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Many information processing problems can be transformed into some form of eigenvalue or singular value problems. Eigenvalue
decomposition (EVD) and singular value decomposition (SVD) are usually used for solving these problems. In this paper, we
give an introduction to various neural network implementations and algorithms for principal component analysis (PCA) and
its various extensions. PCA is a statistical method that is directly related to EVD and SVD. Minor component analysis (MCA)
is a variant of PCA, which is useful for solving total least squares (TLSs) problems. The algorithms are typical unsupervised
learning methods. Some other neural network models for feature extraction, such as localized methods, complex-domain methods,
generalized EVD, and SVD, are also described. Topics associated with PCA, such as independent component analysis (ICA) and
linear discriminant analysis (LDA), are mentioned in passing in the conclusion. These methods are useful in adaptive signal
processing, blind signal separation (BSS), pattern recognition, and information compression.

1. Introduction

In information processing such as pattern recognition,
data compression and coding, image processing, high-
resolution spectrum analysis, and adaptive beamforming,
feature extraction or feature selection is necessary to deal
with the large storage of raw data. Feature extraction
is a dimensionality-reduction technique, mapping high-
dimensional patterns onto a lower-dimensional space by
extracting the most prominent features using orthogonal
transforms. The extracted features do not have any physical
meaning. In contrast, feature selection decreases the size of
the feature set or reduces the dimension of the features by
discarding the raw information according to a criterion.

Orthogonal decomposition is a well-known technique
to eliminate ill-conditioning. The Gram-Schmidt orthonor-
malization (GSO) is suitable for feature selection. This is
due to the fact that the physically meaningless features in
Gram-Schmidt space can be linked back to the same number
of variables of the measurement space, thus resulting in
no dimensionality reduction. The GSO procedure starts
with QR decomposition of the transpose of the full feature
matrix, XT , where X = [x1, x2, . . . , xN ]. QR decomposition

can be performed by using the Householder transform or
the Givens rotation [1], which is suitable for hardware
implementation. The GSO transform can be used for feature
subset selection; it inherits the compactness of the orthog-
onal representation and at the same time provides features
that retain their original meaning.

An orthogonal transform can decompose the correla-
tions among the candidate features so that the significance
of the individual features can be evaluated independently.
Principal component analysis (PCA) is a well-known orthog-
onal transform that is used for dimensionality reduction.
Another popular technique for feature extraction is linear
discriminant analysis (LDA), also known as Fisher’s discrim-
inant analysis [2, 3]. Taking all the data into account, PCA
computes vectors that have the largest variance associated
with them. The generated PCA features do not have clear
physical meanings. In contrast, LDA searches for those
vectors in the underlying space that best discriminate among
the classes rather than those that best describe the data.

For a J1-dimensional data set {xi} of size N , PCA [4]
generates a J2-dimensional feature set {yi} of the same size,
J1 > J2, by using the linear transformation yi = WTxi. The
weight matrix W can be solved under different criteria such
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as the output variance maximization or MSE minimization.
In comparison with the GSO transform, PCA generates each
of its features based on the covariance matrix of all the N
vectors xi, i = 1, . . . ,N . Dimensionality reduction is achieved
by dropping the variables with insignificant variances. PCA is
often used to select inputs, but it is not always useful, since
the variance of a signal is not always related to the importance
of the signal, for non-Gaussian signals. An improvement
on PCA is provided by nonlinear generalizations of PCA,
which extend the ability of PCA to incorporate nonlinear
relationships in the data. Two-dimensional PCA [5] is
designed for image feature extraction.

In this paper, we give a state-of-the-art introduction to
various neural network implementations and algorithms for
PCA and its extensions. This paper is organized as follows. In
Section 2, we introduce the Hebbian learning rule and Oja’s
learning rule. Section 3 defines the PCA problem. Various
PCA networks and algorithms are treated in Sections 4–7.
PCA algorithms based on the Hebbian rule are expanded
in Section 4. In Section 5, least means squared error-based
PCA methods are dealt with. Other optimization-based PCA
methods are described in Section 6. PCA based on the
anti-Hebbian rule is treated in Section 7. Nonlinear PCA
is addressed in Section 8. Section 9 is dedicated to minor
component analysis (MCA). In Section 10, we describe
various localized PCA strategies. Section 11 extends all the
methods to the complex-valued domain. Some other gener-
alizations of PCA such as constrained PCA, generalized EVD,
and two-dimensional PCA are described in Section 12. In
Section 13, the cross-correlational PCA asymmetric network
and SVD are described. Canonical correlation analysis is
described in Section 14. A simulation example of PCA is
given in Section 15. A brief summary is given in Section 16,
and independent component analysis (ICA) and linear
discriminant analysis (LDA) are also mentioned in passing
in this section.

2. Hebbian Learning Rule and
Oja’s Learning Rule

The stochastic approximation theory [6], introduced by
Robbins and Monro in 1951, is an important tool for ana-
lyzing stochastic discrete-time systems including the classical
gradient-descent method. Given a stochastic discrete-time
system of the form

z(t + 1) = z(t) + η(t)(f(z, t) + n(t)), (1)

where z is the state vector, f(z, t) a finite nonzero vector
that uses functions as entries, and n(t) an unbiased noisy
term. Assuming that {η(t)} is a sequence of positive numbers
satisfying the Robbins-Monro conditions [6]

∞∑
t=1

η(t) = ∞,
∞∑
t=1

η2(t) <∞, (2)

then the stochastic system (1) can be transformed into a
deterministic differential equation

dz

dt
= f(z, t). (3)

If (3) converges to a fixed point z∗, then (1) also converges
to z∗ as t → ∞ with probability one. The Robbins-Monro
conditions [6] require η(t) → 0 as t → ∞. Typically, one can
select η(t) = 1/(α+ t), α ≥ 0 being a constant, or η(t) = 1/tβ,
1/2 ≤ β ≤ 1 [7, 8].

The Hebbian learning rule was introduced in [9]. For a
single neuron, the Hebbian rule is written as

w(t + 1) = w(t) + ηy(t)xt , (4)

where the learning rate η > 0, w is the weight vector from the
input to the neuron, xt is an input vector presented at time t,
and the output of the neuron y(t) is defined by

y(t) = wT(t)xt . (5)

For a stochastic input vector x, applying an analysis on
(4) using the stochastic approximation theory, we get the
only equilibrium state w = 0 by maximizing the criterion
EHebb = E[y2], where E[·] is the expectation operator [10,
11]. The solution w = 0 is unstable, which drives w to infinite
magnitude, with a direction parallel to that of the eigenvector
of C = E[xxT] corresponding to the largest eigenvalue [11].
To prevent the divergence of the Hebbian rule, W can be
normalized after each iteration [12, 13], and this leads to the
normalized Hebbian rule. Other methods, such as Oja’s rule
[14], Yuille’s rule [15], Linsker’s rule [16], and Hassoun’s rule
[11], add a weight-decay term to the Hebbian rule to stabilize
the algorithm.

Oja’s rule introduces a weight decay term into the
Hebbian rule [14] to prevent instability

w(t + 1) = w(t) + ηy(t)xt − ηy2(t)w(t). (6)

Oja’s rule converges to a state that maximizes EHebb subject
to ‖w‖ = 1. The solution is the principal eigenvector of C
[14]. For small η, Oja’s rule is proved to be equivalent to the
normalized Hebbian rule [14]. Based on stochastic approxi-
mation theory, the stable solutions exist only at w = ±c1, if
λ1 /= λ2, where c1 is the eigenvector corresponding to λ1, and
λ1 and λ2 are the two largest eigenvalues of C [10, 11]. Thus,
Oja’s rule always converges to the principal component of C.

The Robbins-Monro conditions are not practical for
implementation, especially for learning nonstationary data.
Zufiria [17] has proposed to convert the stochastic discrete-
time algorithms into their deterministic discrete-time for-
mulations that characterize their average evolution from a
conditional expectation perspective. Analysis based on this
method guarantees the convergence of Oja’s rule by select-
ing some constant learning rate. Oja’s rule almost always
converges exponentially to the unit eigenvector associated
with the largest eigenvalue of C, starting from points in
an invariant set [18]. A constant learning rate for fast
convergence is suggested as η = 0.618/λ1 [18].

3. Principal Component Analysis

PCA is based on the spectral analysis of the second-order
moment matrix called correlation matrix that statistically
characterizes a random vector. In the zero-mean case, this
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matrix becomes the covariance matrix. In the area of image
coding, PCA is known as Karhunen-Loeve transform (KLT)
[4], which exploits correlation between neighboring pixels or
groups of pixels for data compression.

