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Abstract—In this paper, systematic neural network modeling
techniques are presented for microwave modeling and design
using the concept of inverse modeling where the inputs to the
inverse model are electrical parameters and outputs are geo-
metrical parameters. Training the neural network inverse model
directly may become difficult due to the nonuniqueness of the
input–output relationship in the inverse model. We propose a new
method to solve such a problem by detecting multivalued solutions
in training data. The data containing multivalued solutions are
divided into groups according to derivative information using a
neural network forward model such that individual groups do
not have the problem of multivalued solutions. Multiple inverse
models are built based on divided data groups, and are then
combined to form a complete model. A comprehensive modeling
methodology is proposed, which includes direct inverse modeling,
segmentation, derivative division, and model combining tech-
niques. The methodology is applied to waveguide filter modeling
and more accurate results are achieved compared to the direct
neural network inverse modeling method. Full electromagnetic
simulation and measurement results of -band circular wave-
guide dual-mode pseudoelliptic bandpass filters are presented to
demonstrate the efficiency of the proposed neural network inverse
modeling methodology.

Index Terms—Computer-aided design, inverse modeling, mi-
crowave filter modeling, neural networks.

I. INTRODUCTION

I N RECENT years, neural network techniques have been rec-
ognized as a powerful tool for microwave design and mod-

eling problems. It has been applied to various microwave de-
sign applications [1], [2] such as vias and interconnects [3], em-
bedded passives [4], coplanar waveguide components [5], tran-
sistor modeling [6]–[8], noise modeling [9], power-amplifier
modeling [10], analysis of multilayer shielded microwave cir-
cuits [11], nonlinear microwave circuit optimization [12], etc.
Neural networks have the ability to model multidimensional
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nonlinear relationships. The evaluation from input to output of
a trained neural network model is also very fast. These features
make neural networks a useful alternative for device modeling
where a mathematical model is not available or repetitive elec-
tromagnetic (EM) simulation is required. Once a model is devel-
oped, it can be used over and over again. This avoids repetitive
EM simulation where a simple change in the physical dimen-
sion requires a complete re-simulation of the EM structure.

A neural network trained to model original EM problems can
be called the forward model where the model inputs are physical
or geometrical parameters and outputs are electrical parameters.
For design purposes, the information is often processed in the re-
verse direction in order to find the geometrical/physical param-
eters for given values of electrical parameters, which is called
the inverse problem. There are two methods to solve the inverse
problem, i.e., the optimization method and direct inverse mod-
eling method. In the optimization method, the EM simulator or
the forward model is evaluated repetitively in order to find the
optimal solutions of the geometrical parameters that can lead to
a good match between modeled and specified electrical param-
eters. An example of such an approach is [13]. This method of
inverse modeling is also known as the synthesis method.

The formula for the inverse problem, i.e., compute the ge-
ometrical parameters from given electrical parameters, is dif-
ficult to find analytically. Therefore, the neural network be-
comes a logical choice since it can be trained to learn from the
data of the inverse problem. We define the input neurons of a
neural network to be the electrical parameters of the modeling
problem and the output neurons as the geometrical parameters.
Training data for the neural network inverse model can be ob-
tained simply by swapping the input and output data used to
train the forward model. This method is called the direct inverse
modeling and an example of this approach is [14]. Once training
is completed, the direct inverse model can provide inverse solu-
tions immediately unlike the optimization method where repet-
itive forward model evaluations are required. Therefore, the di-
rect inverse model is faster than the optimization method using
either the EM or the neural network forward model. A sim-
ilar concept has been utilized in the neural inverse space map-
ping (NISM) technique where the inverse of the mapping from
the fine to the coarse model parameter spaces is exploited in a
space-mapping algorithm [15].

Though the neural network inverse model can provide the so-
lution faster than the optimization method, it often encounters
the problem of nonuniqueness in the input–output (IO) relation-
ship. It also causes difficulties during training because the same
input values to the inverse model will have different values at
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the output (multivalued solutions). Consequently, the neural net-
work inverse model cannot be trained accurately. This is why
training an inverse model may become more challenging than
training a forward model.

This paper considers the application of neural network
inverse modeling techniques for microwave filter design. Some
results have been reported using neural network techniques to
model microwave filters including the rectangular waveguide
iris bandpass filter [16]–[18], low-pass microstrip step filter
[19], -plane metal-insert filter [20], coupled microstrip line
bandpass filter [21], etc. Waveguide dual-mode pseudoelliptic
filters are often used in satellite applications due to its high

, compact size, and sharp selectivity [22]. This particular
filter holds complex characteristics whose conventional design
procedure follows an iterative approach, which is time con-
suming. Moreover, the whole process has to be repeated even
with a slight change in any of the design specifications. The
modeling time increases as the filter order increases. Recently
the neural network modeling technique has been applied to
design a waveguide dual-mode pseudoelliptic filter [23]. By
applying the neural network technique, filter design parameters
were generated hundreds of times faster than EM-based models
while retaining comparable accuracy.

