, we have for |x | ≤ a

|N (x | θ) − x | =
∣∣∣∣
1

t

(
t x + 1

6
σ ′′′(ξ)(t x)3

)
− x

∣∣∣∣

=
∣∣∣∣
σ ′′′(ξ)t2x3

6

∣∣∣∣ ≤ a3

3
t2

We choose ta = δ1/2a−3/2 and have θid,a ∈ �(1, 1) with

sup
x∈[−a,a]

|N (x |θid,a) − x | ≤ δ/3.

1 In the proof of (Ohn &Kim, 2019, Lemma A3d), the Taylor series of the exponential function is considered,
instead of the Taylor series of the square root function.
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Using ta < 1, we also have

|θid,a |∞ = max
{
ta, t

−1
a

} = δ−1/2a3/2.

Part b.1 Using the polarisation identity, we can evaluate a product based on squares: xy =
(
x+y
2 )2 − (

x−y
2 )2. The square function can be approximated in a similar way to the identity

function.
For t > 0 and x0 = log(2 + √

3)/2 ≈ 0.662, we consider the network θ as

N (x |θ) = 1

t2σ ′′(x0)
σ (x0 + t x) + 1

t2σ ′′(x0)
σ (x0 − t x) − 2σ(x0)

t2σ ′′(x0)
.

As before, we can use a Taylor expansion at point x0 to estimate (with ξ, ξ ′ ∈ R)

|N (x |θ) − x2| =
∣∣∣∣

1

6σ ′′(x0)
σ ′′′(ξ)t x3 − 1

6σ ′′(x0)
σ ′′′(ξ ′)t x3

∣∣∣∣ ≤ ‖σ ′′′‖∞
3|σ ′′(x0)|a

3t .

We choose ta = 3
2 δa

−3 |σ ′′(x0)|
‖σ ′′′‖∞ =

√
3
3 δa−3 and have θ2,a ∈ �(1, 2) with

|N (x | θ2,a) − x2| ≤ δ/2.

We have used that, |σ ′′(x0)| = 4
√
3/9 and ‖σ ′′′‖∞ = 2.

Part b.2 Duplicating θ2,a for the inputs x1+x2
2 and x1−x2

2 yields according to Lemma 1(c) a
neural network θ×,a ∈ �(1, 4) as

N ((x1, x2) | θ×,a) = N

(
x1 + x2

2
| θ2,a

)
− N

(
x1 − x2

2
| θ2,a

)

= 1

t2aσ ′′(x0)
σ (x0 + ta/2x1 + ta/2x2) + 1

t2aσ ′′(x0)
σ (x0 − ta/2x1 − ta/2x2)

− 1

t2aσ ′′(x0)
σ (x0 + ta/2x1 − ta/2x2) − 1

t2aσ ′′(x0)
σ (x0 − ta/2x1 + ta/2x2). (2)

We have

|θ×,a |∞ = max

{
1

t2a |σ ′′(x0)| , x0, ta/2
}

= 9
√
3

4
δ−2a6 ≈ 3.90δ−2a6,

For (x1, x2) ∈ [−a, a]2, we note that x1+x2
2 , x1−x2

2 ∈ [−a, a] and have

|N (x1, x2) | θ×,a) − x1x2|

≤
∣∣∣∣∣N

(
x1 + x2

2
| θ2,a

)
−

(
x1 + x2

2

)2
∣∣∣∣∣ +

∣∣∣∣∣N
(
x1 − x2

2
| θ2,a

)
−

(
x1 − x2

2

)2
∣∣∣∣∣ ≤ δ,

which concludes the proof of part b.
Part cWe first show the statements for a = 1, where we omit the index a. Then a scaling

argument yields the results.
We use the representation |x | = sign(x) · x . First, we approximate the sign-function and

then multiply it by the identity to obtain the absolute value.
Set θsign ∈ �(1, 1) as N (x |θsign) = σ(αx) with α = δ−1 log(2/δ − 1)/2 for 0 < δ < 1.

Taking into account point symmetry and monotonicity of the hyperbolic tangent, from N (δ |

2 While any choice of x0 �= 0 is possible, this particular choice optimises the resulting constants.
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θsign) = tanh(log(2/δ − 1)/2) = 1 − δ it follows that

sup
x /∈(−δ,δ)

|N (x |θsign) − sign(x)| ≤ δ.

Nowwe combine θsign ∈ �(1, 1), θid ∈ �(1, 1) and θ×,1+δ/3 ∈ �(1, 4) to θabs ∈ �(2, 4)
as

N (x |θabs) = N ((N (x |θid), N (x |θsign)) | θ×,1+δ/3).

