
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010 1793

Neural Network Learning without
Backpropagation

Bogdan M. Wilamowski, Fellow, IEEE, and Hao Yu

Abstract— The method introduced in this paper allows for
training arbitrarily connected neural networks, therefore, more
powerful neural network architectures with connections across
layers can be efficiently trained. The proposed method also
simplifies neural network training, by using the forward-only
computation instead of the traditionally used forward and back-
ward computation.

Information needed for the gradient vector (for first-order
algorithms) and Jacobian or Hessian matrix (for second-order
algorithms) is obtained during forward computation. With the
proposed algorithm, it is now possible to solve the same problems
using a much smaller number of neurons because the proposed
algorithm is able to train more complex neural network archi-
tectures that require a smaller number of neurons. Comparison
results of computation cost show that the proposed forward-only
computation can be faster than the traditional implementation
of the Levenberg–Marquardt algorithm.

Index Terms— Forward-only computation, Levenberg–
Marquardt algorithm, neural network training.

I. INTRODUCTION

THE popular EBP algorithm [1] is relatively simple and it

can handle problems with basically an unlimited number

of patterns. Also, because of its simplicity, it was relatively

easy to adopt the EBP algorithm for more efficient neural

network architectures where connections across layers are

allowed [2]. However, the EBP algorithm can be up to 1000

times slower than more advanced second-order algorithms

[3]– [5]. Many improvements [6], [7] have been made to speed

up the EBP algorithm and some of them, such as momentum

[8], adaptive learning constant, and RPROP algorithm [9],

work relatively well. But as long as first-order algorithms are

used, improvements are not dramatic.

The very efficient second-order Levenberg–Marquardt (LM)

algorithm [10], [11] was adopted for neural network training

by Hagan and Menhaj [12], and later was implemented in the

MATLAB neural network toolbox [13]. The LM algorithm

uses significantly more number of parameters describing the

error surface than just gradient elements as in the EBP

algorithm. As a consequence, the LM algorithm is not only

fast but it can also train neural networks for which the EBP

algorithm has difficulty in converging [5]. Many researchers

now are using the Hagan and Menhaj LM algorithm for

Manuscript received April 1, 2010; revised July 29, 2010; accepted August
25, 2010. Date of current version November 3, 2010.

The authors are with the Department of Electrical and Computer En-
gineering, Auburn University, Auburn, AL 36849-5201 USA (e-mail:
wilam@ieee.org; hzy0004@auburn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2010.2073482

neural network training, but this algorithm has also several

disadvantages.

1) It cannot be used for problems with many training pat-

terns because the Jacobian matrix becomes prohibitively

too large.

2) The LM algorithm requires the inversion of a quasi-

Hessian matrix of size nw × nw in every iteration,

where nw is the number of weights. Because of the

necessity of matrix inversion in every iteration, the speed

advantage of the LM algorithm over the EBP algorithm

is less evident as the network size increases.

3) The Hagan and Menhaj LM algorithm was developed

only for multilayer perceptron (MLP) neural networks.

Therefore, much more powerful neural networks [14],

[15], such as fully connected cascade (FCC) or bridged

multilayer preceptron architectures cannot be trained.

4) In implementing the LM algorithm, Hagan and Men-

haj calculated elements of the Jacobian matrix using

basically the same routines as in the EBP algorithm.

The difference is that the error backpropagation process

(for Jacobian matrix computation) must be carried on

not only for every pattern but also for every output

separately.

