
Published as a conference paper at ICLR 2019

NEURAL NETWORK GRADIENT-BASED LEARNING OF

BLACK-BOX FUNCTION INTERFACES

Alon Jacovi1,2∗ , Guy Hadash1∗, Einat Kermany1∗, Boaz Carmeli1∗,

Ofer Lavi1, George Kour1, Jonathan Berant3,4

1 IBM Research, Israel
2 Bar Ilan University, Israel
3 Tel Aviv University, Israel
4 Allen Institute for Artificial Intelligence
alonjacovi@gmail.com

{guyh,einatke,boazc}@il.ibm.com

ABSTRACT

Deep neural networks work well at approximating complicated functions when
provided with data and trained by gradient descent methods. At the same time, there
is a vast amount of existing functions that programmatically solve different tasks
in a precise manner eliminating the need for training. In many cases, it is possible
to decompose a task to a series of functions, of which for some we may prefer
to use a neural network to learn the functionality, while for others the preferred
method would be to use existing black-box functions. We propose a method for
end-to-end training of a base neural network that integrates calls to existing black-
box functions. We do so by approximating the black-box functionality with a
differentiable neural network in a way that drives the base network to comply
with the black-box function interface during the end-to-end optimization process.
At inference time, we replace the differentiable estimator with its external black-
box non-differentiable counterpart such that the base network output matches the
input arguments of the black-box function. Using this “Estimate and Replace”
paradigm, we train a neural network, end to end, to compute the input to black-
box functionality while eliminating the need for intermediate labels. We show
that by leveraging the existing precise black-box function during inference, the
integrated model generalizes better than a fully differentiable model, and learns
more efficiently compared to RL-based methods.

1 INTRODUCTION

End-to-end supervised learning with deep neural networks (DNNs) has taken the stage in the past
few years, achieving state-of-the-art performance in multiple domains including computer vision
(Szegedy et al., 2017), natural language processing (Sutskever et al., 2014; Jean et al., 2015), and
speech recognition (Xiong et al., 2016). Many of the tasks addressed by DNNs can be naturally
decomposed to a series of functions. In such cases, it might be advisable to learn neural network
approximations for some of these functions and use precise existing functions for others. Examples
of such tasks include Semantic Parsing and Question Answering. Since such a decomposition relies
partly on precise functions, it may lead to a superior solution compared to an approximated one based
solely on a learned neural model.

Decomposing a solution into trainable networks and existing functions requires matching the output
of the networks to the input of the existing functions, and vice-versa. The input and output are defined
by the existing functions’ interface. We shall refer to these functions as black-box functions (bbf),
focusing only on their interface. For example, consider the question: “Is 7.2 greater than 4.5?” Given
that number comparison is a solved problem in symbolic computation, a natural solution would be to
decompose the task into a two-step process of (i) converting the natural language to an executable
program, and (ii) executing the program on an arithmetic module. While a DNN may be a good fit for

∗Equal contribution

1



Published as a conference paper at ICLR 2019

the first step, it would not be a good fit for the second step, as DNNs have been shown to generalize
poorly to arithmetic or symbolic functionality (Fodor & Pylyshyn, 1988; He et al., 2016).

In this work, we propose a method for performing end-to-end training of a decomposed solution
comprising of a neural network that calls black-box functions. Thus, this method benefits from both
worlds. We empirically show that such a network generalizes better than an equivalent end-to-end
network and that our training method is more efficient at learning than existing methods used for
training a decomposed solution.

The main challenge in decomposing a task to a collection of neural network modules and existing
functions is that effective neural network training using gradient-based techniques requires the entire
computation trajectory to be differentiable. We outline three existing solutions for this task: (i)
End-to-End Training: Although a task is naturally decomposable, it is possible to train a network to
fit the symbolic functionality of the task to a differentiable learned function without decomposing it.
Essentially, that means solving the problem end-to-end, foregoing the existing black-box function.
(ii) Using Intermediate Labels: If we insist, however, on using the black-box function, it is possible to
train a network to supply the desired input to the black-box function by providing intermediate labels
for translating the task input to the appropriate black-box function inputs. However, intermediate
labels are, most often, expensive to obtain and thus produce a bottleneck in gathering data. (iii) Black-
Box Optimization: Finally, one may circumvent the need for intermediate labels or differentiable
approximation with Reinforcement Learning (RL) or Genetic Algorithms (GA) that support black-box
function integration during training. Still, these algorithms suffer from high learning variance and
poor sample complexity.

We propose an alternative approach called Estimate and Replace that finds a differentiable function
approximation, which we term black-box estimator, for estimating the black-box function. We use the
black-box estimator as a proxy to the original black-box function during training, and by that allow
the learnable parts of the model to be trained using gradient-based optimization. We compensate for
not using any intermediate labels to direct the learnable parts by using the black-box function as an
oracle for training the black-box estimator. During inference, we replace the black-box estimator
with the original non-differentiable black-box function.

End-to-end training of a solution composed of trainable components and black-box functions poses
several challenges we address in this work—coping with non-differentiable black-box functions,
fitting the network to call these functions with the correct arguments, and doing so without any
intermediate labels. Two more challenges are the lack of prior knowledge on the distribution of inputs
to the black-box function, and the use of gradient-based methods when the function approximation is
near perfect and gradients are extremely small.