=
∑

s1,s2∈{−1,1}

s1s2
t21+δ/3σ

′′(x0)
σ

(
x0 + s1

t1+δ/3

2δ1/2
σ(δ1/2x) + s2

t1+δ/3

2
σ(αx)

)
,

with t1+δ/3 =
√
3δ

3(1+δ/3)3
.

For x ∈ [−1, 1] we have
∣∣N (x | θabs) − |x |∣∣ ≤ |N ((N (x | θid), N (x | θsign)) | θ×,1+δ/3) − N (x | θid) · N (x | θsign)|

+ |N (x | θid) · N (x | θsign) − sign(x) · x |.
The first term can directly be estimated by δ as N (x |θid) ∈ [−1 − δ/3, 1 + δ/3] and N (x |
θsign) ∈ (−1, 1).

Estimating the second term, we need to consider the cases x ∈ [−δ, δ] and x /∈ [−δ, δ]
separately. For δ < |x | ≤ 1 we have

|N (x | θid)N (x | θsign) − sign(x) · x | ≤ |(N (x |θid) − x)(N (x |θsign) − sign(x))|
+ |x(N (x |θsign) − sign(x))|
+ |sign(x)(N (x | θid) − x)| ≤ 4/3δ + δ2/3 < 2δ.

For x ∈ [−δ, δ], we get with |N (x |θsign)| < 1:
∣∣N (x | θid) · N (x | θsign) − |x |∣∣ ≤ |N (x | θid)| · |N (x |θsign)| + |x | ≤ 7/3δ < 3δ.

In conclusion, we have for all x ∈ [−1, 1]:
∣∣N (x | θid)N (x | θsign) − |x |∣∣ ≤ 3δ,

with

|θabs| ≤ max

{
9
√
3

4
δ−2(1 + δ/3)6, δ−1 log(2/δ − 1)/2

}
≤ c δ−2.

With a scaling argument, we can extend the result to include x ∈ [−a, a]:
N (x |θabs,a) = aN (a−1x | θabs)

satisfies

sup
x∈[−a,a]

∣∣N (x | θabs,a) − |x |∣∣ ≤ 3δa and |θabs| ≤ caδ−2.

��
These three basic approximations are sufficient to construct a simple univariate hat function

in the following lemma. Using the multiplication operator, we will later extend the result to
multivariate basis functions.
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Lemma 3 For 1 > δ > 0, σ = tanh, x0 ∈ [0, 1] and 1 > h > 0, it holds with c independent
of δ, x0, h0 that there is θh,x0 ∈ �(4, 5), such that

sup
x∈[0,1]

|ψh,x0(x) − N (x | θh,x0)| ≤ δ,

with |θh,x0 |∞ ≤ cδ−2, where ψh,x0(x) = (h − |x − x0|)+.
Proof We first approximate the rectified linear unit (x)+ = (x + |x |)/2 up to an accuracy of
δ by a neural network θrelu:

N (x | θrelu) = 0.5
(
N (N (x | θid) | θid,1+δ/3) + N (x | θabs)

)
.

To add the networks approximating x and |x | using Lemma 1(c), both networks need to have
the same depth. With θid ∈ �(1, 1) and θabs ∈ �(2, 4), we compose the identity network
with another identity network using Lemma 1(d). With Lemmas 1 and 2, we then have
θrelu ∈ �(2, 5) and |θrelu|∞ ≤ cδ−2.

The error is given by

|N (x | θrelu) − (x)+| ≤ |N (N (x | θid) | θid,1+δ/3) − x |/2 + |N (x | θabs) − |x ||/2.
We start with the first term and show using Lemma 2 (a) for any x ∈ [−1, 1]

|N (N (x | θid) | θid,1+δ/3) − x | ≤ |N (x | θid) − x |
+ |N (N (x | θid) | θid,1+δ/3) − N (x | θid)|

≤ δ/3 + δ/3 < δ,

as N (x | θid) ∈ [−1− δ/3, 1+ δ/3]. The second term is directly approximated by δ/2 using
Lemma 2 (c), which yields

|N (x | θrelu) − (x)+| ≤ δ

With this approximated rectified linear unit, we can finally approximate univariate basis
functions

ψh,x0(x) = (h − |x − x0|)+ = (1 + δ)

(
h − |x − x0|

1 + δ

)

+
by θh,x0 as

N (x | θh,x0) = (1 + δ)N

(
h − N (x − x0 | θabs)

1 + δ
| θrelu

)
.

The construction is a composition of the networks θrelu ∈ �(2, 5)with θabs ∈ �(2, 4), which
yields θh,x0 ∈ �(4, 5) by Lemma 1(c).