The work in [23] primarily focused on how to apply the neural
network to the waveguide dual mode pseudoelliptic filter de-
sign. However, it did not address the issues of inverse mod-
eling, including nonuniqueness problems. The neural network
inverse models in [23] were developed primarily using the di-
rect method, although manual preprocessing of training data
to take out observable contradictions partially dealt with the
multivalued problem. The issues and problems in neural net-
work inverse modeling still remain open and unsolved. This
paper is a significant extension of the work presented in [23]. A
new and systematic neural network inverse modeling method-
ology, completely beyond [23], is developed, and the problem of
nonuniqueness in inverse modeling is formally addressed. The
proposed methodology uses a set of novel criteria to detect mul-
tivalued solutions in training data, and uses adjoint neural net-
work [8] derivative information to separate training data into
groups, overcoming nonuniqueness problems in inverse models
in a systematic way. Each group of data is used to train a sepa-
rate inverse sub-model. Such inverse sub-models become more
accurate since the individual groups of data do not have the
problem of multivalued solutions. A complete methodology to
solve the inverse modeling problem efficiently is proposed by
combining various techniques including the direct inverse mod-
eling, segmenting the inverse model, identifying multivalued so-
lutions, dividing training data that have multivalued solutions,
and combining separately trained inverse sub-models. A signif-
icant step is achieved beyond that of [23], where two actual fil-
ters are made following the neural network solutions, and real
measurements from the filters are used to compare and validate
the proposed neural network solutions.

Section II describes the formulation of the inverse models.
The problem of nonuniqueness in the IO relationship is dis-
cussed. A method to check the existence of multivalued so-
lutions in training data and a method to divide the data into
groups are proposed. A method is proposed to combine the

Fig. 1. Example illustrating neural network forward and inverse models.
(a) Forward model. (b) Inverse model. The inputs x and x (output y and
y ) of the forward model are swapped to the outputs (inputs) of the inverse
model, respectively.

inverse sub-models to construct the overall inverse model. In
Section III, a comprehensive methodology for neural network
inverse modeling incorporating various steps is proposed. Prac-
tical examples of neural network inverse models for spiral in-
ductor and various waveguide filter junctions are presented in
Section IV. It also shows examples of cavity filter design using
inverse models. The proposed approach is demonstrated to be
faster than EM-based design and more accurate than the direct
inverse modeling method.

II. INVERSE MODELING: FORMULATION AND

PROPOSED NEURAL NETWORK METHODS

A. Formulation

Let and represent the number of inputs and outputs of the
forward model. Let be an -vector containing the inputs and

be an -vector containing the outputs of the forward model.
The forward modeling problem can then be expressed as

(1)

where , and
defines the IO relationship. An example of a neural network di-
agram of a forward model and its corresponding inverse model
is shown in Fig. 1. Note that two outputs and two inputs of the
forward model are swapped to the input and output of the in-
verse model, respectively. In general, some or all of them can
be swapped from input to output or vice versa.

Let us define a subset of and a subset of . These subsets
of input and output are swapped to the output and input, respec-
tively, in order to form the inverse model. Let be defined as an
index set containing the indices of inputs of the forward model
that are moved to the output of the inverse model

if becomes output of inverse model (2)

Let be the index set containing the indices of outputs of the
forward model that are moved to the input of the inverse model

if becomes input of inverse model (3)
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Let and be vectors of inputs and outputs of the inverse model.
The inverse model can be defined as

(4)

where includes if and if includes if
and if ; and defines the IO relationship of the

inverse model. For example, the inputs and of Fig. 1(a)
may represent the iris length and width of a filter, and outputs
and may represent the electrical parameter such as the cou-
pling parameter and insertion phase. To formulate the inverse
filter model, we swap the iris length and width with coupling
parameter and insertion phase. For the example, in Fig. 1, the
inverse model is formulated as

(5)

(6)

(7)

(8)

After formulation is finished, the model can be trained with
the data. Usually data are generated by EM solvers originally in
a forward way, i.e., given the iris length and compute coupling
parameter. To train a neural network as an inverse model, we
swap the generated data so that coupling parameter becomes
training data for neural network inputs and iris length becomes
training data for neural network outputs. The neural network
trained this way is the direct inverse model.

The direct inverse modeling method is simple, and is suitable
when the problem is relatively easy, e.g., when the original IO
relationship is smooth and monotonic, and/or if the numbers of
inputs/outputs are small. On the other hand, if the problem is
complicated and the models using the direct method are not ac-
curate enough, then segmentation of training data can be utilized
to improve the model accuracy. Segmentation of microwave
structures has been reported in existing literature such as [17]
where a large device is segmented into smaller units. We apply
the segmentation concepts over the range of model inputs to
split the training data into multiple sections, each covering a
smaller range of input parameter space. Neural network models
are trained for each section of data. A small amount of overlap-
ping data can be reserved between adjacent sections so that the
connections between neighboring segmented models become
smooth.

B. Nonuniqueness of IO Relationship in
Inverse Model and Proposed Solutions

When the original forward IO relationship is not monotonic,
the nonuniqueness becomes an inherent problem in the inverse
model. In order to solve this problem, we start by addressing
multivalued solutions in training data as follows. If two different
input values in the forward model lead to the same value of
output, then a contradiction arises in the training data of the in-
verse model because the single input value in the inverse model
has two different output values. Since we cannot train the neural

network inverse model to match two different output values si-
multaneously, the training error cannot be reduced to a small
value. As a result, the trained inverse model will not be accu-
rate. For this reason, it is important to detect the existence of
multivalued solutions, which creates contradictions in training
data.

Detection of multivalued solutions would have been straight-
forward if the training data were generated by deliberately
choosing different geometrical dimensions such that they lead
to the same electrical value. However, in practice, the training
data are not sampled at exactly those locations. Therefore, we
need to develop numerical criteria to detect the existence of
multivalued solutions.