PCA allows the removal of the second-order correlation
among given random processes. By calculating the eigenvec-
tors of the covariance matrix of the input vector, PCA linearly
transforms a high-dimensional input vector into a low-
dimensional one whose components are uncorrelated. PCA
is directly related to singular value decomposition (SVD),
and the most common way to perform PCA is via SVD of
the data matrix. However, the capability of SVD is limited
for vey large data set.

PCA is often derived by optimizing some information
criterion, such as the maximization of the variance of the
projected data or the minimization of the reconstruction
error. The objective of PCA is to extract m orthonormal
directions wi ∈ Rn, i = 1, 2, . . . ,m, m < n, in the input
space that account for as much of the data’s variance as
possible. Subsequently, an input vector x ∈ Rn may be trans-
formed into an m-dimensional space without losing essential
intrinsic information. The vector x can be represented by
being projected onto the m-dimensional subspace spanned
by wi using the inner products xTwi, hence achieving
dimensionality reduction.

PCA finds those unit directions w ∈ Rn, along which
the projections of the input vectors, known as the principal
components (PCs), y = xTw, have the largest variance

EPCA(w) = E
[
y2
]
= w

T
Cw = wTCw

‖w‖2 , (7)

where w = w/‖w‖. Based on an analysis using the stochastic
approximation theory [10, 11], when w = αc1, where α is
a scalar, EPCA(w) takes its maximum value. When α = 1, w
becomes a unit vector.

By repeating maximization of EPCA(w) but limiting w to
be orthogonal to c1, the maximum of EPCA(w) is equal to
λ2 at w = αc2. Following this deflation procedure, all the m
principal directions wi can be derived [11]. The projections
yi = xTwi, i = 1, 2, . . . ,m, are the PCs of x.

A linear least squares (LS) estimate x̂ can be constructed
for the original input x as x̂t =

∑m
i=1 ai(t)wi. This is a data

reconstruction process. The reconstruction error e is the
difference between the original and reconstructed data

e = x − x̂ =
n∑

i=m+1

aiwi. (8)

Naturally, e is orthogonal to x̂. Each principal component ai
is a Gaussian with zero mean and variance σ2

i = λi.

4. Hebbian Rule-Based Principal
Component Analysis

Neural PCA originates from the seminal work by Oja [14].
For a single neuron, the output is given by

y = wTx, (9)

where the weights to the neuron w = (w1, . . . ,wJ1 )T .
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Figure 1: Architecture of the PCA network.

The single-neuron model was extended to a J1-J2 feed-
forward network model to extract the first J2 PCs [7]. The
architecture of the PCA network is shown in Figure 1. The
output of the network is given by

y = WTx, (10)

where y = (y1, y2, . . . , yJ2 )T , x = (x1, x2, . . . , xJ1 )T , W =
[w1 w2 · · ·wJ2 ], and wi = (w1i,w2i, . . . ,wJ1i)

T , w jk being the
weight from the jth input to the kth neuron.

4.1. Subspace Learning Algorithms. By using Oja’s rule (6), w
will converge to a unit eigenvector of C, and the variance of
y is maximized. For zero-mean input data, this extracts the
first PC [14, 19]. In order to keep the algorithm convergent,
0 < η(t) < 1/1.2λ1 is required [7]. If η(t) ≥ 1/λ1, w will
not converge to ±c1 even if it is initially close to the target
[20]. One can select η(t) = 0.5[xT

t xt] at the beginning and
gradually decrease η [7].

The symmetrical subspace learning algorithm (SLA) [7]
is a learning algorithm for the PCA network. The SLA is
based on Oja’s rule and is given by [7]

wi(t + 1) = wi(t) + η(t)yi(t)[xt − x̂t],

x̂t = Wy.
(11)

After the algorithm converges, W is roughly orthonormal
and the columns of W, namely, wi, i = 1, . . . , J2, converge to
some linear combination of the first J2 principal eigenvectors
of C [7, 21], which is a rotated basis of the dominant eigen-
vector subspace. This is called principal subspace analysis
(PSA). The value of wi is dependent on the initial conditions
and training samples. The corresponding eigenvalues λi
approximate E[y2

i ] and can be adaptively estimated by

λ̂i(t + 1) =
(

1− 1

t + 1

)
λ̂i(t) +

1

t + 1
y2
i (t + 1). (12)

Weighted SLA introduces asymmetry into the SLA [22,
23]:

wi(t + 1) = wi(t) + η(t)yi(t)
[

xt − γix̂t

]
,

x̂t = Wy,
(13)
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for i = 1, . . . , J2, where the coefficients γi satisfy 0 < γ1 < γ2 <
· · · < γJ2 . In the weighted SLA, wi almost surely converges to
the eigenvectors of C. The weighted SLA can perform PCA;
however, norms of the weight vectors are not equal to unity.

SLA and weighted SLA are nonlocal algorithms, and they
rely on the calculation of the errors and the backward prop-
agation of the values between the layers. A PCA algorithm
is obtained by adding a term to SLA [7] so as to rotate the
basis vectors in the principal subspace toward the principal
eigenvectors [24]. The adaptive learning algorithm (ALA)
[20] is also a PCA algorithm that is based on SLA. In ALA,
each neuron adaptively updates its learning rate by ηi(t) =
β(t)/λ̂i(t), where λ̂i(t) is the estimated eigenvalue and can be
estimated using (12), β(t) is set to be smaller than 2(

√
2− 1)

and decreases to zero as t → ∞. All wi(t) will quickly con-
verge, at nearly the same rate, to ci in the order of descending
eigenvalues. The performance is better than that of the
generalized Hebbian algorithm (GHA) [8]. SLA has been
extended in [25] so as to extract a noise robust projection.

4.2. Generalized Hebbian Algorithm. By combining Oja’s rule
and the GSO procedure, Sanger proposed GHA for extract-
ing the first J2 PCs [8]. GHA can extract the first J2 eigenvec-
tors in the order of decreasing eigenvalues.

The GHA is given by [8]

wi(t + 1) = wi(t) + ηi(t)yi(t)[xt − x̂i(t)], (14)

x̂i(t) =
i∑

j=1

w j(t)y j(t), (15)

for i = 1, . . . , J2. GHA becomes a local algorithm by rewriting
the summation term in (15) in a recursive form

x̂i(t) = x̂i−1(t) + wi(t)yi(t), i = 1, . . . , J2, (16)

where x̂0(t) = 0. Usually ηi(t) is selected as the same for all
neurons. In GHA, the mth neuron converges to the mth PC,
and all neurons tend to converge together. wi → ci and
E[y2

i ] → λi, as t → ∞.
Both SLA [7, 22] and GHA [8] employ implicit or explicit

GSO to decorrelate the connection weights. The weighted
SLA [22] performs well for extracting less dominant com-
ponents.

4.3. Other Hebbian Rule-Based Algorithms. In addition to
the popular SLA, weighted SLA and GHA algorithm, there
are some other Hebbian rule-based PCA algorithms such as
local LEAP (learning machine for adaptive feature extrac-
tion via principal component analysis) [26], the nonlocal
dot-product-decorrelation (DPD) rule [27], and the local
invariant-norm PCA [28].

The LEAP algorithm [26] is a local PCA algorithm for
extracting all the J2 PCs and their corresponding eigenvec-
tors. Unlike SLA [7] and GHA [8], whose stability analysis
is based on the stochastic approximation theory [6], the sta-
bility analysis of LEAP is based on Lyapunov’s first theorem,
and as such η can be selected as a small positive constant [26].
Due to a constant learning rate, LEAP is capable of tracking

nonstationary processes. LEAP can satisfactorily extract PCs
even for ill-conditioned autocorrelation matrices [26].

The DPD algorithm is a nonlocal PCA algorithm [27]. It
moves wi, i = 1, . . . , J2, towards the J2 principal eigenvectors
ci, ordered arbitrarily. The algorithm induces the norms of
the weight vectors towards the corresponding eigenvalues,
that is, ‖wi(t)‖ → λi(t), as t → ∞. The algorithm breaks
the symmetry in its learning process by the difference in the
norms of the weight vectors while keeping the symmetry
in its structure. The algorithm is as fast as the GHA [8],
weighted SLA [22], and least mean squared error reconstruc-
tion (LMSER) [29] algorithms.

5. Least Mean Squared Error-Based Principal
Component Analysis

Existing PCA algorithms including the Hebbian rule-based
algorithms can be derived by optimizing an objective func-
tion using the gradient-descent method. The least mean
squared error- (LMSE-) based methods are derived from the
modified MSE function

E(W) =
t∑

t1=1

µt−t1
∥∥∥xt1 −WWTxt1

∥∥∥2
, (17)

where 0 < µ ≤ 1 is a forgetting factor used for nonstationary
observation sequences, and t is the current instant. Many
adaptive PCA algorithms actually optimize (17) by using
the gradient-descent method [29, 30] and the RLS method
[30–34].