For x ∈ [0, 1], we have x − x0 ∈ [−1, 1] and h − N (x − x0 | θabs) ∈ [−1 − δ, 1 + δ].
Then we have

|ψh,x0(x) − N (x | θh,x0)|
≤ ∣∣ (h − |x − x0|)+ − (h − N (x − x0 | θabs))+

∣∣

+ (1 + δ)

∣∣∣∣

(
h − N (x − x0 | θabs)

1 + δ

)

+
− N

(
h − N (x − x0 | θabs)

1 + δ
| θrelu

)∣∣∣∣ .

Both terms can be estimated easily as |(x)+ − (y)+| ≤ |x − y|:
∣∣ (h − |x − x0|)+ − (h − N (x − x0|θabs))+

∣∣ ≤ ∣∣|x − x0| − N (x − x0 | θabs)
∣∣ ≤ δ,
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using Lemma 2(c) and

(1 + δ)

∣∣∣∣

(
h − N (x − x0 | θabs)

1 + δ

)

+
− N

(
h − N (x − x0 | θabs)

1 + δ
| θrelu

)∣∣∣∣ ≤ 2δ.

All coefficients still fulfil
∣∣θh,x0

∣∣∞ ≤ cδ−2, which finishes the proof. ��
Successive applications of the multiplication operator yield an approximation of the mul-

tivariate basis function. As in the previous lemmas, we are interested in the network’s width,
depth and parameter norm, which is required for a specific accuracy.

Lemma 4 For d ∈ N>0, h = (h1, . . . , hd) ∈ [0, 1]d and x0 = (x01 , . . . , x
0
d ) ∈ [0, 1]d , let

�h,x0(x) =
d∏

i=1

ψhi ,x0i
(xi ).

For 1 > ε > 0 and σ = tanh, there exists a neural network θh,x0 ∈ �(4 + �log2 d�, 5d)

such that

sup
x∈[0,1]d

∣∣�h,x0(x) − N (x | θh,x0)
∣∣ ≤ ε,

and

|θh,x0 |∞ ≤ cd2 log2 3ε−2 ≤ cd4ε−2.

Proof The statement is similar to (Rolnick & Tegmark, 2018, Proposition 4.6) and (Schwab
& Zech, 2019, Proposition 3.7) as in all cases a d-dimensional product is approximated. We
refine these proofs and in particular include a bound on the network’s weights and biases.

We start with the neural network approximations of the univariate basis functions ψhi ,x0i
by a neural network θhati ∈ �(4, 5) up to accuracy δ = 2/9d− log2 3ε < 1, see Lemma 3.
Using Lemma 1(b), we can create a network θ0 ∈ �(4, 5d, d, d), which evaluates these
networks in parallel:

N
(
x | θ0

) = (
N (x1 | θhat1 ), N (x2 | θhat2 ), . . . , N (xd | θhatd )

) ∈ R
d

Formally we extend the d terms of the output by constant ones until we reach 2�log2 d�
terms:

(
N (x1 | θhat1 ), N (x2 | θhat2 ), . . . , N (xd | θhatd ), 1, . . . 1

) ∈ R
2�log2 d�

Then we use the multiplication operator in a binary tree structure to multiply these terms. In
the first row of the tree structure, we have θ1 with

N
(
x | θ1

) =
(
N

((
N (x1 | θhat1 ), N (x2 | θhat2 )

) | θ×,1+δ

)
,

N
((

N (x3 | θhat3 ), N (x4 | θhat4 )
) | θ×,1+δ

)
, · · ·

)
∈ R

2�log2 d�−1
.

Using Lemmas 1(a, b) and 2(b), 2�log2 d�−1 < d multiplications can be approximated in
parallel in �(1, 4d, d, 2�log2 d�−1). To compose the multiplications and the basis functions,
we use Lemma 1(d) which shows θ1 ∈ �(5, 5d, d, 2�log2 d�−1).
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Fig. 1 Illustration of the multiplication stricture. Displayed in the special case, where log2 d ∈ N

Adding the second row analogously, we define θ2 with

N
(
x | θ2

) =
(
N

((
N (x | θ1)1, N (x | θ1)2

) | θ×,1+4δ

)
,

N
((

N (x | θ1)3, N (x | θ1)4
) | θ×,1+4δ

)
, . . .

)
∈ R

2�log2 d�−2

where Lemma 1(d) yields θ2 ∈ �(6, 5d, d, 2�log2 d�−2). We continue the construction for
θ l ∈ �(4 + l, 5d, d, 2�log2 d�−l) to construct θh,x0 = θ�log2 d� ∈ �(4 + �log2 d�, 5d, d, 1),
see Fig. 1for an illustration of the multiplicative tree.