This work is organized as follows: In Section 2, we formulate the problem of decomposing the task
to include calls to a black-box function. Section 3 describes the network architecture and training
procedures. In Section 4, we present experiments and comparison to Policy Gradient-based RL, and
to fully neural models. We further discuss the potential and benefits of the modular nature of our
approach in Section 6.

2 LEARNING BLACK-BOX FUNCTION INTERFACES WITHOUT INTERMEDIATE

LABELS

In this work, we consider the problem of training a DNN model to interact with black-box functions
to achieve a predefined task. Formally, given a labeled pair (x, y), such that some target function
h∗ : X → Y satisfies h∗(x) = y, we assume that there exist:

h
arg
i : X → Ai ; i ≤ n (1)

hbbf : (A1, ..., An) → Y (2)

Such that h∗(x) = hbbf(harg
1
(x), ..., harg

n (x)), where n is the number of arguments in the black-box
input domain A = (A1, ..., An). The domains {Ai} can be structures of discrete, continuous, and
nested variables.

The problem then is to fit h∗ given a dataset {(xj , yj) | j ≤ D} and given an oracle access to hbbf.
Then harg : X → (A1, ..., An) is an argument extractor function, which takes as input x and outputs a

2



Published as a conference paper at ICLR 2019

(a) (b)

Figure 1: The Estimate and Replace approach. Figure (a) shows a schematic description of the two
assessment modes. A rectangle represents a neural network. Solid and dashed arrows signify forward
and backward passes of back-propagation. Figure (b) shows a more detailed schematic view of the
model with regards to usage of the external function during training.

tuple of arguments (harg
1
(x), ..., harg

n (x)) = (a1, ..., an), and hbbf is a black-box function, which takes
these arguments and outputs the final result. Importantly, we require no sample (x, (a1, ..., an), y)
for which the intermediate black-box interface argument labels are available. We note that this
formulation allows the use of multiple functions simultaneously, e.g., by defining an additional
argument that specifies the “correct” function, or a set of arguments that specify ways to combine the
functions’ results.

3 THE ESTIMATE AND REPLACE APPROACH AND THE ESTINET MODEL

In this section we present the Estimate and Replace approach which aims to address the problem
defined in Section 2. The approach enables training a DNN that interacts with non-differentiable
black-box functions (bbf), as illustrated in Figure 1 (a). The complete model, termed EstiNet, is
a composition of two modules—argument extractor and black-box estimator—which learn harg

and hbbf respectively. The black-box estimator sub-network serves as a differential estimator to the
black-box function during an end-to-end gradient-based optimization. We encourage the estimator to
directly fit the black-box functionality by using the black-box function as a label generator during
training. At inference time, we replace the estimator with its black-box function counterpart, and
let this hybrid solution solve the end-to-end task at hand in an accurate and efficient way. In this
way, we eliminate the need for intermediate labels. We refer to running a forward-pass with the
black-box estimator as test mode and running a forward-pass with the black-box function as inference
mode. By leveraging the black-box function as in this mode, EstiNet shows better gerealization than
an end-to-end neural network model. In addition, EstiNet suggests a modular architecture with the
added benefits of module reuse and model interpretability.

Adapters EstiNet uses an adaptation function to adapt the argument extractor’s output to the black-
box function input, and to adapt black-box function’s output to the appropriate final output label
format (see Figure 1 (b)). For example, EstiNet uses such a function to convert soft classification
distributions to hard selections, or to map classes of text token to concrete text.

3.1 TRAINING AN ESTINET MODEL

The modular nature of the EstiNet model presents a unique training challenge: EstiNet is a modular
architecture where each of its two modules, namely the argument extractor and the black-box estimator
is trained using its own input-label pair samples and loss function.

3



Published as a conference paper at ICLR 2019

3.1.1 ESTINET’S LOSS FUNCTIONS AND DATASETS

We optimize EstiNet model parameters with two distinct loss functions—the target loss and the
black-box loss. Specifically, we optimize the argument extractor’s parameters with respect to the
target loss using the task’s dataset during end-to-end training. We optimize the black-box estimator’s
parameters with respect to the black-box loss while training it on the black-box dataset:

The black-box dataset We generate input-output pairs for the black-box dataset by sending an
input sample to the black-box function and recording its output as the label. We experimented in
generating input samples in two ways: (1) offline sampling—in which we sample from an a-priori
black-box input distribution, or from a uniform distribution in absence of such; and (2) online
sampling—in which we use the output of the argument extractor module during a forward pass as an
input to the black-box function, using an adaptation function as needed for recording the output (see
Figure 1 (b)).

3.1.2 TRAINING PROCEDURES

Having two independent datasets and loss functions suggest multiple training procedure options. In
the next section we discuss the most prominent ones along with their advantages and disadvantages.
We provide empirical evaluation of these procedures in Section 4.

Offline Training In offline training we first train the black-box estimator using offline sampling.
We then fix its parameters and load the trained black-box estimator into the EstiNet model and train
the argument extractor with the task’s dataset and target loss function. A disadvantage of offline
training is noisy training due to the distribution difference between the offline black-box a-priori
dataset and the actual posterior inputs that the argument extractor computes given the task’s dataset
during training. That is, the distribution of the dataset with which we trained the black-box estimator
is different than the distribution of input it receives during the target loss training.