We assume and contain same amount of indices, and
that the indices in (or ) are in ascending order. Let us de-
fine the distance between two samples of training data, sample
number and , as

(9)

where and are the maximum and minimum value
of , respectively, as determined from training data. We use a
superscript to denote the sample index in training data. For ex-
ample, and represent values of and in the th
training data, respectively. Sample is in the neighborhood
of if , where is a user-defined threshold whose
value depends on the step size of data sampling. The maximum
and minimum “slope” between samples within the neighbor-
hood of is defined as

(10)

and

Input sample will have multivalued solutions if, within
its neighborhood, the slope is larger than maximum allowed or
the ratio of maximum and minimum slope is larger than the
maximum allowed slope change. Mathematically, if

(12)

and

(13)

then has multivalued solutions in its neighborhood where
is the maximum allowed slope and is the maximum

allowed slope change.
We employ the simple criteria of (12) and (13) to detect pos-

sible multivalued solutions. A suggestion for can be at least
twice the average step size of in training data. A reference
value for can be approximately the inverse of a similarly
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defined “slope” between adjacent samples in the training data
of the forward model. The value of should be greater
than 1. In the overall modeling method, conservative choices
of and (larger and smaller and ) lead to
more use of the derivative division procedure to be described
in Section II-C, while aggressive choices of and lead
to early termination of the overall algorithm (or more use of
the segmentation procedure) when model accuracy is achieved
(or not achieved). In this way, the choices of and
mainly affect the training time of the inverse models rather
than model accuracy. The modeling accuracy is determined
from segmentation or from the derivative division step to be
described in Section II-C. Sample values of and are
given through an example in Section IV-C.

C. Proposed Method to Divide Training Data
Containing Multivalued Solutions

If existence of multivalued solutions is detected in training
data, we perform data preprocessing to divide the data into dif-
ferent groups such that the data in each group do not have the
problem of multivalued solutions. To do this, we need to de-
velop a method to decide which data samples should be moved
into which group. We propose to divide the overall training data
into groups based on derivatives of outputs versus inputs of the
forward model. Let us define the derivatives of inputs and out-
puts that have been exchanged to formulate the inverse model,
evaluated at each sample, as

and (14)

where and is the total number of
training samples. The entire training data should be divided
based on the derivative criteria such that training samples
satisfying

(15)

belong to one group and training samples satisfying

(16)

belong to a different group. The value for is zero by default.
However, to produce an overlapping connection at the break
point between the two groups, we can choose a small positive
value for it. In that case, a small amount of data samples whose
absolute values of derivative are less than will belong to both
groups. The value for other than the default suggestion of zero
can be chosen as a value slightly larger than the smallest abso-
lute value of derivatives of (14) for all training samples. Choice
of only affects the accuracy of the sub-models at the connec-
tion region. The model accuracy for the rest of the region will
remain unaffected.

This method exploits derivative information to divide the
training data into groups. Therefore, accurate derivative is an
important requirement for this method. Computation of deriva-
tives of (14) is not a straightforward task since no analytical
equation is available. We propose to compute the derivatives
by exploiting the adjoint neural network technique [8]. We

Fig. 2. Diagram of inverse sub-model combining technique after derivative di-
vision for a two sub-model system. Inverse sub-model 1 and inverse sub-model 2
in set (A) are competitively trained version of the inverse sub-models. Inverse
sub-model 1 and inverse sub-model 2 in set (B) are trained with the divided data
based on derivative criteria (15) and (16). The input and output of the overall
combined model is �xxx and �yyy, respectively.

first train an accurate neural network forward model. After
training is finished, its adjoint neural network can be used to
produce the derivative information used in (15) and (16). The
computed derivatives are employed to divide the training data
into multiple smaller groups according to (15) and (16) using
different combinations of and . Multiple neural networks
are then trained with the divided data. Each neural network
represents a sub-model of the overall inverse model.

Equations (12) and (13) play different roles versus (15) and
(16) in our overall algorithm to be described in Section III.
Equations (12) and (13) are used as simple and quick ways to de-
tect the existence of contradictions in training data, but they do
not give enough information on how the data should be divided.
Equations (15) and (16), which require more computation (i.e.,
require training forward neural model) and produce more infor-
mation, are used to perform detailed task of dividing training
data into different groups to solve the multivalued problem.

D. Proposed Method to Combine the Inverse Sub-Models

We need to combine the multiple inverse sub-models to
reproduce the overall inverse model completely. For this pur-
pose, a mechanism is needed to select the right one among
multiple inverse sub-models for a given input . Fig. 2 shows
the proposed inverse sub-model combining method for a two
sub-model system. For convenience of explanation, suppose

is a randomly selected sample of training data. Ideally if
belongs to a particular inverse sub-model, then the output

from it should be the most accurate one among various inverse
sub-models. Conversely, the outputs from the other inverse
sub-models should be less accurate if does not belong to
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them. However, when using the inverse sub-models with gen-
eral input whose values are not necessarily equal to that of
any training samples, the value from the sub-models is the
unknown parameter to be solved. Thus, we still do not know
which inverse sub-model is the most accurate one.

To address this dilemma, we use the forward model to help
deciding which inverse sub-model should be selected. If we
supply an output from the correct inverse sub-model to an accu-
rate forward model, we should be able to obtain the original data
input to the inverse sub-model. For example, suppose
is an accurate forward model. Suppose the inputs and outputs of
the inverse sub-model are defined such that and .
If the inverse sub-model is true, then

(17)

is also true. Conversely, if then, is a wrong
inverse sub-model. In this way, we can use a forward model to
help determining which inverse sub-model should be selected
for a particular value of input. In our method, input is supplied
to each inverse sub-model and output from them is fed to the
accurately trained forward model, respectively, which generates
different . These outputs are then compared with the input data

. The inverse sub-model that produces least error between
and is selected and the output from the corresponding inverse
sub-model is chosen as the final output of the overall inverse
modeling problem.