In the following, we inductively show that the error after each layer is bounded by τl =
1/2(3l+1 − 1)δ < 1. With τ0 = δ, the induction start holds.

Let us assume the approximation error on layer l is bounded by τl . We denote the exact
product approximated by N (x | θ l)i by f li (x), i = 1, . . . , 2�log2 d�−l . As f li is constructed
as a multiplication of univariate hat functions (each of which are bounded by 1), we have
| f li (x)| ≤ 1. By the induction hypothesis it holds

sup
x∈[0,1]d

∣∣∣N
(
x | θ li

)
− f li (x)

∣∣∣ ≤ τl , for i = 1, . . . , n.

We consider an arbitrary multiplication on layer l + 1: for some i ∈ {1, . . . , 2�log2 d�−(l+1)}
the approximation of f l+1

i (x) = f l2i−1(x) · f l2i (x) by

N
(
x | θ l+1

)

i
= N

((
N (x | θ l)2i−1, N (x | θ l)2i

) | θ×,1+τl

)
.

Using Lemma 2(b), we have for x ∈ [0, 1]d :
|N

(
x | θ l+1

)

i
− f l2i−1(x) · f l2i (x)|

≤
∣∣∣N

((
N (x | θ l)2i−1, N (x | θ l)2i

) | θ×,1+τl

)
− N (x | θ l)2i−1 · N (x | θ l)2i

∣∣∣

+
∣∣∣N (x | θ l)2i−1 · N (x | θ l)2i − f l2i−1(x) · f l2i (x)

∣∣∣

≤ δ +
∣∣∣N (x | θ l)2i−1 − f l2i−1(x)

∣∣∣ ·
∣∣∣N (x | θ l)2i

∣∣∣ +
∣∣∣N (x | θ l)2i − f l2i (x)

∣∣∣ ·
∣∣∣ f l2i−1(x)

∣∣∣

≤ δ + τl(1 + τl) + τl ≤ δ + 3τl = τl+1.
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After �log2 d� layers, we arrive at a single network θh,x0 , which approximates �h,x0 up to
an accuracy of

τ�log2 d� = 1

2
(3�log2 d�+1 − 1)δ ≤ 9

2
3log2 dδ = ε.

Since the absolute values of the input weights for θ×,a are given by ta/2 = √
3/6δa−3 ≤√

3/6, see (2), Lemma 1(d) shows that by concatenating the networks, the asymptotic bounds
of the weights remain in place. Thus we have |θh,x0 |∞ ≤ cδ−2 = cd2 log2 3ε−2. ��

With the approximation of each basis function, we show approximations of sparse grid
functions.

Lemma 5 Let a sparse grid function be given:

fn =
∑

|l|1≤n+d−1

∑

i∈l
vl,i �l,i,

with bound (1): |vl,i| ≤ 2−d−|l|1 . With M the number of sparse grid basis functions, there
exists θ f ,n ∈ �(4 + �log2 d�, 5dM) with σ = tanh, such that

sup
x∈[0,1]d

| fn(x) − N (x | θ f ,n)| ≤ ε,

and |θ f ,n |∞ ≤ max{1, cd log2 32−4dM2ε−2}, where c is independent of n, fn, d and ε.

Proof The proof is closely related to (Montanelli &Du, 2019, Theorem 1), where only ReLU
activation functions were used. ReLU neural networks can exactly represent the univariate
basis functions, but are less efficient when approximating multiplications. As a consequence,
estimating the approximation error for smooth activation functions differs even though the
construction is analogue.

We denote the neural network approximations of each basis function�l,i with an accuracy
of δ as θl,i = θhl,xl,i . Using Lemma 1(c) to add these M networks, we have θ f ,n ∈ �(4 +
�log2 d�, 5dM) such that

N (x | θ f ,n) =
∑

|l|1≤n+d−1

∑

i∈Il

vl,i N (x | θl,i).

By construction we have for x ∈ [0, 1]d :
| fn(x) − N (x | θ f ,n)| ≤

∑

|l|1≤n+d−1

∑

i∈Il

vl,i |�l,i(x) − N (x | θl,i)|

≤ δ
∑

|l|1≤n+d−1

∑

i∈Il

vl,i.