The gradient-descent or Hebbian rule-based algorithms
are highly sensitive to η. RLS-based algorithms such as adap-
tive principal components extraction (APEX) [35], Kalman-
type RLS [31], projection approximation subspace tracking
(PAST) [30], PAST with deflation (PASTd) [30], and the
robust RLS algorithm (RRLSA) [33] can overcome the draw-
back. All RLS-based PCA algorithms exhibit fast convergence
and high tracking accuracy and are suitable for slowly
varying nonstationary vector stochastic processes. However,
RLS method may cause instability in certain cases. All
these algorithms correspond to a three-layer J1-J2-J1 linear
autoassociative network model, and they can extract all the
J2 PCs in the descending order of the eigenvalues, where a
GSO-like orthonormalization procedure is used.

In [36], a regularization term µt�wTP−1
0 �w is added to (17),

where �w is a stack vector of W and P0 is a diagonal matrix
with dimension J1J2 × J1J2. As t is sufficiently large, this term
is negligible. This term ensures that the entries of W do not
become too large. The Gauss-Seidel recursive PCA and Jacobi
recursive PCA algorithms are derived in [36].

The LMSER algorithm is derived on the MSE criterion
using the gradient-descent method [29]. LMSER reduces to
Oja’s SLA algorithm when W(t) is orthonormal, namely,
WT(t)W(t) = I. Oja’s algorithm can thus be treated as an
approximate stochastic gradient rule to minimize the MSE.
LMSER [29] has been compared with the weighted SLA
[22] and GHA [8] in [37]. LMSER [29] uses nearly twice
as much computation as weighted SLA [22] and GHA [8],
for each update of the weight. However, it leads to a smaller
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asymptotic MSE and faster convergence for the minor
eigenvectors [37].

PASTd [30] is a well-known subspace tracking algorithm
updating the signal eigenvectors and eigenvalues. PASTd
is based on PAST. Both PAST and PASTd are derived for
complex-valued signals. Both PAST and PASTd have linear
computational complexity, that is, O(J1J2) operations every
update, as in the cases of SLA [14], GHA [8], LMSER [29],
and novel information criterion (NIC) [32]. PAST computes
an arbitrary basis of the signal subspace, while PASTd
is able to update the signal eigenvectors and eigenvalues.
Both the algorithms produce nearly orthonormal, but not
exactly orthonormal, subspace basis or eigenvector estimates.
If perfectly orthonormal eigenvector estimates are required,
an orthonormalization procedure is necessary.

Kalman-type RLS [31] combines the basic RLS algorithm
with the GSO procedure. Kalman-type RLS and PASTd are
exactly identical if the inverse of the covariance of the output
of the ith neuron in Kalman-type RLSA takes a special value.
In the one-unit case, both PAST and PASTd reduce to Oja’s
learning rule [14]. Both PAST and PASTd provide much
more robust estimates than eigenvalue decomposition (EVD)
and converge much faster than SLA [14]. PASTd has been
extended for tracking both the rank and the subspace by
using some information theoretic criteria [38].

RRLSA [33] is more robust than PASTd [30]. RRLSA
can be implemented in a sequential or parallel form. RRLSA
has the flexibility as Kalman-type RLS [31], PASTd [30],
APEX [35] in that increasing the number of neurons does not
affect the previously extracted principal components. RRLSA
naturally selects the inverse of the output energy to be the
adaptive learning rate for the Hebbian rule. The Hebbian
and Oja rules are closely related to the RRLSA algorithm
by suitable selection of the learning rates [33]. RRLSA [33]
is also robust to the error accumulation from the previous
components, which exists in the sequential PCA algorithms
like Kalman-type RLS [31] and PASTd [30]. RRLSA con-
verges fast, even if the eigenvalues extend over several
orders of magnitude. According to the empirical results
[33], RRLSA provides the best performance in terms of the
convergence speed as well as the steady-state error, whereas
Kalman-type RLS and PASTd have similar performance,
which is inferior to that of RRLSA, and ALA [20] exhibits
the poorest performance.

6. Other Optimization-Based Principal
Component Analysis

PCA can be derived by any optimization method based
on a proper objective function. This leads to many other
algorithms, including gradient-descent based algorithms [15,
16, 39, 40], the conjugate gradient (CG) method [41],
and the quasi-Newton method [42, 43]. The gradient-
descent method usually converges to a local minimum.
Some adaptive algorithms derived from the gradient descent,
conjugate direction, and Newton-Raphson methods, whose
simulation results are better than that of the gradient-descent
method [29], have also been proposed in [44]. Second-order

algorithms such as the CG [41] and quasi-Newton methods
[42] typically converge much faster than first-order methods
but have a computational complexity ofO(J2

1 J2) per iteration.

The infomax principle [16] was first proposed by Linsker
to describe a neural network algorithm. The principal
subspace is derived by maximizing the mutual information
criterion.

The NIC algorithm [32] is obtained by applying the
gradient-descent method to maximize the NIC, a cost func-
tion that is very similar to the mutual information criterion
[16, 45] but integrates a soft constraint on the weight
orthogonalization. The NIC has a steep landscape along
the trajectory from a small weight matrix to the optimum
one. ENIC has a single global maximum, and all the other
stationary points are unstable saddle points. At the global
maximum, W yields an arbitrary orthonormal basis of the
principal subspace. The NIC algorithm has a computational
complexity of O(J2

1 J2) for each iteration.

The NIC algorithm is a PSA method. It can extract the
principal eigenvectors when the deflation technique is incor-
porated. The NIC algorithm converges much faster than
SLA [22] and LMSER [29] and is able to globally converge
to the PSA solution from almost any weight initialization.
Reorthonormalization can be applied so as to perform true
PCA [30, 32]. An RLS version of the NIC algorithm is given
in [32]. The PAST algorithm [30] is a special case of the NIC
algorithm when η takes unity. The weighted information
criterion (WINC) [34] is obtained by adding to the NIC
a weight to break the symmetry in the NIC. Two WINC
algorithms are derived by using gradient ascent and RLS,
respectively. The gradient ascent-based WINC algorithm can
be viewed be a weighted SLA [23] with an adaptive step size,
leading to a much faster convergence speed. The RLS-based
WINC algorithm not only provides fast convergence and
high accuracy but also has low computational complexity.

Most popular PCA or MCA algorithms do not consider
eigenvalue estimates in the update equations of the weights,
and they suffer from the stability-speed problem. The con-
vergence speed of a system depends on the eigenvalues of its
Jacobian. In PCA algorithms, the eigenmotion depends on
the principal eigenvalue of the covariance matrix, while in
MCA algorithms on all the eigenvalues [46]. Coupled learn-
ing rules can be derived by applying the Newton method
to a common information criterion. In coupled PCA/MCA
algorithms [46], both the eigenvalues and the eigenvectors
are simultaneously adapted. The Newton method yields
averaged systems with identical speed of convergence in all
eigendirections.

In order to extract multiple PCs, one has to apply an
orthonormalization procedure, like GSO, or its first-order
approximation as used in SLA [7, 22], or deflation as in
GHA [8]. In the coupled learning rules, multiple PCs are
simultaneously estimated by a coupled system of equations.
In the coupled learning rules a first-order approximation
of GSO is superior to the standard deflation procedure in
terms of the orthonormality error and the quality of the
eigenvectors and eigenvalues generated [47].
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Figure 2: Architecture of the PCA network with hierarchical lateral
connections. The lateral weight matrix U is an upper triangular
matrix with zero diagonal elements.

7. Anti-Hebbian Rule-Based Principal
Component Analysis

The anti-Hebbian learning rule updates a synaptic weight
by the same amount as that in the Hebbian rule [9] but in
the opposite direction. The anti-Hebbian rule can be used
to remove correlations between units receiving correlated
inputs [13, 48, 49]. The anti-Hebbian rule is inherently stable
[13, 49].

Anti-Hebbian rule-based PCA algorithms can be derived
by using a J1-J2 feedforward architecture with lateral con-
nections among the output units [13, 48, 49]. The lateral
connections can be in a symmetrical or hierarchical topology.
The hierarchical lateral connection topology is illustrated
in Figure 2, based on which Rubner-Tavan PCA [13, 49]
and APEX [50] algorithms are proposed. In [48], the local
PCA algorithm is based on a symmetrical lateral connection
topology. In addition to the feedforward weights W, the
lateral weight matrix U = [u1 · · ·uJ2 ] is a J2 × J2 matrix,

where ui = (u1i,u2i, . . . ,uJ2i)
T contains all the lateral weights

connected to neuron i and u ji denotes the lateral weight from
unit j to unit i.

The Rubner-Tavan PCA algorithm is based on the PCA
network with hierarchical lateral connection topology [13,
49]. The algorithm extracts the first J2 PCs in the decreasing
order of the eigenvalues.