Problems 1) and 2) inherited the property of the original

LM algorithm. The disadvantage 1) of the LM algorithm was

addressed in the recently proposed modification of the LM

algorithm [16]. The problem 2) is still unsolved, so the LM

algorithm can be used only for small and medium size neural

networks.
Also, an attempt was made to adopt the Hagan and Menhaj

forward and backward computation routine for arbitrarily

connected neural networks [2], but this method is relatively

complicated. It is easier to handle these networks with arbi-

trarily connected neurons when there is no need for backward

computation process.
In this paper, the limitations 3) and 4) of the Hagan and

Menhaj LM algorithm [12] are addressed and the proposed

method of computation allows it to train networks with

arbitrarily connected neurons. This way, more complex feed-

forward neural network architectures than MLP can be effi-

ciently trained. A further advantage of the proposed algorithm

is that the learning process requires only forward computation

without the necessity of the backward computations. This way,

the proposed method, in many cases, may also lead to the

reduction of the computation time.
The ability to solve problems with smaller networks is very

important. The common mistake made by many researchers

is the use of an excessive number of neurons. This way it is

1045–9227/$26.00 © 2010 IEEE

1794 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

much easier to train such networks, but when new patterns (not

used in the training) are applied, the networks respond very

poorly [5]. Since the EBP algorithm usually requires a long

training time, over-eager researchers often end up with larger

networks than required and this leads to frustration when such

networks are used for new patterns.

In order to preserve the generalization abilities of neural

networks, the size of the networks should be as small as pos-

sible. The proposed algorithm partially addresses this problem

because it allows training smaller networks with arbitrarily

connected neurons.

This paper is organized as follows. In Section II, a short

review of the computational methodology for the first- and

second-order algorithms is given. In Section III, the descrip-

tion of the proposed forward-only computation is presented.

Section IV gives a comparison of computational efficiency be-

tween the Hagan and Menhaj LM algorithm and the proposed

implementation of the LM algorithm. Section V is an exper-

imental section where the advantages of the more powerful

network architectures are shown and actual computation time

is compared for both algorithms on several examples.

II. COMPUTATIONAL FUNDAMENTALS

Before the derivation, let us introduce some commonly used

indices in this paper:

1) p is the index of patterns, from 1 to np, where np is the

number of patterns;

2) m is the index of outputs, from 1 to no, where no is the

number of outputs;

3) j and k are the indices of neurons, from 1 to nn, where

nn is the number of neurons;

4) i is the index of neuron inputs, from 1 to ni, where ni

is the number of inputs and it may vary for different

neurons.

Other indices will be explained at appropriate places.

Sum square error (SSE) E is defined to evaluate the training

process. For all patterns and outputs, it is calculated by

E =
1

2

np
∑

p=1

no
∑

m=1

e2
p,m (1)

where ep,m is the error at output m defined as

ep,m = op,m − dp,m (2)

where dp,m and op,m are the desired output and actual output,

respectively, at network output m for training pattern p.

In all training algorithms, the same computations are being

repeated for one pattern at a time. Therefore, in order to

simplify notations, the index p for patterns will be skipped

in the following derivations, unless it is essential.

A. Definition of Basic Concepts in Neural Network Training

Let us consider neuron j with ni inputs, as shown in Fig. 1.

If neuron j is in the first layer, all its inputs would be

connected to the inputs of the network, otherwise, its inputs

can be connected to outputs of other neurons or to networks’

inputs if connections across layers are allowed.

f
j
(net

j
) F

m, j
(y

j
)

o
m

w
j,1

w
j,2

w
j,i

w
j,0

+1

w
j,ni−1

w
j,ni

y
j

y
j,1

y
j,2

y
j,i

y
j,in−1

y
j,ni

···

···

Fig. 1. Connection of a neuron j with the rest of the network. Nodes y j,i
could represents network inputs or outputs of other neurons. Fm, j (y j) is the
nonlinear relationship between the neuron output node y j and the network
output om .

Node y is an important and flexible concept. It can be y j,i ,

meaning the i th input of neuron j . It also can be used as y j

to define the output of neuron j . In this paper, if node y has

one index, then it is used as a neuron output node, but if it

has two indices (neuron and input), it is a neuron input node.

Output node of neuron j is calculated using

y j = f j

(

net j

)

(3)

where f j is the activation function of neuron j and net value

net j is the sum of weighted input nodes of neuron j

net j =

ni
∑

i=1

w j,i y j,i + w j,0 (4)

where y j,i is the i th input node of neuron j , weighted by w j,i ,

and w j,0 is the bias weight of neuron j .