Using |vl,i| ≤ 2−d−|l|1 , as given by (1), and |Il| = 2|l|1−d we have
∑

i∈Il

vl,i ≤ |Il|2−d−|l|1 = 2−2d ,

and thus
∑

|l|1≤n+d−1

∑

i∈Il

vl,i ≤ 2−2d |{l : |l|1 ≤ n + d − 1, Il �= ∅}|.
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The number of layers with a non-empty index-set is in any case bounded by the number of
basis functions M , which yields

| fn(x) − N (x | θ f ,n)| ≤ δ2−2dM .

Setting δ = min{1, 22dε/M}, we get
| fn(x) − N (x | θ f ,n)| ≤ ε.

The coefficients can then be bounded by

|θ f ,n |∞ ≤ cd log2 3δ−2 = cd log2 3 max{1, 2−4dM2ε−2}.
��

Now we can summarise our theory.

Theorem 1 For f ∈ X∞,2
0 ([0, 1]d) with | f |2,∞ = 1, there exists a deep neural network

θ f ,ε ∈ �(L, w, d, 1) with σ = tanh, L = 4 + �log2 d� and w = O (
ε−1/2|log ε|3/2(d−1)

)
,

such that

sup
x∈[0,1]d

| f (x) − N (x | θ f )| ≤ ε

with

|θ f |∞ ≤ O
(
ε−3|log ε|3(d−1)

)
.

Proof Fist, we construct the sparse grid approximation

fn =
∑

|l|1≤n+d−1

∑

i∈l
vl,i �l,i,

up to the accuracy ε/2. From the approximation theory of sparse grids (Bungartz & Griebel,
2004, Lemma 3.13), we have

M = O
(
ε−1/2|log ε|3/2(d−1)

)

and (Bungartz & Griebel, 2004, Lemma 3.3) shows (1).
This shows that we can apply Lemma 5 to construct θ f = θ f ,n , choosing the same

accuracy ε/2. Then for x ∈ [0, 1]d ,
| f (x) − N (x | θ f )| ≤ | f (x) − fn(x)| + | fn(x) − N (x | θ f )| ≤ ε.

��

3.4 Application of the results to the deep parametric PDEmethod

In this chapter, we discuss how the result can be applied to the deep parametric PDE
method. We note that the theoretical results are necessary but not sufficient for an efficient
approximation in high dimensions. The reasons are elaborated in the following.

Theorem 1 in Glau andWunderlich (2022) shows that the L2-error of the deep parametric
PDE method is bounded by the value of the loss function, which is minimised:

‖u − uDPDE‖L2(Q) ≤ cJ (uDPDE) = c argmin
uDNN

J (uDNN).
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As the loss includes terms of the second derivative, further estimates require approximation
results for the first and second derivative. Also the reduced regularity of most option pricing
problems prevent a direct application of the results shown in the previous section. Both points
are subject of future research.

On contrast, the results in this article show necessary conditions. For the deep parametric
PDE method to be efficient in high dimensions, the best approximation in the L2 norm must
not deteriorate for high dimensions, such as shown here with a dimension-independent rate.
Without these results, the best-approximation in the H2 norm would have an approximation
rate which decreases for higher dimensions, making the method inefficient. Thus our results
are necessary for an efficient high-dimensional method.

While we acknowledge this remaining gap in the theory, the numerical results provide
further insights into the efficiency of the method for higher dimensions.

4 Applications in credit risk management

As an illustrative example of the practical performance of the deep parametric PDE method,
we investigate the evaluation of credit exposure, see Gregory (2010); Green (2015) for further
information.

We consider the exposure Vt (Xt ;μ) at a given parameter μ, where Xt is the random
variable describing the underlying assets/risk-factors. In our case, we have Vt (x;μ) =
Price(t, ex ;μ) > 0 (otherwise, only the positive part is considered).

For a given real-world measure P, we consider the expected exposure

EErisk(t) = E
P(Vt )

and the potential future exposure for risk levels α:

PFErisk
α(t) = inf{y : P(Vt > y) ≤ 1 − α}.

In the numerical experiment we consider three different risk levels: α = 95%, 97.5% and
99%.

In addition, we compute the expected exposure in the riskfree measure Q as we know its
exact value:

EEprice(t) = e−r t
E
Q(Vt ) = V0

To evaluate these exposure measures, we use a full re-evaluation. On a grid of time-
evaluations 0 < t1 < t2 < . . . < tn ≤ T :

1. Sample M random paths for Xt according to P or Q, each evaluated at ti : X̂
j
i , j =

1, . . . , M ;
2. Compute the asset prices in each scenario vi, j = Vti (X

j
i ;μ);

3. Evaluate the mean value for the expected exposure:

• In the real-world measure: ̂EErisk(tı̂) = ∑M
j=1 vı̂, j/M ;

• For the risk-neutral measure, include the discount factor: ̂EEprice(tı̂) =
e−r tı̂

∑M
j=1 vı̂, j/M .