Online Training In online training we aim to solve the distribution difference problem by jointly
training the argument extractor and the black-box estimator using the target loss and black-box loss
respectively. Specifically, we train the black-box estimator with the black-box dataset generated via
online sampling during the training process.1 Figure 1 (b) presents a schematic diagram of the online
training procedure. We note that the online training procedure suffers from a cold start problem of the
argument extractor. Initially, the argument extractor generates noisy input for the black-box function,
which prevents it from generating meaningful labels for the black-box estimator.

Hybrid Training In hybrid training we aim to solve the cold start problem by first training the
black-box estimator offline, but refraining from freezing its parameters. We load the estimator into
the EstiNet model and continue to train it in parallel with the argument extractor as in online training.

3.1.3 REGULARIZING BLACK-BOX ESTIMATOR OVER-CONFIDENCE

In all of the above training procedures, we essentially replace the use of intermediate labels with
the use of a black-box dataset for implicitly training the argument extractor via back-propagation.
As a consequence, if the gradients of the black-box estimator are small, it will make it difficult for
the argument extractor to learn. Furthermore, if the black-box estimator is a classifier, it tends to
grow overly confident as it trains, assigning very high probabilities to specific answers and very low
probabilities for the rest (Pereyra et al., 2017). Since these classification functions are implemented
with a softmax layer, output values that are close to the function limits (0, 1) result in extremely
small gradients. Meaning that in the scenario where the estimator reaches local optima and is very
confident, its gradient updates become small. Through the chain rule of back-propagation, this means
that even if the argument extractor is not yet at local optima, its gradient updates become small as
well, which complicates training.

1We note that this problem is reminiscent of, but different from, Multi-Task Learning, which involves training
the same parameters using multiple loss functions. In our case, we train non-overlapping parameters using two
losses: Let Ltarget and Lbbf be the two respective losses, and θarg and θbbf be the parameters of the argument
extractor and black-box estimator modules. Then the gradient updates of the EstiNet during Online Training are:

∆θ =
∂Ltarget

∂θarg

+
∂Lbbf

∂θbbf

4



Published as a conference paper at ICLR 2019

Table 1: The Text-Logic task results: accuracy on the test data using baseline model and EstiNet with
online training, at inference mode, both on varying amounts of training data.

Train set size 250 500 1,000 5,000 10,000

Baseline 0.533 0.686 0.859 0.931 0.98

EstiNet 0.966 0.974 0.968 0.995 1.0

Difference 81% 41% 13% 7% 2%

To overcome this phenomenon, we follow Szegedy et al. (2016) and Pereyra et al. (2017), regularizing
the high confidence by introducing (i) Entropy Loss – adding the negative entropy of the output
distribution to the loss, therefore maximizing the entropy and encouraging less confident distributions,
and (ii) Label Smoothing Regularization – adding the cross entropy (CE) loss between the output
and the training set’s label distribution (for example, uniform distribution) to the standard CE loss
between the predicted and ground truth distributions. Empirical validation of the phenomenon and
our proposed solution are detailed in Section 4.3.

4 EXPERIMENTS

We present four experiments in increasing complexity to test the Estimate and Replace approach and
compare its performance against existing solutions. Specifically, the experiments demonstrate that by
leveraging external black-box functions, we achieve better generalization and better learning efficiency
in comparison with existing competing solutions, without using intermediate labels. Appendix A
contains concrete details of the experiments.

4.1 TEXT-LOGIC

We start with a simple experiment that presents the ability of our Estimate and Replace approach to
learn a proposed decomposition solution. We show that by leveraging a precise external function, our
method performs better with less training data. In this experiment, we train a network to answer simple
greater-than/less-than logical questions on real numbers, such as: “is 7.5 greater than 8.2?” We solve
the text-logic task by constructing an EstiNet model with an argument extractor layer that extracts
the arguments and operator (7.5, 8.2 and “>” in the above example), and a black-box estimator that
performs simple logic operations (greater than and less than). We generate the Text-Logic questions
from ten different templates, all requiring a true/false answer for two float numbers.

Results We compare the performance of the EstiNet model with a baseline model. This baseline
model is equivalent to our model in its architecture, but is trained end-to-end with the task labels
as supervision. This supervision allows the model to learn the input-to-output mapping, but does
not provide any guidance for decomposing the task and learning the black-box function interface.
We used online training for the EstiNet model. Table 1 summarizes the performance differences.
The EstiNet model generalizes better than the baseline, and the accuracy difference between the two
training procedures increases as the amount of training data decreases. This experiment presents
the advantage of the Estimate and Replace approach to train a DNN with less data. For example, to
achieve accuracy of 0.97, our model requires only 5% of the data that the baseline training requires.

4.2 IMAGE-ADDITION

With the second experiment we seek to present the ability of our Estimate and Replace approach
to generalize by leveraging a precise external function. In addition, we compare our approach to
an Actor Critic-based RL algorithm. The Image-Addition task is to sum the values captured by a
sequence of MNIST images. Previously, Trask et al. (2018) have shown that their proposed Neural
Arithmetic Logic Unit (NALU) cell generalizes better than previous solutions while solving this
task2 with standard end-to-end training. We solve the task by constructing an EstiNet model with an
argument extractor layer that classifies the digit in a given MNIST image, and a black-box estimator
that performs the sum operation. The argument extractor takes an unbounded series of MNIST

2They refer to this task as the MNIST-Addition task in their work.