Let us assume an inverse model is divided into different
inverse sub-models according to derivative criteria. The error
between the input of the th inverse sub-model and output of
the forward model (also called error from the inverse-forward
sub-model pair) is calculated as

(18)

where , and we have assumed and con-
tain equal amount of indices. is the number of sub models.
As an example, would be lower than if a
sample belongs to the inverse sub-model 1.

We include another constraint to the inverse sub-model se-
lection criteria. This constraint checks for the training range. If
an inverse sub-model produces an output that is located outside
its training range, then the corresponding output is not selected
even though the error of (18) is less than that of other in-
verse sub-models. If the outputs of other inverse sub-models are
also found outside their training range, then we compare their
magnitude of distances from the boundary of training range. An
inverse sub-model producing the shortest distance is selected in
this case. For sub-model , the distance of a particular output
outside the training range can be defined as

for

for
otherwise

(19)

where and and are the
maximum and minimum values of , respectively, obtained

from the training data. For any output , if the distance is zero,
then the output is located inside the training range. The total
distance outside the range for all the outputs of an inverse sub-
model can be calculated as

(20)

where and .
The calculated and are used to determine which inverse

sub-model should be selected for a particular set of input. The
inverse sub-model selection criteria can be expressed as

(21)

if AND AND , or (
OR ) AND for all values of , where

and . For example, inverse sub-model
1 is selected if outputs from all the inverse sub-models are lo-
cated inside the training range and the error produced by the
inverse-forward sub-pair 1 is less than the error produced by all
other pairs, or if the output of any of the inverse sub-model is
located outside the training range and the distance of the output
of inverse sub-model 1 is the least of that of all other inverse
sub-models.

In cases when outputs from multiple inverse sub-models re-
main inside the training range (i.e., ) and at the same
time the errors (i.e., ) calculated from the corresponding in-
verse-forward pairs are all smaller than a threshold value ( ,
then the outputs of those inverse sub-models are valid solu-
tions. As an example, suppose we have three inverse sub-models

. For a particular sample of data, if the outputs from in-
verse sub-model 1 and inverse sub-model 2 both fall within the
training range and the errors and are
both less than the threshold error , then solutions from in-
verse sub-model 1 and inverse sub-model 2 are both accepted.

The purpose of the model-combining technique is to repro-
duce the original multivalued IO relationship for the user. Our
method is an improvement over the direct inverse modeling
method since the latter produces only an inaccurate result in
case there are multivalued solutions (i.e., produces a single so-
lution, which may not match any of the original multivalues).
Our method can be used to provide a quick model to reproduce
multivalued solutions in inverse EM problems. Using the solu-
tions from the proposed inverse model (including reproduced
multivalued solutions), the user can proceed to circuit design.

E. Accuracy Enhancement of Sub-Model Combining Method

Here we describe two ways to further enhance the selection
and, thus, improve the accuracy of the overall inverse model.
These enhancement techniques are used only for some subre-
gions where model selections are inaccurate. In most cases, reg-
ularly trained inverse sub-models will be accurate with no need
of these enhancement techniques. The subregions that need en-
hancement can be determined by checking the model selection
using the known divisions in training data. The application of
the enhancement techniques will incrementally increase model
development time.
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1) Competitively Trained Inverse Sub-Model: To further im-
prove the inverse sub-model selection accuracy, an additional set
of competitively trained inverse sub-models can be used. These
inverse sub-models are trained to learn not only what is correct,
but also what is wrong. Correct data are the data that belong only
to a particular inverse sub-model. Conversely, incorrect data are
the data in which belongs to other inverse sub-models and is
deliberately set to zero so that the inverse sub-model is forced to
learn wrong values of for that do not belong to this inverse
sub-model. The output values of these inverse sub-models are
not very accurate, but they are reliable to identify if an input ei-
ther belongs or does not belong to the inverse sub-model. There-
fore, they are used for the inverse sub-model selection purpose
only. Once the selection has been made, the final output is taken
from the regularly trained (i.e., not competitively trained) in-
verse sub-model. In Fig. 2, the inverse sub-models in set (A)
represent the competitively trained inverse sub-models and set
(B) represents regularly trained inverse sub-models.

2) Forward Sub-Model: The default forward model used in
the model combining method is trained with the entire set of
training data. The decision of choosing the right inverse sub-
model depends on the accuracy of both inverse sub-models and
forward models. We can further tighten the accuracy of the for-
ward model by training multiple forward sub-models using the
same groups of data used to train inverse sub-models. These
forward sub-models capture the same data range as its inverse
counterpart and, therefore, the inverse and forward sub-model
pairs are capable of producing more accurate decision. In Fig. 2,
the forward models are replaced with the forward sub-models.

III. OVERALL INVERSE MODELING METHODOLOGY

The overall methodology of inverse modeling combines all
the aspects described in Section II. The inverse model of a mi-
crowave device may contain unique or nonunique behavior over
various regions of interest. In the region with unique solutions,
direct segmentation can be applied and training error is expected
to be low. On the other hand, in the region with nonunique-
ness, the model should be divided according to derivative. If
the overall problem is simple, the methodology will end with
a simple inverse model directly trained with all data. In com-
plicated cases, the methodology uses a derivative division and
sub-model combining method to increase model accuracy. This
approach increases the overall efficiency of modeling. The flow
diagram of the overall inverse modeling approach is presented
in Fig. 3. The overall methodology is summarized in the fol-
lowing steps.
Step 1) Define the inputs and outputs of the model. Detailed

formulation can be found in Section II-A. Generate
data using EM simulator or measurement. Swap the
input and output data to obtain data for training in-
verse model. Train and test the inverse model. If the
model accuracy is satisfied, then stop. Results ob-
tained here is the direct inverse model.