4. For each time tı̂ sort the values (vı̂, j ) j and return the value at the position �αM� as the

potential future exposure ̂PFErisk
α(tı̂).
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We note that this exposure calculation has two sources of a numerical error: the Monte-Carlo
approximation of the risk factors as well as the accuracy of the solver.

We use M = 150 000 simulations to calculate the exposure. When we compare to a
reference solution, we use M = 1 500 000 simulations and evaluate the price using the
reference pricer based on Bayer et al. (2018). More precisely: we use the dimensionality
reduction described in their article and solve the remaining auxiliary problem using a ten-
sorised Gauss-Hermite quadrature. Due to the smoothness of the auxiliary problem as small
number of 9 quadrature points per dimension is sufficient for a relative error of only 0.13%.
For two underlying assets, the auxiliary problems in one-dimensional, so we can use more
quadrature points. With 33 Gauss-Hermite points we observed an accuracy close to machine
precision. Further details can also be found in Glau and Wunderlich (2022).

For the deep parametric PDE method, we use the implementation developed in Glau and
Wunderlich (2022). A sample code for two assets is available on GitHub.3 The computational
domain covers si ∈ [21, 460], t ∈ [0, 4], σi ∈ [0.1, 0.3], r ∈ [0.01, 0.03] and ρi,i+1 ∈
[0.2, 0.8]. Unless noted otherwise, we consider a riskfree rate r = 0.01 and a drift (not used
in pricing) of μ = 0.02. For asset values outside of the computational domain, we return
the value of the payoff as the asymptotics. We compare the deep parametric PDE method
to a Monte-Carlo solver with 1 000 samples, the recently proposed sparse grid stochastic
collocation method (Grzelak, 2021) and the reference pricer.

We note that, although the approximation results in Theorem 1 were shown using sparse
grids, there is no direct connection of our theoretical work to the sparse grid stochastic
collocation method. The main motivation to consider this method is to compare the deep
parametric PDEmethod to another modern method intended for medium to high dimensions.

4.1 Evaluations at fixed parameter

We start our investigation on fixed parameters with two and five underlying assets. As the
deep parametric PDEmethod solves for a whole range of parameter values, the training phase
was not specific to these parameters.

4.1.1 Two asset case

We consider two assets with the initial value s0 = (50, 125), individual volatilities σ =
(0.1, 0.3) and a correlation of ρ = 0.2. We evaluate the exposure at 41 points in time.

In the two-dimensional case, we also investigate the need for high-order models. There-
fore, we include a fitted one-dimensional model in our comparison. For Sit /s

i
0 ∼ LN ((r −

σ 2
i /2)t, σ 2

i t), i = 1, 2, corr(log(S1t ), log(S
2
t )) = ρ, we consider an independent univari-

ate process S̄t/s̄0 ∼ LN (μ̄t, σ̄ 2t), with the same expectation and variance as the basket:
E(S̄t ) = E((S1t + S2t )/2) and var(S̄t ) = var(S1t + S2t )/2). Using this fitted model, the
Black-Scholes formula provides an approximation of the asset price.

Our first comparison considers the expected exposure in the riskfree measure. In this case,
we know that the exposure profile is constant during the lifetime of the option. In Fig. 2we
see the expected exposure as well as its relative error. At maturity t = 4 all methods deliver
the same exposure, as the option price coincides with the payoff. With the exception of the
one-dimensional model, all methods yield an acceptable exposure profile over the lifetime
of the option. The fitted one-dimensional model exhibits a significantly larger error than

3 https://github.com/LWunderlich/DeepPDE/tree/main/TwoAssetsExample.
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Fig. 2 Expected exposure in pricing measure (left) and its relative error (right). Two underlying assets with
maturity T = 4

Fig. 3 Expected exposure (top) and potential future exposure for α = 95%, 97.5% and 99% (bottom) in
real-world measure (left) and their relative error (right). For the error in the potential future exposure, the
maximal error of the three risk levels is measured. Two underlying assets

the multivariate models. This shows the importance to consider multivariate models as low-
dimensional fits do not produce accurate results. The sparse grid solver with 4 refinements
shows more reasonable results, but still exhibits a notable error. The deep parametric PDE
method only exhibits a slightly larger error than the reference pricer and the Monte-Carlo
method. This confirms the accuracy of the deep parametric PDE method.