5



Published as a conference paper at ICLR 2019

Table 2: Loss performance for the image-addition task on the MNIST test-set. k is the sequence
length of the test set. Loss is mean absolute error. EstiNet results are in Inference mode.

Model k = 10 k = 100

NALU 1.42 7.88

EstiNet 0.42 3.3

0 250 500 750 1000 1250 1500
Update Step (thousands)

20

40

60

80

100

Ac
cu

ra
cy

MNIST-Addition Argument Accuracy (k=2)

RL
EstiNet

0 250 500 750 1000 1250 1500
Update Step (thousands)

20

40

60

80

100

Ac
cu

ra
cy

MNIST-Addition Argument Accuracy (k=3)

RL
EstiNet

Figure 2: Learning efficiency of an Actor-Critic agent vs. the EstiNet model on the image-addition
(k ∈ {2, 3}) task. Results show the MNIST test set classification accuracy of the argument extractor
for RL Policy and for EstiNet as a function of the amount of gradient updates.

images as input, and outputs a sequence of MNIST classifications of the same length. The black-box
estimator, which is a composition of a Long Short-Term Memory (LSTM) layer and a NALU cell,
then takes the argument extractor’s output as its input and outputs a single regression number. Solving
the Image-Addition task requires the argument extractor to classify every MNIST image correctly
without intermediate digit labels. Furthermore, because the sequence length is unbounded, unseen
sequence lengths result in unseen sum ranges which the solution must generalize to.

Results vs. End-to-End Table 2 shows a comparison of EstiNet performance with an end-to-end
NALU model. Both models were trained on sequences of length k = 10. The argument extractor
achieves 98.6% accuracy on MNIST test set classification. This high accuracy indicates that the
EstiNet is able to learn the desired harg behavior, where the arguments are the digits shown in the
MNIST images. Thus, it can generalize to any sequence length by leveraging the sum operation. Our
NALU-based EstiNet outperforms the plain NALU-based end-to-end network.

Results vs. RL We compare the EstiNet performance with an AC-based RL agent as an existing
solution for training a neural network calling a black-box function without intermediate labels. We
compare the learning efficiency of the two models by the amount of gradient updates required to
reach optima. Results in Figure 2 show that EstiNet significantly outperforms the RL agent.

4.3 IMAGE-LOOKUP

The third experiment tests the capacity of our approach to deal with non-differentiable tasks, in our
case a lookup operation, as oppose to the differentiable addition operation presented in the previous
section. With this experiment, we present the effect of replacing the black-box estimator with the
original black-box function. We are given a k dimensional lookup table T : Dk → D where D
is the digits domain in the range of [0, 9]. The image-lookup input is a sequence of length k of
MNIST images (x1, ..., xk) with corresponding digits (a1, . . . , ak) ∈ Dk. The label y ∈ D for
(x1, ..., xk) is T (a1, . . . , ak). We solve the image-lookup task by constructing an EstiNet model
with an argument extractor similar to the previous task and a black-box estimator that outputs the
classification prediction.

Results Results are shown in Table 3. Successfully solving this task infers the ability to generalize
to the black-box function, which in our case is the ability to replace or update the original lookup
table with another at inference time without the need to retrain our model. To verify this we replace

6



Published as a conference paper at ICLR 2019

Table 3: Accuracy results for the Image-Lookup task on the MNIST test-set for the three model
configurations: train, test, and inference. We also report the accuracy of the argument extractor
and estimator. The estimator accuracy is evaluated on the online sampling dataset. k is the digit of
MNIST images in the input, and the dimension of the lookup table.

#MNIST images Train Test Inference Argument Extractor Estimator

k = 2 0.98 0.11 0.97 0.99 0.98

k = 3 0.97 0.1 0.97 0.99 0.98

k = 4 0.69 0.1 0.95 0.986 0.7

the lookup table with a randomly generated one at test mode and observe performance decrease, as
the black-box estimator did not learn the correct lookup functionality. However, in inference mode,
where we replace the black-box estimator with the unseen black-box function, performance remains
high. We also used the Image-Lookup task to validate the need for confidence regularization as
described in Section 3.1.3. Figure 3 shows empirical results of correlation between over-confidence
at the black-box estimator output distribution and small gradients corresponding to the argument
extractor, as well as the vice versa when confidence regularizers are applied.

0 200 400 600 800 1000 1200 1400
Batch Index

0.0

0.5

1.0

1.5

2.0

2.5

Gr
ad

 N
or

m

Gradient norms over training
Argument Extractor
Black-box Estimator

0 200 400 600 800 1000 1200 1400
Batch Index

0.00

0.05

0.10

0.15

0.20

En
tro

py

Entropies of classification distributions over training
Argument Extractor
Black-box Estimator

0 200 400 600 800 1000 1200 1400
Batch Index

20

40

60

80

100

Ac
cu

ra
cy

Accuracy over training

Target
Argument Extractor
Black-box Estimator

(a) No confidence penalty

0 500 1000 1500 2000 2500
Batch Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gr
ad

 N
or

m

Gradient norms over training
Argument Extractor
Black-box Estimator

0 500 1000 1500 2000 2500
Batch Index

0.00

0.05

0.10

0.15

0.20

En
tro

py

Entropies of classification distributions over training

Argument Extractor
Black-box Estimator

0 500 1000 1500 2000 2500
Batch Index

20

40

60

80

100

Ac
cu

ra
cy

Accuracy over training

Target
Argument Extractor
Black-box Estimator

(b) Entropy Loss + Label Smoothing

Figure 3: Empirical results for the confidence penalty in the image-lookup experiment for k = 3
(Section 4.3). The gradients norms, entropy and accuracy are shown as function of training time for
identical models, with and without confidence regularization. The results show correlation between
high confidence, measured as low entropies, and small gradients.