Step 2) Segment the training data into smaller sections. If
there have been several consecutive iterations be-
tween Steps 2) and 5), then go to Step 6).

Step 3) Train and test models individually with segmented
data.

Fig. 3. Flow diagram of overall inverse modeling methodology consisting of
direct, segmentation, derivative dividing, and model combining techniques.

Step 4) If the accuracy of all the segmented models in Step
3) is satisfied, stop. Else for the segments that have
not reached accuracy requirements, proceed to the
next steps.

Step 5) Check for multivalued solutions in model’s training
data using (12) and (13). If none are found, then
perform further segmentation by going to Step 2).

Step 6) Train a neural network forward model.
Step 7) Using the adjoint neural network of the forward

model, divide the training data according to deriva-
tive criteria, as described in Section II-C.

Step 8) With the divided data, train necessary sub-models,
for example, two inverse sub-models. Optionally ob-
tain two competitively trained inverse sub-models
and two forward sub-models.

Step 9) Combine all the sub-models that have been trained
in Step 8) according to the method in Section II-D.
Test the combined inverse sub-models. If the test ac-
curacy is achieved, then stop. Else go to Step 7) for
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Fig. 4. Nonuniqueness of IO relationship is observed when Q versus D
data of a forward spiral inductor model is exchanged to formulate an inverse
model. (a) Unique relationship between input and output of a forward model.
(b) Nonunique relationship of IO of an inverse model obtained from forward
model of (a). Training data containing multivalued solutions of Fig. 4(b) are di-
vided into groups according to derivative. (c) Group I data with negative deriva-
tive. (d) Group II data with positive derivative. Within each group, the data are
free of multivalued solutions, and consequently, the IO relationship becomes
unique.

further division of data according to derivative infor-
mation in different dimensions, or if all the dimen-
sions are exhausted, go to Step 2).

The algorithm increases efficiency by choosing the right tech-
niques in the right order. For simple problems, the algorithm
stops immediately after the direct inverse modeling technique.
In this case, no data segmentation or other techniques are used,
and training time is short. The segmentation and subsequent
techniques will be applied only when the directly trained model
cannot meet the accuracy criteria. In this way, more training time
is needed only with more complexity in the model IO relation-
ship, such as the multivalued relationship.

IV. EXAMPLES AND APPLICATIONS TO FILTER DESIGN

A. Example 1: Inverse Spiral Inductor Model

In this example, we illustrate the proposed technique through
a spiral inductor modeling problem where the input of the for-
ward model is the inner mean diameter of the inductor, and
the output is the effective quality factor . Fig. 4(a) shows
the variation of with respect to inner diameter [24]. The in-
verse model of this problem is shown in Fig. 4(b), which shows
a nonunique IO relationship since, in the range from
to , a single value will produce two different

values. We have implemented (10)–(13) in NeuroModeler-
Plus [25] to detect the existence of multivalued solutions, as de-
scribed in Section II-B. We supply the training data to Neuro-
ModelerPlus and set values of parameters as

and . The program detects several contradictions in
the data.

Fig. 5. Comparison of inverse model using the proposed methodology and the
direct inverse modeling method for the spiral inductor example.

In the next step, we divide the training data according to the
derivative. We trained a neural network forward model to learn
the data in Fig. 4(a) and used its adjoint neural network to com-
pute the derivatives . We compared all the values
of derivatives and the lowest absolute value was found to be
0.018. The next large absolute value of the derivative was 0.07.
Therefore, we chose the value of , which is in from
0.018 to 0.07. The training data are divided such that samples
satisfying (15) are divided into group I and samples satisfying
(16) are divided into group II. Fig. 4(c) and (d) shows the plots
of two divided groups, which confirm that the individual groups
become free of multivalued solutions after dividing the data ac-
cording to the derivative information.

Two inverse sub-models of the spiral inductor were trained
using the divided data of Fig. 4(c) and (d). The two individual
sub-models became very accurate and they were combined
using the model combining technique. For comparative pur-
poses, a separate model was trained using the direct inverse
modeling method, which means that all the training samples in
Fig. 4(b) were used without any data division to train a single
inverse model. The results are shown in Fig. 5. It shows that the
model obtained from the direct inverse modeling method pro-
duce an inaccurate result because of confusions over training
data with multivalued solutions. The model trained using the
proposed methodology delivers accurate solutions that match
the data for the entire range. Average test error reduced from
13.6% down to 0.05% using proposed techniques over the
direct inverse modeling method.

B. Example 2: Filter Design Approach and Development of
Inverse Internal Coupling Iris and IO Iris Models

Neural network modeling techniques are applied to the mi-
crowave waveguide filter design. The filter design starts from
synthesizing the coupling matrix to satisfy ideal filter specifica-
tions. The EM method for finding physical/geometrical param-
eters to realize the required coupling matrix is an iterative EM
optimization procedure. In our examples, this procedure per-
forms EM analysis (mode-matching or finite-element methods)
on each waveguide junction of the filter to get the generalized
scattering matrix (GSM). From the GSM, we extract coupling
coefficients. We then modify the design parameters (i.e., the di-
mensions of the filter) and re-perform EM analysis iteratively
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Fig. 6. Diagram of the filter design approach using the neural network inverse
models.

until the required coupling coefficients are realized. In our pro-
posed approach, we avoid this iterative step and use neural net-
work inverse models to directly provide the filter dimensions.