The weights wi are trained by Oja’s rule, while the lateral
weights ui are updated by the anti-Hebbian rule. This is a
nonlocal algorithm. During the training process, the outputs
of the neurons are gradually uncorrelated and the lateral
weights approach zero. The network should be trained until
the lateral weights ui are below a specified level. The PCA
algorithm proposed in [48] has the same form as Rubner-
Tavan PCA, but U is a full matrix.

The APEX algorithm is used to adaptively extract the
PCs [50]. The algorithm is recursive and adaptive, namely,
given i − 1 PCs, it can produce the ith PC iteratively.
The hierarchical structure of lateral connections serves the
purpose of weight orthogonalization and also allows the
network to grow or shrink without retraining the old
units. APEX is proved to have the property of exponential
convergence [50].

Assuming that the correlation matrix C has distinct
eigenvalues arranged in the decreasing order as λ1 > λ2 >
· · · > λJ2 with the corresponding eigenvectors w1, . . . , wJ2 ,
the algorithm is given as [35, 50]

y = WTx,

yi = wT
i x + uTy,

(18)

where y = (y1, . . . , yi−1)T is the output vector, u =
(u1i,u2i, . . . ,u(i−1)i)

T , and W = [w1 · · ·wi−1] is the weight
matrix of the first i − 1 neurons. The iteration is given as
[35, 50]

wi(t + 1) = wi(t) + ηi(t)
[
yi(t)xt − y2

i (t)wi(t)
]
, (19)

u(t + 1) = u(t)− ηi(k)
[
yi(t)y(t) + y2

i (t)u(t)
]
. (20)

Equation (19) is the Hebbian part, and (20) the anti-Heb-
bian part. yi tends to be orthogonal to all the previous
components due to the anti-Hebbian rule, also called orthog-
onalization rule. APEX can also be derived from the RLS
method using the MSE criterion. Based on the RLS method,
an optimum learning rate in terms of convergence speed is
given by ηi(t) = (1 − µ)/λi, where 0 < µ ≤ 1 is a forgetting
factor [35].

A desirable number of neurons can be decided during
the learning process. When the environment is changing over
time, a new PC can be added to compensate for the change
without affecting the previously computed PCs, and the
network structure can be expanded if necessary. wi converges
to the eigenvector of the correlation matrix C corresponding
to the ith largest eigenvalue, and u converges to zero.

For growing each additional PC, APEX requires O(J1) per
iteration, while GHA requires O(J1J2) per iteration.

A class of learning algorithms, called ψ-APEX, is pre-
sented based on a criterion optimization [51, 52]. ψ can be
selected as an arbitrary function that guarantees the stability
of the network. Some members in the class have better
numerical performance and require less computational effort
compared to that of both GHA and APEX.

Most existing linear complexity methods including GHA
[8], SLA [7], and PCA with the lateral connections [13, 35,
48–50] require a computational complexity of O(J1J2) per
iteration.

8. Nonlinear Principal Component Analysis

PCA is based on the Gaussian assumption for data distri-
bution, and the optimality of PCA results from taking into
account only the second-order statistics. For non-Gaussian
data distributions, PCA is not able to capture complex non-
linear correlations, and nonlinear processing of the data is
usually more efficient. Nonlinearities introduce higher-order
statistics into the computation in an implicit way. Higher-
order statistics, defined by cumulants, are needed for a
good characterization of non-Gaussian data. PCA can be
generalized to distributions of the exponential family [53].

When the feature space is nonlinearly related to the
input space, we need to use nonlinear PCA. The outputs
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of nonlinear PCA networks are usually more independent
than their respective linear cases. For non-Gaussian input
data, a nonlinear PCA permits the extraction of higher-order
components and provides a sufficient representation.

Kernel PCA [3, 54] is a special, linear algebra-based
nonlinear PCA, which introduces kernel functions into PCA.
The kernel PCA first maps the original input data into a
high-dimensional feature space using the kernel method and
then calculates PCA in the high-dimensional feature space.
It is much more complicated and may sometimes be caught
more easily in local minima. PCA needs to deal with an
eigenvalue problem of a J1 × J1 matrix, while kernel PCA
needs to solve an eigenvalue problem of an N × N matrix.
Sparse approximation methods can be applied to reduce the
computational cost [3].

In order to increase the robustness of PCA against
outliers, a robust version of the covariance matrix based
on the M-estimator can be used. Several popular PCA
algorithms have been generalized into robust versions by
applying statistical physics approach [55], where the defined
objective function can be regarded as a soft generalization
of an M-estimator [56]. Robust PCA can be defined so that
the optimization criterion grows less than quadratically with
the same constraint conditions as those for PCA, which are
based on the quadratic criterion [57]. This usually leads
to mildly nonlinear algorithms, in which the nonlinearities
appear at selected places only and at least one neuron
produces the linear response yi = xTwi. When all the
neurons generate nonlinear responses yi = φ(xTwi), the
algorithm is referred to as nonlinear PCA. The robust or
nonlinear PCA algorithms are derived by using the gradient-
descent method [57]. They can be treated as generalization
of SLA [7, 22] and the GHA [8]. Robust and nonlinear
PCA algorithms have better stability properties than the
corresponding PCA algorithms if the (odd) nonlinearity ϕ(x)
grows less than linearly, namely, |ϕ(x)| < |x| [57]. On the
contrary, nonlinearities growing faster than linearly cause
stability problems easily and are not recommended. These
extensions are also introduced in [29, 58, 59].

The multilayer perceptron (MLP) can be used to perform
nonlinear dimensionality reduction and hence nonlinear
PCA. Both the input and output layers of the MLP have J1
units, and one of its hidden units, known as the bottleneck
or representation layer, have J2 units, J2 < J1. The network
is trained to reproduce its input vectors themselves. This
kind of networks is called the autoassociative network. After
the network is trained, it performs a projection onto the
J2-dimensional subspace spanned by the first J2 PCs of the
data. The vectors of weights leading to the hidden units form
a basis set which spans the principal subspace, and data
compression therefore occurs in the bottleneck layer. Many
applications of the autoassociative MLP for PCA are available
in the literature [60–63].

Kramer’s nonlinear PCA network [62] is a five-layer
autoassociative MLP. It has J1 input and J1 output nodes. The
third layer has J2 nodes. Nonlinear activation functions such
as the sigmoidal functions are used in the second and fourth
layers, while the nodes in the bottleneck and output layers
usually have linear activation functions, although they can

be nonlinear. The network is trained by the backpropagation
(BP) algorithm [10, 64]. Kramer’s nonlinear PCA fits
a lower-dimensional surface through the training data.
Usually, the data compression achieved in the bottleneck
layer in such networks is somewhat better than that provided
by the PCA solution [65]. However, the BP algorithm is
prone to local minima and often requires excessive time for
convergence.

A hierarchical nonlinear PCA network composed of a
number of independent subnetworks can extract ordered
nonlinear PCs [66]. Each subnetwork extracts one PC and
has at least five layers. The subnetworks can be selected
as Kramer’s nonlinear PCA network and are hierarchically
arranged and trained. This network constructs the extraction
functions in the order of the reconstruction efficiency as to
the objective data. The number of PCs to be extracted is not
required to be known in advance.

A hybrid hetero/autoassociative network [67] is con-
structed with a set of autoassociative outputs and a set of
heteroassociative outputs. Both sets of output nodes are fully
connected to the same bottleneck layer. The improvement
over an autoassociative network or the PCA can be attributed
to the reorganization done by the network in the represen-
tation layer space. The self-organizing map (SOM) [68] is
a competitive learning-based neural network. It is capable
of performing dimensionality reduction on the input. The
SOM is inherently nonlinear and is viewed as a nonlinear
PCA [69]. The adaptive subspace SOM (ASSOM) [70, 71]
can be treated as a hybrid of VQ and PCA.

9. Minor Component Analysis

MCA, as a variant of PCA, is to find the smallest eigenvalues
and their corresponding eigenvectors of the autocorrelation
matrix C of the signals. MCA is closely associated with the
curve and surface fitting under the total least squares (TLSs)
criterion [72]. MCA provides an alternative solution to the
TLS problem [73]. The TLS technique achieves a better
global optimal objective than the LS technique [1]. Both
the TLS and LS problems can be solved by SVD. However,
the TLS technique is computationally much more expensive
than the least squares (LSs) technique [74]. MCA is useful
in many fields including spectrum estimation, optimization,
TLS parameter estimation in adaptive signal processing, and
eigen-based bearing estimation.