4.4 TEXT-LOOKUP-LOGIC (TLL)

For the last experiment, we applied the Estimate and Replace approach to solve a more challenging
task. The task combines logic and lookup operations. In this task, we demonstrate the generalization
ability on the input – a database table in this instance. The table can be replaced with a different one at
inference time, like the black-box function from the previous tasks. In addition, with this experiment
we compare the offline, online and hybrid training modes. For this task, we generated a table-based
question answering dataset. For example, consider a table that describes the number of medals won
by each country during the last Olympics, and a query such as: ”Which countries won more than
7 gold medals?”. We solve this task by constructing an EstiNet model with an argument extractor
layer that (i) extracts the argument from the text, (ii) chooses the logical operation to perform (out

7



Published as a conference paper at ICLR 2019

Table 4: Accuracy results for the text-lookup-logic task of the three model configurations: train, test,
and inference with the training procedures: offline, online, and hybrid. Each value in the table is
calculated as an average of ten repeated experiments.

Training Type Train Test Infer

Offline 0.09 0.02 0.17

Online 0.76 0.22 0.69

Hybrid 0.98 0.47 0.98

of: equal-to, less-than, greater-than, max and min), and (iii) chooses the relevant column to perform
the operation on, along with a black-box estimator that performs the logic operation on the relevant
column.

Results Table 4 summarizes the TLL model performance for the training procedures described
in Section 3.1. In offline training the model fails to fit the training set. Consequently, low training
model accuracy results in low inference performance. We hypothesize that fixing the estimator
parameters during the end-to-end training process prevents the rest of the model from fitting the train
set. The online training procedure indeed led to significant improvement in inference performance.
Hybrid training further improved upon online training fitting the training set and performance carried
similarly to inference mode.

5 RELATED WORK

End-to-End Learning Task-specific architectures for end-to-end deep learning require large
datasets and work very well when such data is available, as in the case of neural machine translation
(Bahdanau et al., 2014). General purpose end-to-end architectures, suitable for multiple tasks, include
the Neural Turing Machine (Graves et al., 2014) and its successor, the Differential Neural Computer
(Graves et al., 2016). Other architectures, such as the Neural Programmer architecture (Neelakantan
et al., 2016) allow end-to-end training while constraining parts of the network to execute predefined
operations by re-implementing specific operations as static differentiable components. This approach
has two drawbacks: it requires re-implementation of the black-box function in a differentiable way,
which may be difficult, and it lacks the accuracy and possibly also scalability of an exisiting black-box
function. Similarly Trask et al. (2018) present a Neural Arithmetic Logic Unit (NALU) which uses
gated base functions to allow better generalization to arithmetic functionality.

Program Induction and Program Generation Program induction is a different approach to
interaction with black-box functions. The goal is to construct a program comprising a series of
operations based on the input, and then execute the program to get the results. When the input is a
natural language query, it is possible to use semantic parsing to transform the query into a logical
form that describes the program (Liang, 2016). Early works required natural language query-program
pairs to learn the mapping, i.e., intermediate labels. Recent works, (e.g., Pasupat & Liang (2015))
require only query-answer pairs for training. Other approaches include neural network-based program
induction (Andreas et al., 2016) translation of a query into a program using sequence-to-sequence
deep learning methods (Lin et al., 2017), and learning the program from execution traces (Reed &
De Freitas, 2015; Cai et al., 2017).

Reinforcement Learning Learning to execute the right operation can be viewed as a reinforcement
learning problem. For a given input, the agent must select an action (input to black-box function)
from a set of available actions. The action selection repeats following feedback based on the previous
action selection. Earlier works that took this approach include Branavan et al. (2009), and Artzi &
Zettlemoyer (2013). Recently, Zaremba & Sutskever (2015) proposed a reinforcement extension to
NTMs. Andreas et al. (2016) overcome the difficulty of discrete selections, necessary for interfacing
with an external function, by substituting the gradient with an estimate using RL. Recent work by
Liang et al. (2018) and Johnson et al. (2017) has shown to achieve state-of-the-art results in Semantic
Parsing and Question Answering, respectively, using RL.

8



Published as a conference paper at ICLR 2019

6 DISCUSSION

Interpretability via Composability Lipton (2016) identifies composability as a strong contributor
to model interpretability. They define composability as the ability to divide the model into components
and interpret them individually to construct an explanation from which a human can predict the
model’s output. The Estimate and Replace approach solves the black-box interface learning problem
in a way that is modular by design. As such, it provides an immediate interpretability benefit.
Training a model to comply with a well-defined and well-known interface inherently supports model
composability and, thus, directly contributes to its interpretability.