In Fig. 3, we see the expected exposure as well as the potential future exposure for three
different risk levels in the real-world measure. We see a similar picture as before, with
the multivariate pricer consistently showing relative errors below 5%, while the fitted one-
dimensional method shows up to 30% error. The results are similar for the expected exposure
and the potential future exposure. In this situation we note that the deep parametric PDE
method and the sparse grid solver have a similar maximal error. While the deep parametric
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Fig. 4 Expected exposure in pricing measure (left) and its relative error (right). Five underlying assets

Table 1 Runtime comparison for the evaluation of the expected exposure and the potential future exposure
for three risk levels at 41 points in time

Monte-Carlo Reference pricer Sparse grid Deep parametric PDE

Two asset 21.3 min 55.6 min 0.6 min 7.0 min

Five assets 37.4 min 184.0 min 6.6 min 7.1 min

PDE method shows the largest error in the near future, the sparse grid method has its largest
error in the middle of the time interval.

Due to the large error of the fitted one-dimensional model, we will not consider it in the
remaining comparisons.

4.1.2 Five asset case

For five assets, we consider initial values s0 = (125, 100, 75, 150, 80), volatilities σ =
(0.1, 0.3, 0.25, 0.15, 0.2) and pairwise correlations (ρi,i+1)i = (0.3, 0.6, 0.4, 0.5). We note
that due to the parameters, the pricing problem is already 16-dimensional. Due to the longer
runtimes of the reference solver, we only consider 21 points in time.

In Fig. 4the expected exposure in the riskfree measure and its error are shown. Again, we
see similar error values in all four cases with the error due to the Monte-Carlo sampling of
the risk-factors significantly contributing to the overall error. In the five-dimensional case,
we note that the deep parametric PDE method results in about half the maximal error when
compared to the sparse grid approach.

A similar picture is seen when considering the real-world measure, as shown in Fig.5. In
all cases a good level of approximation is observed, with relative errors below 2% for the
expected exposure and below 1% for the potential future exposure. In both cases we see more
accurate results using the deep parametric PDE method than using the sparse grid solver and
the deep parametric PDE method has the same accuracy as the reference pricer.

4.2 Runtime comparisons

With three of the four methods showing similar error values, the computational effort is
decisive for the comparison.We note that the sparse grid approach exhibits larger error values,
especially for five underlying assets. In Table 1the runtimes for the presented examples are
given. The runtimesmeasure the computation of the expected exposure and the three potential
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Fig. 5 Expected exposure (top) and potential future exposure for α = 95%, 97.5% and 99% (bottom) in
real-world measure (left) and their relative error (right). For the error in the potential future exposure, the
maximal error of the three risk levels is measured. Five underlying assets

future exposures at considered points in time. The observed runtimes for five assets were
scaled for comparability to account for the smaller number of time-steps in our examples.
The code was evaluated on a typical end-user device, a 2015 MacBook Pro with a 2.7GHz
dual-core CPU and 8GB RAM.

In all cases, the evaluation of exposures using the deep parametric PDE methods was
significantly faster than the traditional methods, due to the use of neural networks. In com-
parison to the Monte-Carlo solver the gain was up to a factor of 5, while the speed-up factor
compared to the reference pricer was up to 25. We note that the evaluation using the sparse
grid approach was significantly faster for two assets with only a slightly larger error. This
confirms that both methods are well suited for the task. However for five assets, the sparse
grid approach takes almost as long as the deep parametric PDE method, but shows about
twice the error. This highlights an important feature of the deep parametric PDE method:
the stability of the run-time with a growing number of dimensions. The deep parametric
PDE method does not take significantly longer to evaluate exposures for five assets than it
takes to evaluate two assets. In contrast, the Monte-Carlo method, the sparse grid method
and the reference pricer take significantly longer for higher-dimensions. This confirms our
theoretical results, showing that the deep parametric PDE method significantly reduces the
curse of dimensionality.

4.3 Parametric evaluations

The parametric PDE method does not only return the solution for a single parameter value,
but for a whole range of option and market parameters. To demonstrate the full performance
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Fig. 6 The ten randomparameter values used in the experiments: initial state s̄0, the riskfree rate r , the volatility
σ̄ and the correlation ρ̄

Fig. 7 Average error for expected exposure (left) and PFE (right) in the real-world measure P. Area between
maximal and minimal observed errors shaded

of the deep parametric PDE method, we present examples for exposure calculations in a
parametric setting. For scenario calculations and stress-tests, this is a highly relevant task.