The anti-Hebbian learning rule and its normalized
version can be used for MCA [75], but both may lead
to infinite magnitudes of weights [76]. To avoid this, one
can renormalize the weight vector at each iteration. The
constrained anti-Hebbian learning algorithm [73, 77] has a
simple structure and requires a low computational complex-
ity per update. However, the convergence of the magnitudes
of the weights cannot be guaranteed either unless the initial
weights take special values. The total least mean squares
(TLMS) algorithm [74] is a random adaptive algorithm
for extracting the MC, which has an equilibrium point
under persistent excitation conditions. The TLMS requires
about 4J1 multiplications per iteration, which is twice the
complexity of the LMS [78]. An adaptive step-size learning
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algorithm [79] has been derived for extracting the MC by
introducing information criterion. The algorithm globally
converges asymptotically to the MC and its corresponding
eigenvector. The algorithm outperforms the TLMS [74] in
terms of both the convergence speed and the estimation
accuracy.

Minor components (MCs) can be extracted in ways
similar to that for PCs. A simple idea is to reverse the sign
of the PCA algorithms. This is because in many algorithms
PCs correspond to the maximum of a cost function, while
MCs correspond to the minimum of the same cost function.
However, this idea does not work in general and has been
discussed in [22]. Oja’s minor subspace analysis (MSA) algo-
rithm can be formulated by reversing the sign of the learning
rate of the SLA. This algorithm requires the assumption that
the smallest eigenvalue of the autocorrelation matrix C is
less than unity. However, Oja’s MSA algorithm is known to
diverge [22, 80, 81]. The bigradient PSA algorithm [82] is
a modification to SLA [7] and is obtained by introducing
an additional bigradient term embodying the orthonormal
constraints of the weights, and it can be used for MSA by
reversing the sign of η.

A general algorithm that can extract, in parallel, principal
and minor eigenvectors of arbitrary dimensions is derived
based on the natural-gradient method [83]. The difference
between PCA and MCA lies in the sign of the learning
rate. The MCA algorithm proposed in [83] suffers from
a marginal instability, and thus it requires intermittent
normalization such that ‖wi‖ = 1 [80]. A self-stabilizing
MCA algorithm has been proposed in [80], such that none
of ‖wi(t)‖ deviates significantly from unity. It diverges for
PCA when −η is changed to +η.

The orthogonal Oja (OOja) algorithm consists of Oja’s
MSA [7] plus an orthogonalization of W(t) at each iteration
[84], WT(t)W(t) = I. In this case, the above algorithms given
in [7, 80, 83] are equivalent. The OOja is numerically very
stable. By reversing the sign of η, we extract J2 PCs. The
normalized Oja (NOja) is derived by optimizing the MSE
criterion subject to an approximation to the orthonormal
constraint [81]. This leads to the optimal learning rate.
The normalized orthogonal Oja (NOOja) is an orthogonal
version of the NOja such that the orthonormal constraint is
perfectly satisfied [81]. Both algorithms offer, as compared
to Oja’s SLA, a faster convergence, orthogonality, and a
better numerical stability with a slight increase in the
computational complexity. By switching the sign of η in given
learning algorithms, both the NOja and the NOOja can be
used for the estimation of minor and principal subspaces of
a vector sequence.

The above algorithms including Oja’s MSA [7], the
natural-gradient-based method [83], self-stabilizing MCA
[80], OOja, NOja, and NOOja have a complexity of O(J1J2)
[80, 84]. OOja, NOjia, and NOOjia require less computation
load than the natural-gradient-based method [83], self-
stabilizing MCA [80, 81, 84].

By using the Rayleigh quotient as an energy function,
invariant-norm MCA [85] is analytically proved to converge
to the first MC of the input signals. However, invariant-
norm MCA [85] leads to divergence in finite time [76],

and this drawback can be eliminated by renormalizing the
weight vector at each iteration. In [86], an MCA algorithm
for extracting multiple MCs is described by using the idea
of sequential addition; a conversion method between MCA
and PCA is also discussed. Based on a generalized differential
equation for the generalized eigenvalue problem, a class of
algorithms can be obtained for extracting the first PC or MC
by selecting different parameters and functions [87]. Many
existing PCA and MCA algorithms are special cases of this
class. All the algorithms of this class have the same order of
convergence speed and are robust to implementation error. A
rapidly convergent quasi-Newton method has been applied
to extract multiple MCs in [88]. The proposed algorithm has
a complexity of O(J2

1 J2) but with a quadratic convergence. It
makes use of the implicit orthogonalization procedure that is
built into it through an inflation technique.

10. Localized Principal Component Analysis

The nonlinear PCA problem can be solved by partitioning
the data space into a number of disjunctive regions and
then estimating the principal subspace within each partition
by linear PCA. This is the so-called localized PCA. The
distribution is collectively modeled by a collection or a mix-
ture of linear PCA models, each characterizing a partition.
Most natural data sets have large eigenvalues in only a few
eigendirections, while the variances in other eigendirections
are so small as to be considered as noise. The localized
PCA method provides an efficient means to decompose
high-dimensional data compression problems into low-
dimensional data compression problems. The localized PCA
method is commonly used in image compression [8]. An
image is often first transformation coded by PCA, and then
the coefficients are quantized.

VQ-PCA [65] is a locally linear model that uses VQ to
define the Voronoi regions for localized PCA. The algorithm
builds a piecewise linear model of the data. It performs
better than the global models implemented by PCA model
and Kramer’s nonlinear PCA and is significantly faster than
Kramer’s nonlinear PCA [65]. Adaptive combination of PCA
and VQ is given in [89], where an autoassociative network
is used to perform PCA and simple competitive learning is
used to perform VQ. The error between the input and output
of the autoassociative network is fed to the VQ network.
The network produces better results than by using the two
algorithms successively. An online localized PCA algorithm
[90] is developed by extending the neural gas method [91].
Instead of the Euclidean distance measure, a combination of
a normalized Mahalanobis distance and the squared recon-
struction error guides the competition between the units.
Weighting between the two measures is determined from the
residual variance in the minor subspace of each submodel.
The unit centers are updated as in neural gas, while subspace
learning is based on the RRLSA algorithm [33].

Similar to localized PCA, localized ICA is used to
characterize nonlinear ICA. Clustering is first used for an
overall coarse nonlinear representation of the underlying
data and linear ICA is then applied in each cluster so as
to describe local features of the data [92]. This leads to a
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better representation of the data than in linear ICA. ASSOM
[93] is another localized PCA for unsupervised extraction
of invariant local features from the input data. ASSOM
associates a subspace instead of a single weight vector to each
node of the SOM. The subspaces in ASSOM can be formed
by applying ICA [94].

11. Extending to Complex Domain

Complex PCA is a generalization of PCA in complex-valued
data sets [95]. Complex PCA has been widely applied to
complex-valued data and two-dimensional vector fields.
Complex PCA employs the same neural network architecture
as that of PCA, but with complex weights. The objective
functions for PCA can also be adapted to complex PCA by
changing the transpose into the Hermitian transpose. For
example, for complex PCA, complex PCs can be extracted
by minimizing the MSE function

E = 1

N

N∑

i=1

∥∥∥zi −WWHzi
∥∥∥2

, (21)

where zi is the ith input complex vector.
In [96], a complex-valued neural network model is

developed for nonlinear complex PCA. Nonlinear complex
PCA has the ability to extract nonlinear features missed by
PCA. It uses the architecture of Kramer’s nonlinear PCA
network [62], but with complex weights and biases. For a
similar number of model parameters, the nonlinear complex
PCA model captures more variance of a data set than the
alternative real approach, where each complex variable is
replaced by two real variables and is applied to Kramer’s
nonlinear PCA. The complex nonlinear transfer function is
selected as tanh(z) with |z| < π/2 [97]. To limit the modulus
of the net input of a neuron |wHz| to be less than π/2,
one can initialize the algorithm with weights and biases of
small magnitudes and use a weight penalty in the objective
function. A complex-valued BP or quasi-Newton algorithm
can be used for training.

There are many other complex PCA algorithms. Both
PAST and PASTd are, respectively, the PSA and PCA
algorithms derived for complex-valued signals [30]. A
heuristic complex extension of GHA [8] and APEX [35]
is, respectively, given in [98, 99]. The robust complex PCA
algorithms have also been derived in [100] for hierarchically
extracting PCs of complex-valued signals based on a robust
statistics-based loss function. Concerning complex MCA,
the constrained anti-Hebbian algorithm [73, 77] has been
extended for the complex-valued TLS problem [77] and has
been applied to adaptive FIR and IIR filtering. The adaptive
invariant-norm MCA algorithm [85] has been generalized
to the case for complex-valued input signal vector x(t). For
ICA algorithms, FastICA has been applied to complex signals
[101]. The ψ-APEX algorithms and GHA are, respectively,
extended to the complex-valued case [102, 103]. Based on a
suitably selected nonlinear function, these algorithms can be
used for BSS of complex-valued circular source signals.