For example, suppose you want to let a natural language processing model interface with a WordNet
service to receive additional synonym and antonym features for selected input words. Because the
WordNet interface is interpretable, the intermediate output of the model to the WordNet service (the
words for which the model requested additional features) can serve as an explanation to the model’s
final prediction. Knowing which words the model chose to obtain additional features for gives insight
to how it made its final decision.

Reusability via Composability An additional clear benefit of model composability in the context
of our solution is reusability. Training a model to comply with a well-defined interface induces
well-defined module functionality which is a necessary condition for module reuse.

7 CONCLUSION

Current solutions for learning using black-box functionality in neural network prediction have critical
limitations which manifest themselves in at least one of the following aspects: (i) poor generalization,
(ii) low learning efficiency, (iii) under-utilization of available optimal functions, and (iv) the need for
intermediate labels. In this work, we proposed an architecture, termed EstiNet, and a training and
deployment process, termed Estimate and Replace, which aim to overcome these limitations. We
then showed empirical results that validate our approach.

Estimate and Replace is a two-step training and deployment approach by which we first estimate a
given black-box functionality to allow end-to-end training via back-propagation, and then replace the
estimator with its concrete black-box function at inference time. By using a differentiable estimation
module, we can train an end-to-end neural network model using gradient-based optimization. We use
labels that we generate from the black-box function during the optimization process to compensate
for the lack of intermediate labels. We show that our training process is more stable and has lower
sample complexity compared to policy gradient methods. By leveraging the concrete black-box
function at inference time, our model generalizes better than end-to-end neural network models. We
validate the advantages of our approach with a series of simple experiments. Our approach implies a
modular neural network that enjoys added interpretability and reusability benefits.

Future Work We limit the scope of this work to tasks that can be solved with a single black-box
function. Solving the general case of this problem requires learning of multiple black-box interfaces,
along unbounded successive calls, where the final prediction is a computed function over the output of
these calls. This introduces several difficult challenges. For example, computing the final prediction
over a set of black-box functions, rather than a direct prediction of a single one, requires an additional
network output module. The input of this module must be compatible with the output of the previous
layer, be it an estimation function at training time, or its black-box function counterpart at inference
time, which belong to different distributions. We reserve this area of research for future work.

As difficult as it is, we believe that artificial intelligence does not lie in mere knowledge, nor in
learning from endless data samples. Rather, much of it is in the ability to extract the right piece of
information from the right knowledge source for the right purpose. Thus, training a neural network to
intelligibly interact with black-box functions is a leap forward toward stronger AI.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
networks for question answering. arXiv preprint arXiv:1601.01705, 2016.

9



Published as a conference paper at ICLR 2019

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association for Computational Linguistics, 1:49–62,
2013.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09, pp. 82–90, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-45-9. URL
http://dl.acm.org/citation.cfm?id=1687878.1687892.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. arXiv preprint arXiv:1704.06611, 2017.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538:471 EP –,
Oct 2016. URL http://dx.doi.org/10.1038/nature20101. Article.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. CoRR, abs/1603.05027, 2016. URL http://arxiv.org/abs/1603.05027.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 1–10. Association for Computational Lin-
guistics, 2015. doi: 10.3115/v1/P15-1001. URL http://www.aclweb.org/anthology/

P15-1001.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Fei-Fei Li, C. Lawrence
Zitnick, and Ross B. Girshick. Inferring and executing programs for visual reasoning. CoRR,
abs/1705.03633, 2017. URL http://arxiv.org/abs/1705.03633.

William Kahan. Ieee standard 754 for binary floating-point arithmetic. 1996.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, and Ni Lao. Memory augmented
policy optimization for program synthesis and semantic parsing. 2018.

Percy Liang. Learning executable semantic parsers for natural language understanding. Commun.
ACM, 59(9):68–76, August 2016. ISSN 0001-0782. doi: 10.1145/2866568. URL http://doi.

acm.org/10.1145/2866568.

Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, and Michael D Ernst. Program synthesis
from natural language using recurrent neural networks. Technical report, Technical Report UW-
CSE-17-03-01, University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA, 2017.

10

http://dl.acm.org/citation.cfm?id=1687878.1687892
http://dx.doi.org/10.1038/nature20101
http://arxiv.org/abs/1603.05027
http://www.aclweb.org/anthology/P15-1001
http://www.aclweb.org/anthology/P15-1001
http://arxiv.org/abs/1705.03633
http://doi.acm.org/10.1145/2866568
http://doi.acm.org/10.1145/2866568


Published as a conference paper at ICLR 2019

Zachary Chase Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016. URL
http://arxiv.org/abs/1606.03490.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Arvind Neelakantan, Quoc V Le, Martin Abadi, Andrew McCallum, and Dario Amodei. Learning a
natural language interface with neural programmer. arXiv preprint arXiv:1611.08945, 2016.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. arXiv
preprint arXiv:1508.00305, 2015.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hinton. Regularizing
neural networks by penalizing confident output distributions. CoRR, abs/1701.06548, 2017. URL
http://arxiv.org/abs/1701.06548.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,
2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp.
3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2818–2826.
IEEE Computer Society, 2016. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.308. URL
https://doi.org/10.1109/CVPR.2016.308.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In AAAI, volume 4, pp. 12, 2017.

Andrew Trask, Felix Hill, Scott Reed, Jack W. Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. CoRR, abs/1808.00508, 2018. URL http://arxiv.org/abs/1808.00508.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. Achieving human parity in conversational speech recognition. arXiv
preprint arXiv:1610.05256, 2016.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. CoRR,
abs/1505.00521, 2015. URL http://arxiv.org/abs/1505.00521.