To limit the amount of random states, we consider equal parameters for all five assets:
we vary the initial state s0 = (s̄0, . . . , s̄0) ∈ R

5, the volatilities σ = (σ̄ , . . . , σ̄ ) ∈ R
5 and

pairwise correlations (ρi,i+1)i = (ρ̄, . . . , ρ̄) ∈ R
4. In addition, the riskfree rate of return

is chosen randomly. We consider ten different random parameters, which are displayed in
Fig. 6. In each case, we evaluate the expected exposure and the potential future exposure and
estimate their error.

To be able to evaluate the reference pricer, we had to reduce the complexity of the problem.
Therefore, we only evaluate the exposure at 21 points in time and use M = 750 000 for the
calculation of reference values.

Figure 7shows the relative errors in all ten examples. We see the average error over the
ten scenarios as well as the maximal and minimal error. Again, we see a similar level of error
for all four methods. For the expected exposure and t < 0.5, we see a slightly larger error for
the deep parametric PDE method, while for the potential future exposure, we see a slightly
larger error for the Monte Carlo solver. Nevertheless, in both cases the error remains small,
almost always below 1%. The sparse grid solver again shows a larger maximal error than
the deep parametric PDE method. We note that again the error for the deep parametric PDE
method is largest in the near future, while the sparse grid error is larger towards the maturity
of the option.

In summary, in all considered cases, the deep parametric PDE method provides accurate
results with a speed-up factor of up to 25 to the reference pricer and 5 to the Monte-Carlo
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Fig. 8 Exposures for 10 underlying assets. Top row: Expected exposure in the pricing measure Q (left) and
its relative error (right). Bottom row: Expected exposure (left) and potential future exposure (right) in the
real-world measure P

method. A calculation which used to take almost an hour can now be performed in under
10min. In comparison to a state-of-the-art sparse grid solver we observed half the error with
a comparable runtime.

4.4 Higher dimensional calculation

We have seen a clear performance gain of the deep parametric PDEmethod in comparison to
a full re-evaluation with a Monte-Carlo solver as well as the reference pricer. In comparison
to another modern high-dimensional solver the performance gain for two and five assets was
less pronounced, but we have observed a trend that the deep parametric PDEmethod performs
better for higher dimensions. In this section we continue this investigation and consider a
case of ten underlying assets. We highlight that the deep parametric PDE method solves the
option price for all time, state and parameter values at the same time, which overall is a
31-dimensional problem.

We evaluate the expected exposure and the potential future exposure (for risk-level α =
97.5%) at 21 points in time. We consider an initial value of 100 and a volatility of 0.2 for
each of the ten assets. The pairwise correlation is set to 0.5 for all pairs, the riskfree rate is
set to 0.01 and the drift of the real-world measure is 0.02.

Due to the high dimensionality we have not computed reference values except for the
constant expected exposure in the riskfreemeasure. As the expected exposure in this situation
is equal to the current option price we could use a Monte-Carlo method with 1 000 000
evaluations to compute the single value. Note that we had to reduce the number of refinements
of the sparse grid method to three to obtain reasonable run-times.

In Fig. 8, the evaluated expected exposures as well as their relative error are shown. We
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see a good accuracy of below 0.5% for the deep parametric PDE method, while the sparse
grid method shows larger errors of up to 6%. A similar picture can be seen for the quantities
in the real-world measure P, which are also shown in the figure. Even though we do not
have a reference value available, we can see that the deep parametric PDE method provides
significantly more accurate results.

In addition to the improved accuracy, the deep parametric PDE method features faster
runtimes. While the sparse grid method took 9.9min for the calculation of the expected
exposures and the potential future exposure, the deep parametric PDE method took only
about half of the time with 4.3min. Note that in comparison to Table 1 we only considered
21 evaluations in time instead of 41. To compare the values, we need to roughly double
the observed runtimes. We then notice only a small increase in the runtime for the deep
parametric PDE method between 2 and 10 dimensions.

5 Conclusion

In this article, we advanced the theory of the deep neural networks with smooth activation
functions and demonstrated the practical use of the parametric PDE method in a situation of
interest for the financial industry.

We have shown (as far as we are aware) the first approximation results for deep neural
networks with smooth activation functions that exhibits an approximation rate independent of
the dimension, therefore reducing the curse of dimensionality. The proofs employs valuable
sparse grid estimates and arithmetic operations on DNNs.

We confirm the efficiency in high dimensions which is implied by these results in an exam-
ple from credit exposure. We have found that the deep parametric PDE method consistently
outperforms our referencemethod and aMonte-Carlo solver.While for two underlying assets
the sparse grid stochastic collocation method has a competing performance, also this method
was outperformed for five and especially ten underlying assets. We have observed speed-up
factors of up to 25 on a standard office laptop.

Both the theoretical and the practical results show the strong performance of DNN-based
methods, especially in finance.
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