12. Other Generalizations of PCA

Simple neural models, described by differential equations,
are derived in [104, 105] to calculate the largest and smallest
eigenvalues as well as their corresponding eigenvectors of
any real symmetric matrix. Supervised PCA [106, 107]
is achieved by augmenting the input of the PCA with
the class label of the data set. Given a sample covariance
matrix, we examine the problem of maximizing the variance
explained by a linear combination of the input variables
while constraining the number of nonzero coefficients in
this combination. This is known as sparse PCA [108]. Con-
strained PCA, generalized EVD, and the two-dimensional
PCA are three important generalizations to PCA.

12.1. Constrained Principal Component Analysis. When cer-
tain subspaces are less preferred than others, this yields
constrained PCA [109]. The optimality criterion for con-
strained PCA is variance maximization, as in PCA, but with
an external subspace orthogonality constraint that extracted
PCs are orthogonal to some undesired subspaces. PCA
usually obtains the best fixed-rank approximation to the data
in the LS sense. On the other hand, constrained PCA allows
specifying metric matrices that modulate the effects of rows
and columns of a data matrix. This actually is the weighted
LS estimation. Constrained PCA first decomposes the data
matrix by projecting the data matrix onto the spaces spanned
by matrices of external information and then applies PCA to
decomposed matrices, which involves the generalized SVD.
The APEX algorithm has been applied to recursively solve
the constrained PCA problem [35].

The constrained PAST algorithm [110] is for tracking the
signal subspace recursively. Based on an interpretation of the
signal subspace as the solution of a constrained minimization
task, it guarantees the orthonormality of the estimated signal
subspace basis at each update, hence avoiding orthonormal-
ization process. To reduce the computational complexity,
fast constrained PAST is introduced which has O(J1J2)
complexity. A signal subspace rank estimator is employed to
track the number of sources.

12.2. Generalized Eigenvalue Decomposition. Generalized
EVD is a statistical tool extremely useful in feature extrac-
tion, pattern recognition as well as signal estimation and
detection. The generalized EVD problem involves the matrix
equation

R1wi = λiR2wi, i = 1, . . . , J2, (22)

where R1, R2 ∈ RJ1×J1 , and λi, wi are, respectively, the
ith generalized eigenvalue and its corresponding general-
ized eigenvector. For real symmetric and positive definite
matrices, all the generalized eigenvectors are real and the
corresponding generalized eigenvalues are positive.

Generalized EVD achieves simultaneous diagonalization
of R1 and R2:

WTR1W = �Λ, WTR2W = I, (23)
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where W = [w1, . . . , wJ2 ] and �Λ = diag(λ1, . . . , λJ2 ). Typically,
R1 and R2 are, respectively, the full covariance matrices of
zero-mean stationary random signals x1, x2 ∈ RJ1 . In this
case, iterative generalized EVD algorithms can be obtained by
using two PCA steps. When R2 becomes an identity matrix,
the generalized EVD reduces to PCA.

Any generalized eigenvector wi is a stationary point of the
criterion function

EGEVD(w) = wTR1w

wTR2w
. (24)

The LDA problem is a typical generalized EVD problem. The
three-layer LDA network [111] is obtained by concatenating
two Rubner-Tavan PCA subnetworks, each being trained
by the Rubner-Tavan PCA algorithm [13, 49]. Based on
the Rubner-Tavan PCA network architecture, online local
learning algorithms for LDA and generalized EVD are given
in [112]. There are also a number of adaptive methods
for generalized EVD such as LDA-based gradient descent
[113, 114], a quasi-Newton type generalized EVD [115],
an RLS-like fixed-point generalized EVD algorithm [116],
error-correction learning [112], and Hebbian learning [112].
All these algorithms first extract the principal generalized
eigenvector and then estimate the minor generalized eigen-
vectors using a deflation procedure.

A recurrent network with invariant B-norm [117] com-
putes the largest or smallest generalized eigenvalue and the
corresponding eigenvector of any symmetric positive pair,
which can be simply extended to compute the second largest
or smallest generalized eigenvalue and the corresponding
eigenvector. In [118], the proposed unconstrained quartic
cost function based on the weighted rule has a unique global
minimum, which corresponds to the principal generalized
eigenvectors.

12.3. Two-Dimensional PCA. Two-dimensional PCA [5]
is especially designed for image representation. An image
covariance matrix is constructed directly using the original
image matrices instead of the transformed vectors, and its
eigenvectors are derived for image feature extraction. For
m × n images, the size of the image covariance (scatter)
matrix using two-dimensional PCA is n × n, whereas, for
PCA, the size is mn × mn. This results in considerable
computational advantage in two-dimensional PCA. Two-
dimensional PCA evaluates the covariance matrix more
accurately over PCA. When used for face recognition, two-
dimensional PCA results in a better recognition accuracy.
Two-dimensional PCA is a row-based PCA, and it only
reflects the information between rows. Diagonal PCA [119]
improves two-dimensional PCA by defining the image
scatter matrix as the covariances between the variations of
the rows and those of the columns of the images and is shown
to be more accurate than PCA and two-dimensional PCA.
L1-norm-based two-dimensional PCA [120] is a iterative
two-dimensional generalization of L1-norm based PCA.

Bidirectional PCA [121] reduces the dimension in both
column and row directions for image feature extraction. The
feature dimension obtained is much less than that of two-
dimensional PCA. Two-dimensional PCA can be regarded
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Figure 3: Architecture of the cross-correlation APCA network. The
APCA network is composed of two hierarchical PCA networks. The
connections with solid arrows denote feedforward connections, and
the connections with hollow arrows denote lateral connections.

as a special bidirectional PCA. Bidirectional PCA has to be
performed in batch mode. With the concepts of tensor, k-
mode unfolding and matricization, an SVD-revision-based
incremental learning method of bidirectional PCA [122]
gives a close approximation to bidirectional PCA, but using
less time.

The uncorrelated multilinear PCA algorithm [123] is
used for unsupervised subspace learning of tensorial data.
It is a multilinear extension of PCA. Through successive
variance maximization, uncorrelated multilinear PCA seeks
a tensor-to-vector projection that captures most of the
variation in the original tensorial input while producing
uncorrelated features. It is the only multilinear extension
of PCA that can produce uncorrelated features in a fashion
similar to that of PCA, in contrast to other multilinear
PCA extensions, such as two-dimensional PCA [5] and
multilinear PCA (MPCA) [124].

13. Singular Value Decomposition

Given two sets of random vectors with zero mean, {xt ∈ Rn1}
and {yt ∈ Rn2}, the cross-correlation matrix is defined by

Cxy = E
[

xty
T
t

]
=

n∑

i=1

σiv
x
i

(
v
y
i

)T
, (25)

where σi > 0 is the ith singular value, vx
i and v

y
i are

its corresponding left and right singular vectors, and n =
min{n1,n2}. The cross-correlation asymmetric PCA/MCA
networks can be used to extract the singular values of the
cross-correlation matrix of two stochastic signal vectors or
to implement SVD of a general matrix.

Cross-correlation asymmetric PCA (APCA) network
consists of two sets of neurons that are laterally hierarchically
connected [125]. The topology of the network is shown
in Figure 3. x and y are, respectively, the n1-dimensional
and n2-dimensional input signals, the n1 × m matrix W =
[w1 · · ·wm] and the n2 × m matrix W = [w1 · · ·wm] are
the feedforward weights, while the n2 × m matrices U =
[u1 · · ·um] and U = [u1 · · ·um] are the lateral connection

weights, where ui = (u1i, . . . ,umi)
T , ui = (u1i, . . . ,umi)

T , and
m ≤ min {n1,n2}. This model performs SVD of Cxy [125].
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The network has the following relations:

a = WTx, b = W
T

y, (26)

where a = (a1, . . . , am)T and b = (b1, . . . , bm)T .
The objective function for extracting the first principal

singular value of the covariance matrix is given by

EAPCA(w, w) = E[a1(t)b1(t)]∥∥w
∥∥‖w‖ =

wTCxyw∥∥w
∥∥‖w‖ .

(27)

It is an indefinite function. When y = x, it reduces to PCA
[14]. After the principal singular component is extracted,
a deflation transformation is introduced to nullify the
principal singular value so as to make the next singular value
principal. Thus, Cxy in the criterion (27) can be replaced by a
transformed form so as to extract the next principal singular
component.

Using a deflation transformation, the two sets of neurons
are trained with the cross-coupled Hebbian learning rules,
which are given in [125, 126]. wi and wi approximate the ith
left and right principal singular vectors of Cxy , respectively,
and σi approximates its corresponding criterion EAPCA, as
t → ∞. The algorithm extracts the first m principal singular
values in the descending order and their corresponding left
and right singular vectors. Like APEX, the APCA algorithm
incrementally adds nodes without retraining the learned
nodes. Exponential convergence has been demonstrated by
simulation [125].