11

http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1701.06548
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1808.00508
http://arxiv.org/abs/1505.00521


Published as a conference paper at ICLR 2019

APPENDIX A EXPERIMENT DETAILS AND HYPERPARAMETERS

A.1 IMAGE EXPERIMENTS

The Image-Addition and Image-Lookup tasks use the MNIST training and test sets. The input is a
sequence of MNIST images, sampled uniformly from the training set. The black-box function is a
sum operation which receives a sequence of digits in range [0− 9] represented as one-hot vectors.
For Image-Lookup, the input sequence length defines the task (we’ve tested k ∈ {2, 3, 4}. k = 4
implies a lookup table of size 104). For Image-Addition, we’ve trained on input length k = 10 and
tested on k = 100. The implementation was done in PyTorch.

Architecture The argument extractor for both tasks is a composition of two convolutional layers
(conv1, conv2), each followed by local 2× 2 max-pooling, and a fully-connected layer (fcarg), which
outputs the MNIST classification for an image. The argument extractors for each image share their
parameters and each one outputs an MNIST classification for one image in the sequence. The sum
estimator is an LSTM network, followed by a NALU cell on the final LSTM output, which results
in a regression floating number. The lookup estimator is a composition of fully-connected layers

(fc
lookup
est ) with ReLU activations. The architecture parameters are detailed in Table 5.

Argument Extractor

conv1 # filters 10
conv1 filter size 5× 5
conv1 stride 1
conv2 # filters 20
conv2 filter size 5× 5
conv2 stride 1
fcarg dimensions [320, 10]

Lookup Estimator

fc
lookup
est dimensions [10k, 300, 100, 10]

Sum Estimator

LSTM # layers 1
LSTM hidden size 50
NALU # layers 1
NALU hidden size 100

Table 5: Image tasks architecture dimensions.

Training We used the hybrid training procedure where the pre-training of the estimator (offline
training) continued until either performance reached 90%, or stopped increasing, on synthetic 10-class
(MNIST) distributions which were sampled uniformly. The hyper-parameters of the model are in
Table 6. We note that confidence regularization was necessary to stabilize learning and mitigate
vanishing gradients. The target losses are cross-entropy and squared distance for lookup and addition
respectively. The loss functions are:

Llookup = LSR(p, q; ǫ) + βLSR(pest, qbbf; ǫ) + λmax(
∑

arg

H(parg)− Γ, 0)

Lsum = (y′ − y)2 + β(y′est − ybbf)
2 + λmax(

∑

arg

H(parg)− Γ, 0)

Where LSR stands for Label Smoothing Regularization loss, H stands for entropy, p stands for the
output classification, q stands for the gold label (one-hot), and y′ and y stand for the model and gold
MNIST sum regressions, respectively. The β-weighted component of the loss is the online loss. The
λ-weighted component is threshold entropy loss regularization on the argument extractor’s MNIST
classifications.

In the following we describe the RL environment and architecture used in our experiments. We
employed fixed length episodes and experimented with k ∈ {2, 3}. The MDP was modeled as
follows: at each step a sample (xt, yt) is randomly selected from the MNIST dataset, where the

12



Published as a conference paper at ICLR 2019

Parameter Addition Lookup

Online loss β = 1.0 β = 1.0
Entropy loss λ = 0.15 λ = 0.1
Entropy loss threshold Γ = 0.15 Γ = 0.15
LSR confidence penalty — ǫ = 0.6
LSR label distribution prior — Uniform
Optimizer Adam Adam
Learning rate 0.001 0.001
Batch size 50 20

Table 6: Image tasks hyperparameters.

handwritten image is used as the state, i.e. st = xt. The agent responds with an action at from the
set [0, 9]. The reward, rt, in all steps except the last step is 0, and equals to the sum of absolute errors
between the labels of the presented examples and the agent responses in the last step:

rk = ‖
k∑

t=1

(at − yt)‖

Where yt is the digit label.

We use A3C as detailed by Mnih et al. (2016) as the learning algorithm containing a single worker
which updates the master network at the end of each episode. The agent model was implemented
using two convolutional layers with filters of size 5× 5 followed by a max-pooling size 2× 2. The
first convolutional layer contains 10 filters while the second contains 20 filters. The last two layers
were fully connected of sizes 256 and 10 respectively with ELU activation, followed by a softmax.
We employed Adam optimization (Kingma & Ba, 2014) with learning rate 1e− 5.

A.2 TEXT EXPERIMENTS

The Text-Logic and Text-Lookup-Logic experiments were implemented in TensorFlow on synthetic
datasets generated from textual templates and sampled numbers. We give concrete details for both
experiments.

A.2.1 TEXT-LOOKUP-LOGIC

For the TLL task we generated a table-based question answering dataset. The TLL dataset input
has two parts: a question and a table. To correctly answer a question from this dataset, the DNN
has to access the right table column and apply non-differentiable logic on it using a parameter it
extracts from the query. For example, consider a table that describes the number of medals won
by each country during the last Olympics, and a query such as: “Which countries won more than
7 gold medals?” To answer this query the DNN has to extract the argument (7 in this case) from
the query, access the relevant column (namely, gold medals), and execute the greater than operation
with the extracted argument and column content (namely a vector of numbers) as its parameters. The
operation’s output vector holds the indexes of the rows that satisfy the logic condition (greater-than in
our example). The final answer contains the names of the countries (i.e., from the countries column)
in the selected rows.