In this study, the filter was decomposed into three different
modules, each representing a separate filter junction. Neural
network inverse models of these junctions were developed
separately using the proposed methodology. The three models
are the IO iris, the internal coupling iris, and the tuning screws.
Training data for neural networks are generated from physical
parameters firstly through EM simulation (mode-matching
method) producing the GSM. Coupling values are then ob-
tained from the GSM through analytical equations. Fig. 6
demonstrates the filter design approach. More detailed infor-
mation on modeling and the design procedure for the filter can
be found in [23].

In this example, we develop two inverse neural network
models for the waveguide filter. The first neural network in-
verse model of the filter structure is developed for the internal
coupling iris. The inputs and outputs of the internal coupling
iris forward model are

(22)

(23)

where is the circular cavity diameter, is the center fre-
quency, and are coupling values, and are the
vertical and horizontal coupling slot lengths, and and
are the loading effect of the coupling iris on the two orthogonal
modes, respectively. The inverse model is formulated as

(24)

(25)

The second inverse model of the filter is the IO iris model. The
input parameters of the IO iris inverse model are circular cavity
diameter , center frequency , and the coupling value . The
output parameters of the model are the iris length , the loading
effect of the coupling iris on the two orthogonal modes and

, and the phase loading on the input rectangular waveguide
. The IO iris forward model is formulated as

(26)

(27)

The inverse model is defined as

(28)

(29)

Training data were generated in the forward way (according
to forward model) and the data are then reorganized for training
inverse model. The entire data was used to train the inverse in-
ternal coupling iris model. For the IO iris model, four different
sets of training data were generated according to the width of
iris using the mode-matching method. The model for each set
was trained and tested separately using the direct inverse mod-
eling method. For both of the iris models, direct training pro-
duced good accuracy in terms of average and (least squares
[2]) errors. However the worst case errors were large. There-
fore, in the next step, the data was segmented into smaller sec-
tions. Models for these sections were trained separately, which
reduced the worst case error. The final model results of the
coupling iris model shows that the average error reduced from
0.24% to 0.17% and worst case error reduced from 14.2% to
7.2%. The average error for the IO iris model reduced from 1.2%
to 0.4% and worst case error reduced from 54% to 18.4%. The
errors for other sets of the IO iris model also reduced similarly.
We can improve the accuracy further by splitting the data set into
more sections and achieve accurate results as required. In this
example, our methodology stops with accurate inverse model
at Step 4) without derivative division of data. These models are
developed using proposed methodology and provide better ac-
curacy than models developed using the direct method.

C. Example 3: Inverse Tuning Screw Model

The last neural network inverse model of the filter is devel-
oped for the tuning screw model. This model has complicated IO
relationships requiring the full algorithm to be applied. Here we
describe this example in detail. The model outputs are the phase
shift of the horizontal mode across the tuning screw , cou-
pling screw length , and the horizontal tuning screw length

. The input parameters of this model are circular cavity di-
ameter , center frequency , the coupling between the two
orthogonal modes in one cavity , and the difference be-
tween the phase shift of the vertical mode and that of the hor-
izontal mode across the tuning screw . The forward tuning
screw model is defined as

(30)

(31)

The inverse model is formulated as

(32)

(33)

In the initial step, the inverse model was trained directly using
entire training data. The training error was high even with many
hidden neurons. Therefore, we proceed to segment the data into
smaller sections. In this example, we used the segmentation,
which corresponds to two adjacent samples of frequency and
two adjacent samples of diameter . Each segment of data was
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TABLE I
COMPARISON OF MODEL TEST ERRORS BETWEEN DIRECT

AND PROPOSED METHODS FOR TUNING SCREW MODEL

used to train a separate inverse model. Some of the segments
produced accurate models with error less than 1%, while others
were still inaccurate.

The segments that could not reach the desired accuracy
were checked for the existence of multivalued solutions indi-
vidually. The method to check the existence of multivalued
solutions using (10)–(13), as described in Section II-B, has
been implemented in NeuroModelerPlus [25] software. We
use this program to detect the existence of multivalued solu-
tions in the training data. For this example, neighborhood size

, maximum slope , and maximum slope
change were chosen. NeuroModelerPlus suggests
that the data contain multivalued solutions. Therefore, we need
to proceed to train a neural network forward model and apply
the derivative division technique to divide the data.

To compute the derivative, we trained a neural network as a
forward tuning screw model. Then derivatives were computed
using an adjoint neural network model through NeuroModeler-
Plus. Considering and applying the derivative
to (15) and (16), we divided the data into groups I and II, re-
spectively. Two inverse sub-models were trained using groups
I and II data. As in Step 8) of the methodology, we trained two
forward sub-models using data of groups I and II. The equa-
tions for error criteria and , distance criteria and ,
and model selection can be obtained using (18), (20), and (21),
respectively.

The entire process was done using NeuroModelerPlus. The
segments that failed to reach good accuracy before became more
than 99% accurate after a derivative division and model com-
bining technique were applied. The process was continued until
all data were captured. A few of the sub-models needed the ac-
curacy enhancement techniques to select the right models and,
thus, reach the desired accuracy. The result of the inverse model
using the proposed methodology is compared with the direct in-
verse method in Table I, showing the average, , and worst
case errors between the model and test data. Table I demon-
strates that the proposed methodology produces significantly
better results than the direct method.