Based on the APCA network, the principal singular
component of Cxy can be efficiently extracted by using a
modification to the cross-coupled Hebbian rule with global
asymptotic convergence [127]. This algorithm is extended
for extracting the principal singular component of a general
matrix A ∈ Rn1×n2 by replacing the cross-correlation matrix
by a general nonsquare matrix [127]. Based on this and a
deflation transformation, one can extract multiple principal
singular components for the nonsquare matrix A [127]. The
algorithm can efficiently perform SVD of an ill-posed matrix.
It can be used to solve the smallest singular component of the
general matrix A and is especially useful for TLS problems.
Some adaptive SVD algorithms for subspace tracking of a
recursively updated data matrix have been surveyed and
proposed in [128].

Coupled learning rules for SVD produce better results
than Hebbian learning rules. Combined with first-order
approximation of GSO, precise estimates of singular vec-
tors and singular values with only small deviations from
orthonormality are produced. Double deflation is clearly
superior to standard deflation but inferior to first-order
approximation of GSO, both with respect to orthonormality
and diagonalization errors. Coupled learning rules converge
faster than Hebbian learning rules, and the first-order
approximation of GSO produces more precise estimates and
better orthonormality than standard deflation [129]. Many
SVD algorithms are reviewed in [129].

Tucker decomposition [130] decomposes a three-
dimensional signal directly using three-dimensional PCA,
which is a multilinear generalization of SVD to multidi-
mensional data. For video frames, this higher-order SVD

decomposes the dynamic texture as a multidimensional sig-
nal (tensor) without unfolding the video frames on column
vectors. This is a more natural and flexible decomposition,
since it permits us to perform dimension reduction in the
spatial, temporal, and chromatic domains between the pixels
of the video sequence, leading to an important decrease
in model size, while standard SVD allows for temporal
reduction only. The analysis part is more expensive, but the
synthesis has the same cost as existing algorithms [131].

14. Canonical Correlation Analysis

CCA [132], proposed by Hotelling in 1936, is a multivariate
statistical technique. It makes use of two views of the same
set of objects and projects them onto a lower-dimensional
space in which they are maximally correlated. CCA seeks
prominently correlated projections between two views of
data, and it has been long known to be equivalent to LDA
when the data features are used in one view and the class
labels are used in the other view [133, 134]. In other words,
LDA is a special case of CCA. CCA is equivalent to LDA for
binary-class problems [134], and it can be formulated as an
LS problem for binary-class problems.

CCA leads to a generalized EVD problem. Thus, we can
employ a kernelized version of CCA to compute a flexible
contrast function for ICA. Generalized CCA consists of a
generalization of CCA to more than two sets of variables
[135].

Given two centered random multivariables x ∈ Rnx and
y ∈ Rny , the goal of CCA is to find a pair of directions
�ωx and �ωy such that the correlation ρ(x, y) between the two
projections �ωT

x x and �ωT
y y is maximized.

Suppose that we are given a sample of instances S =
{(x1, y1), . . . , (xn, yn)} of (x, y). Let Sx denote (x1, . . . , xn) and
similarly Sy denote (y1, . . . , yn). We can consider defining a
new coordinate for x by choosing direction wx and projecting
x onto that direction, x → wT

x x. If we do the same for y
by choosing direction wy , we obtain a sample of the new
mapping for y. Let

Sx,wx =
(

wT
x x1, . . . , wT

x xn

)
, (28)

with the corresponding values of the mapping for y being

Sy,wy =
(

wT
y y1, . . . , wT

y yn
)
. (29)

The first stage of canonical correlation is to choose wx and
wy to maximize the correlation between the two vectors

ρ = max
wx ,wy

corr
(
Sxwx , Sywy

)
= max

wx ,wy

〈
Sxwx , Sywy

〉

∥∥Sxwx

∥∥∥∥∥Sywy

∥∥∥
. (30)

After manipulation, we have

ρ = max
wx ,wy

wT
x E
[

xyT
]

wy√
wT
x E[xxT]wxwT

y E
[

yyT
]

wy

=
wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

,

(31)
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where the covariance matrix of (x, y) is defined by

C
(

x, y
)
= E

⎡
⎣
(

x
y

)(
x
y

)T
⎤
⎦ =

[
Cxx Cxy

Cyx Cyy

]
= C. (32)

Under a mild condition which tends to hold for high-
dimensional data, CCA in the multilabel case can be
formulated as an LS problem [136]. Based on this, efficient
algorithms for solving LS problems can be applied to scale
CCA to very large data sets. In addition, several CCA
extensions, including the sparse CCA formulation based on
L1-norm regularization, are proposed [136]. The LS formu-
lation of CCA and its extensions can be solved efficiently. The
LS formulation is extended to orthonormalized partial least
squares by establishing the equivalence relationship between
CCA and orthonormalized partial least squares [136]. The
CCA projection for one set of variables is independent of the
regularization on the other set of multidimensional variables.

In [137], a strategy for reducing LDA to CCA is proposed.
Within-class coupling CCA (WCCCA) is to apply CCA to
pairs of data samples that are most likely to belong to the
same class. Each one of the samples of a class, serving as the
first view, is paired with every other samples of that class
serving as the second view. The equivalence between LDA
and such an application of CCA is proved.

Two-dimensional CCA seeks linear correlation based
on images directly. Motivated by locality-preserving CCA
[138] and spectral clustering, a manifold learning method
called local two-dimensional CCA [139] identifies the local
correlation by weighting images differently according to
their closeness. That is, the correlation is measured locally,
which makes local two-dimensional CCA more accurate in
finding correlative information. Local two-dimensional CCA
is formulated as solving generalized eigenvalue equations
tuned by Laplacian matrices.

CCArc [140] is a two-dimensional CCA that is based on
representing the image as the sets of its rows and columns
and implementation of CCA using these sets. CCArc does
not require preliminary downsampling procedure, it is not
iterative and it is applied along the rows and columns of
input image. Size of covariance matrices in CCArc is equal
to max{M,N} Small-sample-size problem in CCArc does
not occur, because we actually use N images of size M × 1
and M images of size N × 1; this always meets the condition
max{M,N} < (M + N).

15. A Simulation Example

The concept of subspace is involved in many information
processing problems. This requires EVD of the autocorre-
lation matrix of a data set or SVD of the cross-correlation
matrix of two data sets. For example, in the area of
array signal processing, the APCA algorithm is used in
beamforming [126] and the MCA or PCA method is used
in DoA estimation [141]. We have also illustrated weighted
SLA, GHA, and APEX in [10]. We now provide an example
to illustrate the application of PCA.

Image compression is usually implemented by partition-
ing an image into many nonoverlapping 8×8 pixel blocks and

then compressing them one by one. Based on the statistics
of all the regions, one can use PCA to compress the image
[8, 10]. Each region is concatenated into a vector, and all
the vectors constitute a training set. PCA is then applied
to extract those prominent PCs, as such the image is
compressed. Similar results for image compression have been
reported in [11, 142] by using a three-layer autoassociative
network with BP learning. PCA as well as LDA achieves the
same results for an original data set and its orthonormally
transformed version [143]; thus, both methods can be
directly implemented in the DCT domain, and the results are
exactly the same as that obtained from the spatial domain.

In this example, we use the APEX algorithm to train
the PCA network and then use the trained network to
encode other pictures. We use the benchmark Lina picture
of 560 × 560 pixels as the training set, and a kid picture of
640 × 560, which has the similar statistics, is then used for
generalization. We first use 8 × 8 blocks. For each square,
only the first PC is significant, and all the other PCs can be
ignored in terms of the quality of the restored picture. In this
sense, we achieve a compression ratio of 1 : 64. However, the
quality of the restored image is very poor. This is because
PCA assumes the Guassian statistics of the data set and a real
picture usually does not satisfy this assumption.

To improve the quality of the restored image, we employ
nonoverlapping 4 × 4 blocks and again use the first PCs of
the blocks. This achieves a compression ratio of 1 : 16. The
Lena picture is thus transformed into a training set of 14400
vectors, and the kid picture is transformed into a validation
set of 19200 vectors. The training set is so large that the APEX
algorithm converges after only two epochs. The obtained
codebook is w1 = (0.1949, 0.2222, 0.1920, 0.1747, 0.2255,
0.2065, 0.2195, 0.2246, 0.1972, 0.1701, 0.2268, 0.1908,
0.2224, 0.1996, 0.2140, 0.1783)T . The Lena picture and its
restored version are shown in Figure 4. The trained network
is then used to compress the kid picture. Both the kid picture
and its restored version are shown in Figure 5.