The black-box function interface Solving the TLL task requires five basic logic functions: equal-
to, less-than, greater-than, max, and min. Each such function defines an API that is composed of
two inputs and one output. The first input is a vector of numbers, namely, a column in the table.
The second is a scalar, namely, an argument from the question or NaN if the scalar parameter is
not relevant. The output is one binary vector, the same size as the input vector. The output vector
indicates the selected rows for a specific query and thus provides the answer.

TLL data We generated tables in which the first row contains column names and the first column
contains a list of entities (e.g., countries, teams, products, etc.). Subsequent columns contained the
quantitative properties of an entity (e.g., population, number of wins, prices, discounts, etc.). Each
TLL-generated table consisted of 5 columns and 25 rows. We generated entity names (i.e., nations
and clubs) for the first column by randomly selecting from a closed list. We generated values for the

13



Published as a conference paper at ICLR 2019

rest of the columns by sampling from a uniform distribution. We sampled values between 1 and 100
for the train set tables, and between 300 and 400 for the test set tables. We further created 2 sets of
randomly generated questions that use the 5 functions. The set includes 20,000 train questions on the
train tables and 4,000 test questions on the test tables.

Input representations The TLL input was composed of words, numbers, queries, and tables. We
used word pieces as detailed by Wu et al. (2016) to represent words. A word is a concatenation of
word pieces: wj ∈ R

d is an average value of its piece embedding.

The exact numerical value of numbers is important to the decision. To accurately represent a number
and embed it into the same word vector space, we used number representation following the float32
scheme (Kahan, 1996). Specifically, it starts by representing a number a ∈ R as a 32 dimension
Boolean vector s′n. It then adds redundancy factor r, r ∗ 32 < d by multiplying each of the s′n digits r
times. Last, it pads the sn ∈ R

d resulting vector with d− r ∗32 zeros. We tried several representation
schemes. This approach resulted in the best EstiNet performance.

We represent the query q as a matrix of word embeddings and use an LSTM model (Hochreiter
& Schmidhuber, 1997) to encode the query matrix into a vector representation: qlstm ∈ R

drnn =
hlast(LSTM(Q)) where hlast is the last LSTM output and drnn is the dimension of the LSTM.

Each table T ∈ R
n×m×d with n rows and m columns is represented as a three dimensional tensor. It

represents a cell in a table as the piece average of its words.

Argument Extractors Architecture The EstiNet TLL model uses three types of “selectors” (argu-
ment extractors): operation, argument, and column. Operation selectors select the correct black-box
function. Argument selectors select an argument from the query and hand it to the API. The column
selector’s role is to select a column from the table and pass it to the black-box function. We implement
each selector subnetwork as a classifier. Let C ∈ R

cn×dc be the predicted class matrix, where the
total number of classes is cn and each class is represented by a vector of size dc. For example, for a
selector that has to select a word from a sentence, the C matrix contains the word embeddings of
the words in the sentence. One may consider various selector implementation options. We use a
simple, fully connected network implementation in which W ∈ R

drnn ×cn is the parameter matrix and
b ∈ R

dc is the bias. We define β = C (qlstmW + b) to be the selector prediction before activation
and α = fsel(.) = softmax(β) to be the prediction after the softmax activation layer. At inference
time, the selector transforms its soft selection into a hard selection to satisfy the API requirements.
EstiNet enables that using Gumbel Softmax hard selection functionality.

Estimator Architecture We use five estimators to estimate each of the five logic operations. Each
estimator is a general purpose subnetwork that we implement with a transformer network encoder
Vaswani et al. (2017). Specifically, we use n ∈ N identical layers, each of which consists of two
sub-layers. The first is a multi-head attention with k ∈ N heads, and the second is a fully connected
feed forward two-layer network, activated separately on each cell in the sequence. We then employ a
residual connection around each of these two sub-layers, followed by layer normalization. Last, we
apply linear transformation on the encoder output, adding bias and applying a Gumbel Softmax.

A.2.2 TEXT-LOGIC

The task input is a sentence that contains a greater-than or less-than question generated from a set
of ten possible natural language patterns. The argument extractor must choose the correct tokens
from the input to pass to the estimator/black-box function, which executes the greater-than/less-than
functionality. For example: Out of x and y , is the first bigger ? where x, y are float numbers sampled
from a ∼ N (0, 1010) distribution. The architecture is a very simple derivative of the TLL model with
two selectors for the two floating numbers, and a classification of the choice between greater-than or
less-than.

14


	Introduction
	Learning Black-box Function Interfaces without Intermediate Labels
	The Estimate and Replace Approach and the EstiNet Model
	Training an EstiNet Model
	EstiNet's Loss Functions and Datasets
	Training Procedures
	Regularizing black-box estimator over-confidence


	Experiments
	Text-Logic
	Image-Addition
	Image-Lookup
	Text-Lookup-Logic (TLL)

	Related Work
	Discussion
	Conclusion
	Experiment Details and Hyperparameters
	Image Experiments
	Text Experiments
	Text-Lookup-Logic
	Text-Logic