Fig. 7 shows the plot of phase for various horizontal
screw lengths , which defines the forward model relation-
ship. The two curves in the figure represent forward training data
at two different frequencies. The forward relationship is unique,
which means that there are no multivalued solutions. Fig. 8(a)
and (b) shows the outputs of two inverse models trained using
a direct and proposed methodology where the output and input
are and , respectively, for two different frequencies. The
data of the two plots represent the same data as that in Fig. 7,
except the input and output are swapped. The inverse training
data in both plots of Fig. 8(a) and (b) contain multivalued solu-
tions, and it is clear from the two plots that the inverse model

Fig. 7. Original data showing variation of phase angle (P ) with respect to
horizontal screw length (L ) describing unique relationship of forward tuning
screw model.

Fig. 8. Comparison of output (L ) of inverse tuning screw model trained using
direct and proposed methods at two different frequencies: (a) fo = 10:8 GHz,
D = 1:11 in and (b) fo = 12:5 GHz, D = 1:11 in. It is evident that this
inverse model has nonunique outputs. The proposed method produced a more
accurate inverse model than that of the direct inverse method. Inverse data are
plotted for two different diameters: (c) fo = 11:85 GHz, D = 1:09 and
(d) fo = 11:85, D = 0:95. Fig. 8(c) contains multivalued data, whereas
Fig. 8(d) does not contain any multivalued data. This demonstrates the necessity
of automatic algorithms to detect and handle multivalued scenarios in different
regions of the modeling problem.

trained using the direct method cannot match the data, whereas
the inverse model using the proposed methodology produce the
output very accurately for the entire range. To demonstrate
the variation of multivalued problem at the different cavity di-
ameter , we show two more plots in Fig. 8(c) and (d). They
correspond to two different diameters at the same frequency.
Fig. 8(c) contains multivalued data, whereas Fig. 8(d) does not
contain any multivalued data. The plots also compare the out-
puts of the proposed method and direct method. From Fig. 8(d),
we can see that, for single valued case, both methods produce ac-
ceptable results, whereas in the multivalued case [see Fig. 8(c)],
only the proposed model can produce accurate results. In reality,
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Fig. 9. Training error of inverse tuning screw model following direct
inverse modeling approach and proposed derivative division approach. The
training errors of both the inverse sub-models are lower than that of
direct inverse model.

it is not known beforehand which region contains multivalued
data and which region does not. This is why the proposed algo-
rithm is useful to automatically detect the regions that contain
multivalued data and apply the appropriate techniques in that re-
gion to improve accuracy. In this way, model development can
be performed more systematically via computer.

As an additional demonstration of the usefulness of derivative
division, we applied the same derivative as that described
earlier in this section to the entire training data and divided
the data into two groups (containing 28 000 and 6000 samples,
respectively) according to (15) and (16). The training errors of
the individual inverse sub-models are compared with that of
the direct inverse model in Fig. 9, which shows that derivative
division technique significantly reduces the training error. The
test errors are similar as training error in this example. The
training epoch in Fig. 9 is defined as one iteration of training
when all training data have been used to make an update
of neural network weights [1].

D. Example 4: Four-Pole Filter Design for Device Level
Verification Using the Three Developed Inverse Models

In this example, we use the neural network inverse models
that were developed in Examples 2 and 3 to design a four-pole
filter with two transmission zeros. Compared to the example
in [23], which shows the simulation results only, the present
example describes new progress, where the filter results are used
to fabricate an actual filter and real measurement data are used
to validate the neural network solutions.

The layout of a four-pole filter is similar to that in [23]. The
filter center frequency is 11.06 GHz, bandwidth is 58 MHz, and
the cavity diameter is chosen to be 1.17 in. The normalized ideal
coupling values are

(34)

The trained neural network inverse models developed in Ex-
amples 2 and 3 are used to calculate irises and tuning screw

Fig. 10. Comparison of the ideal four-pole filter response with the measured
filter response after tuning. The dimensions of the measured filter were obtained
from neural network inverse models.

TABLE II
COMPARISON OF DIMENSIONS OF THE FOUR-POLE FILTER OBTAINED

BY THE NEURAL NETWORK INVERSE MODEL AND MEASUREMENT

dimensions. The filter is manufactured and then tuned by ad-
justing irises and tuning screws to match the ideal response.
Fig. 10 compares the measured and ideal filter responses. Di-
mensions are listed in Table II. A very good correlation can be
seen between the initial dimensions provided by the neural net-
work inverse models and the measured final dimensions of the
fine tuned filter.

E. Example 5: Six-Pole Filter Design for Device Level
Verification of Proposed Methods

In this example, we design a six-pole waveguide filer using
the proposed methodology. The specification of this six-pole
filter is different from that of Example 4. The filter center fre-
quency is 12.155 GHz, bandwidth is 64 MHz, and cavity diam-
eter is chosen to be 1.072 in. This filter is higher in order and
more complex in nature than that of Example 4. This filter uses
an additional iris called a “slot iris.” For this reason, in addition
to the neural models of Examples 2 and 3, we developed another
inverse model for slot iris. The inputs of the slot iris model are
cavity diameter , center frequency , and coupling , and
the outputs are iris length , vertical phase , and horizontal
phase . This model and the other three neural network inverse
models developed in Examples 2 and 3 were used to design a
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Fig. 11. Six-pole waveguide filter designed and fabricated using the proposed
neural network method.