16. Summary

In this paper, we have discussed various neural network
implementations and algorithms for PCA and its various
extensions, including PCA, MCA, generalized EVD, con-
strained PCA, two-dimensional methods, localized methods,
complex-domain methods, and SVD. These neural network
methods provide an advantage over their conventional
counterparts in that they are adaptive algorithms and
have low computational as well as low storage complexity.
These neural network methods find wide applications in
pattern recognition, blind source separation, adaptive signal
processing, and information compression. Two methods that
are strongly associated with PCA, namely, ICA and LDA, are
described here in passing.

16.1. Independent Component Analysis. ICA [144] is a sta-
tistical model that extends PCA. ICA has been widely used
for BSS, feature extraction, and signal detection. For BSS
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Figure 4: The benchmark Lena picture and its restored version.

Figure 5: The kid picture and its restored version.

applications, the ICA model is required to have model iden-
tifiability and separability [144]. The first neural network
model related to the ICA was developed for online BSS of
linearly mixed signals in [145].

ICA can extract the statistically independent components
from the input data set. It is to estimate the mutual informa-
tion between the signals by adjusting the estimated matrix
to give outputs that are maximally independent. By applying
ICA to estimate the independent input data from raw data, a
statistical test can be derived to reduce the input dimension.
The dimensions to remove are those that are independent of
the output. In contrast, in PCA the dimensionality reduction
is achieved by removing those dimensions that have a low
variance.

Let a J1-vector x denote a linear mixture and a J2-vector
s, whose components have zero mean and are statistically
mutually independent, denote the original source signals.
The ICA data model can be written as

x = As + n, (33)

where A is an unknown constant full-rank J1 × J2 mixing
matrix and n denotes the additive noise term, which is
often omitted since it is usually impossible to separate noise
from the sources. ICA takes one of three forms, namely,
square ICA for J1 = J2, overcomplete ICA for J1 < J2, and
undercomplete ICA for J1 > J2. While undercomplete ICA
is useful for feature extraction, overcomplete ICA may be
applied to signal and image processing methods based on
multiscale and redundant basis sets.

The goal of ICA is to estimate s by

y = WTx (34)

such that the components of y, which is the estimate of s,
are statistically as independent as possible, W being a J1 ×
J2 demixing matrix. The statistical independence property
implies that the joint probability density of the components
of s equals the product of the marginal densities of the
individual components. Each component of s is a station-
ary stochastic process, and only one of the components
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is allowed to be Gaussian distributed. The higher-order
statistics of the original inputs are required for estimating s,
rather than the second-order moment or covariance of the
samples as used in PCA.

The demixing matrix W of ICA is not orthogonal, while
in PCA the components of the weights are represented on
an orthonormal basis. ICA provides in many cases a more
meaningful representation of the data than PCA. ICA can
be realized by adding nonlinearity to linear PCA networks
such that they are able to improve the independence of
their outputs. In [146], an efficient ICA algorithm is derived
by minimizing a nonlinear PCA criterion using the RLS
approach. The three-layer (J1-J2-J1) linear autoassociative
network can also be used as an ICA network, as long as the
outputs of the hidden layer are independent.

A well-known two-phase approach to ICA is to prepro-
cess the data by PCA and then to estimate the necessary
rotation matrix. A generic approach to ICA consists of pre-
processing the data, defining measures of non-Gaussianity,
and optimizing an objective function, known as a contrast
function. Some measures of non-Gaussianity are kurtosis,
differential entropy, negentropy, and mutual information,
which can be derived from one another. Popular ICA
algorithms include the Infomax, the natural-gradient, the
equivariant adaptive separation via independence (EASI),
and the FastICA algorithms [10]. FastICA is a well-known
fixed-point ICA algorithm [147]. It is derived from the
optimization of the kurtosis or the negentropy measure by
using Newton’s method. FastICA achieves a reliable and
at least a quadratic convergence. FastICA with symmetric
orthogonalization and tanh nonlinearity is concluded as the
best trade-off for ICA [10].

The ICA methods can be easily extended to the com-
plex domain by using Hermitian transpose and complex
nonlinear functions. In the context of BSS, the higher-order
statistics are necessary only for temporally uncorrelated sta-
tionary sources. Second-order statistics-based source separa-
tion exploits temporally correlated stationary sources and the
nonstationarity of the sources [148]. Many natural signals are
inherently nonstationary with time-varying variances, since
the source signals incorporate time delays into the basic BSS
model.

Blind separation of the original signals in nonlinear
mixtures has many difficulties such as the intrinsic inde-
terminacy, the unknown distribution of the sources as well
as the mixing conditions, and the presence of noise. It
is impossible to separate the original sources using only
the source independence assumption of some unknown
nonlinear transformations of the sources [149]. Nonlinear
ICA can be modeled by a parameterized neural network
whose parameters can be determined under the criterion of
independence of its outputs. The inverse of the nonlinear
mixing model can be modeled by using the three-layer MLP,
the RBFN, the SOM, or the kernel-based nonlinear BSS
method [10].

Nonnegativity is a natural condition for many real-world
applications, for example, in the analysis of images, text, or
air quality. Neural networks can be suggested by imposing
a nonnegativity constraint on the outputs [29] or weights.

Nonnegative PCA and nonnegative ICA algorithms are
given in [150], where the sources si must be nonnegative.
Constrained ICA is a framework that incorporates additional
requirements and prior information in form of constraints
into the ICA contrast function [151].

16.2. Linear Discriminant Analysis. LDA creates a linear
combination of the given independent features that yield
the largest mean differences between the desired classes [2].
Given a set of N vectors of J1 dimensions, {xi}, for all the
samples of all theC classes, the within-class scatter matrix Sw,
the between-class scatter matrix Sb, and the mixture scatter
matrix Sm are defined. All the scatter matrices are of size
J1 × J1. The minimization of the MSE criterion is equivalent
to the minimization of the trace of Sw or maximizing the
trace of Sb.

The objective for LDA is to maximize the between-class
measure while minimizing the within-class measure after
applying a J1 × J2 transform matrix W, J1 > J2, which
transforms the J1 × J1 scatter matrices into J2 × J2 matrices
S̃w, S̃b, S̃m:

S̃w = WTSwW,

S̃b = WTSbW,

S̃m = WTSmW.

(35)

The tr (Sw) measures the closeness of the samples within
the clusters, and tr (Sb) measures the separation between the
clusters, where tr (·) denotes the trace operator. An optimal
W should preserve the given cluster structure, and simul-

taneously maximize tr (S̃b) and minimize tr (S̃w). Assuming
that Sw is a nonsingular matrix, conventionally, the following
Fisher’s determinant ratio criterion is maximized for finding
the projection directions [152, 153]:

ELDA(W) =
det
(

S̃b

)

det
(

S̃w

) = det
(

WTSbW
)

det(WTSwW)
, (36)

where the column vectors wi, i = 1, . . . , J2, of W are the first
J2 principal eigenvectors of S−1

w Sb. Under the assumption that
the class distributions are identically distributed Gaussians,
LDA is Bayes optimal [3].

There are at most C − 1 nonzero generalized eigenvalues
and thus an upper bound on J2 is C − 1; at least J1 + C
samples are needed to guarantee Sw to be nonsingular. This
requirement on the number of samples may be severe for
some problems like image processing. In this case, Sw will be
singular and regularization may be necessary. By introducing
kernel into W, nonlinear discriminant analysis is obtained
[3, 154]. A multiple of the identity or the kernel matrix can be

added to Sw or its reformulated matrix S̃w after introducing

the kernels to penalize ‖w‖2 or ‖w̃‖2
, respectively, [154]. The

high-dimensional features can also be first compressed by
PCA into intermediate-dimensional space, which is further
projected by LDA onto the low-dimensional space. The
overall performance of the two-stage approach is sensitive to
the reduced dimension in the first stage. A generalization of
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LDA by using generalized SVD [153] can be used to solve the
problem of singularity of Sw. For image feature extraction,
two-dimensional LDA algorithms [155, 156] provide an effi-
cient approach and can overcome the singularity problem.

In [152], a nonlinear discriminant analysis network
with the MLP as the architecture and Fisher’s determinant
ratio as the criterion function is obtained by combining the
universal approximation properties of the MLP with the
target-free nature of LDA. A layered lateral network-based
LDA network and an MLP-based nonlinear discriminant
analysis network are also proposed in [111]. Based on a
single-layer linear feedforward network, LDA algorithms are
also given in [112, 113].
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value decomposition of a cross-covariance matrix,” Interna-
tional Journal of Neural Systems, vol. 20, no. 4, pp. 293–318,
2010.

[130] L. Tucker, Implication of Factor Analysis of Three-Way Matri-
ces for Measurement of Change, University Wisconsin Press,
Madison, Wis, USA, 1963.

[131] R. Costantini, L. Sbaiz, and S. Süsstrunk, “Higher order SVD
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