Fig. 12. Comparison of the six-pole filter response with ideal filter response.
The filter was designed, fabricated, tuned, and then measured to obtain the di-
mensions.

filter. This filter is fabricated and measured for device-level ver-
ification. The normalized ideal coupling values are

(35)

After obtaining the filter dimensions from the inverse neural
network models, we manufactured the filter and tuned it by ad-
justing irises and tuning screws to match the ideal response.
The picture of the fabricated filter is shown in Fig. 11. Fig. 12
presents the response of the tuned filter and compares it with the
ideal one, showing a perfect match between each other. The di-
mensions of the tuned filter are measured and compared with the
dimensions obtained from the neural network inverse models
in Table III, along with EM design results. From Table III, we
see that the neural network dimensions match the measurement

TABLE III
COMPARISON OF DIMENSIONS OBTAINED BY THE EM MODEL,

THE NEURAL NETWORK INVERSE MODEL, AND THE

MEASUREMENT OF THE TUNED SIX-POLE FILTER

TABLE IV
COMPARISON OF TIME TO OBTAIN THE DIMENSIONS BY

NEURAL NETWORK INVERSE MODELS AND EM MODELS

dimensions very well. The quality of the solutions from the in-
verse neural networks is similar to that from the EM design, both
being excellent starting points for final tuning of the filter. The
biggest error of screw dimensions, common for both the inverse
neural network solution and the EM design, is observed in cavity
2, which is caused by the manufacturing error. The cavity length
was manufactured short by 0.003 in and that error affected the
screw dimensions. In other words, this error was compensated
by tuning.

The advantage of using the trained neural network inverse
models is also realized in terms of time compared to EM models.
An EM simulator can be used for synthesis, which requires typ-
ically 10–15 iterations to generate inverse model dimensions.
Comparisons of time to obtain the dimensions using the EM
and the trained neural network models are listed in Table IV.
It shows that the time required by the neural network inverse
models are negligible compared to EM models.

F. Additional Discussions on the Examples

In this paper, the three-layer multilayer perceptron neural
network structure was used for each neural network model, and
a quasi-Newton training algorithm was used to train the neural
network models. Testing data are used after training the model
to verify the generalization ability of these models. Automatic
model generation algorithm of NeuroModelerPlus [25] was
used to develop these models, which automatically train the
model until model training and testing accuracy are satisfied.
The training error and test errors are generally similar because
sufficient training data was used in the examples.

The coupling value in this study is formulated as coupling
bandwidth since they are the product of normalized coupling
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values and bandwidth. In this way, bandwidth is no longer
needed as a model input, which helps in reducing training data
and increasing model accuracy.

The tuning time is approximately the same for both the EM
and neural network design. Even though the EM method gives
the best solution of a filter, the physical machining process
cannot guarantee 100% accurate dimension. Therefore, after
manufacturing, the filter tuning is required. The amount of time
spent on tuning also depends on how accurate the dimensions
are. If the dimensions are far different from their perfect values,
then tuning time will increase. The neural network method
provides approximately the same dimension as the EM method.
They both provide excellent starting points for tuning. As a
result, the tuning time is relatively short and is the same for
both the EM and neural network methods. Consequently, the
tuning time does not alter the comparison between the EM and
neural network method.

The training time for the direct inverse tuning screw model
is approximately 6 min. In the proposed algorithm, if we per-
form segmentation, it will add 28.5 s, and if multivalued solu-
tions are detected in a segment, it adds another 7.5 s for a for-
ward model for a small segment containing 200 samples. The
training time for the complete inverse tuning screw model using
the proposed methodology is approximately 5.5 h. For the cou-
pling iris, the direct inverse model containing 37000 samples
takes 26 min to train. The proposed method divides the model
into four smaller segments, each containing approximately 9000
samples, and takes ten additional minutes per segment. The time
to train a direct IO iris inverse model containing 125 000 data
requires 2.5 h. The training time using the proposed method-
ology is 6 h, including the time for training segmented models.
The training time for these models were obtained using the Neu-
roModelerPlus parallel-automated model generation algorithm
[25] on an Intel Quad core processor at 2.4 GHz. The training
time for the proposed inverse models is longer than that of the
direct inverse models. However, once the models are trained, the
proposed model is very fast for the designer, providing solutions
nearly instantly.

The technique is useful for highly repeated design tasks such
as designing filters of different orders and different specifica-
tions. The technique is not suitable if the inverse model is for
the purpose of only one or a few particular designs because
the model training time will make the technique cost ineffec-
tive. Therefore, the technique should be applied to inverse tasks,
which will be reused frequently. In such a case, the benefit of
using the models far outweigh the cost of training because of
the following four reasons.

1) Training is a one-time investment, and the benefit of the
model increases when the model is used over and over
again. For example, the two different filters in this paper
use the same set of iris and tuning screw models.

2) Conventional EM design is part of the design cycle, while
neural network training is outside the design cycle.

3) Circuit design requires much human involvement, while
neural network training is a machine-based computational
task.

4) Neural network training can be done by a model developer
and the trained model can be used by multiple designers.

The neural network approach cuts expensive design time by
shifting much burden to offline computer-based neural network
training [2]. An even more significant benefit of the proposed
technique is the new feasibility of interactive design and what–if
analysis using the instant solutions of inverse neural networks,
substantially enhancing design flexibility and efficiency.

V. CONCLUSION

Efficient neural network modeling techniques have been
presented and applied to microwave filter modeling and design.
The inverse modeling technique has been formulated and the
nonuniqueness of the IO relationship has been addressed.
Methods to identify multivalued solutions and divide training
data have been proposed for training inverse models. Data of
the inverse model have been divided based on derivatives of the
forward model and then used separately to train more accurate
inverse sub-models. A method to correctly combine the inverse
sub-models has been presented. The inverse models developed
using the proposed techniques are more accurate than that
using the direct method. The proposed methodology has been
applied to waveguide filter modeling. Very good correlation
was found between neural network predicted dimensions and
that of perfectly tuned filters. This modeling approach is useful
for a fast solution to inverse problems in microwave design.
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