Using (4), one may notice that derivative of net j is

∂net j

∂w j,i
= y j,i (5)

and slope s j of activation function f j is

s j =
∂y j

∂net j

=
∂ f j

(

net j

)

∂net j

. (6)

Between the output node y j of a hidden neuron j and

network output om , there is a complex nonlinear relationship

(Fig. 1)

om = Fm, j

(

y j

)

(7)

where om is the mth output of the network.

The complexity of this nonlinear function Fm, j (y j) depends

on how many other neurons are between neuron j and network

output m. If neuron j is at network output m, then om = y j

and F ′
m, j (y j) = 1, where F ′

m, j is the derivative of nonlinear

relationship between neuron j and output m.

B. Gradient Vector and Jacobian Matrix Computation

For every pattern, in EBP algorithm only one backpropaga-

tion process is needed, while in second-order algorithms the

backpropagation process has to be repeated for every output

separately in order to obtain consecutive rows of the Jacobian

WILAMOWSKI AND YU: NEURAL NETWORK LEARNING WITHOUT BACKPROPAGATION 1795

e
1,1

∂

w
1,1

∂

e
1,2

∂

w
1,1

∂

e
1,no

∂

w
1,1

∂

e
p,1

∂

w
1,1

∂

e
p,m

∂

w
1,1

∂

e
np,1

∂

w
1,1

∂

e
np,2

∂

w
1,1

∂

e
np,no

∂

w
1,1

∂

e
1,1

∂

w
1,2

∂

e
1,2

∂

w
1,2

∂

e
1,no

∂

w
1,2

∂

e
p,1

∂

w
1,2

∂

e
p,m

∂

w
1,2

∂

e
np,1

∂

w
1,2

∂

e
np,2

∂

w
1,2

∂

e
np,no

∂

w
1,2

∂

e
1,1

∂

w
j,1

∂

e
1,2

∂

w
j,1

∂

e
1,no

∂

w
j,1

∂

e
p,1

∂

w
j,1

∂

e
p,m

∂

w
j,1

∂

e
np,1

∂

w
j,1

∂

e
np,2

∂

w
j,1

∂

e
np,no

∂

w
j,1

∂

e
1,1

∂

w
j,2

∂

e
1,2

∂

w
j,2

∂

e
1,no

∂

w
j,2

∂

e
p,1

∂

w
j,2

∂

e
p,m

∂

w
j,2

∂

e
np,1

∂

w
j,2

∂

e
np,2

∂

w
j,2

∂

e
np,no

∂

w
j,2

∂
m = no

m = 2

m = 1

m = m

m = 1

m = no

j =

m = 2

m = 1

p = 1

neuron 1 neuron 2

p = p

p = np

Fig. 2. Structure of Jacobian matrix. 1) The number of columns is equal
to the number of weights. 2) Each row corresponds to a specified training
pattern p and output m.

matrix (Fig. 2). Another difference in second-order algorithms

is that the concept of backpropagation of the δ parameter [17]

has to be modified. In EBP algorithm, output errors are parts

of the δ parameter

δ j = s j

no
∑

m=1

F
′

m, j em . (8)

In second-order algorithms, the δ parameters are calculated

for each neuron j and each output m separately. Also, in the

backpropagation process [12], the error is replaced by a unit

value

δm, j = s j F
′

m, j . (9)

Knowing δm, j , elements of Jacobian matrix are calculated

as
∂ep,m

∂w j,i
= y j,iδm, j = y j,i s j F

′

m, j . (10)

In the EBP algorithm, elements of gradient vector are

computed as

g j,i =
∂ E

∂w j,i
= y j,i δ j (11)

where δ j is obtained with errorbackpropagation process. In

second-order algorithms, gradient can be obtained from partial

results of Jacobian calculations

g j,i = y j,i

no
∑

m=1

δm, j em (12)

where m indicates a network output and δmj is given by (9).

for all patterns
% Forward computation
 for all neurons (nn)
 for all weights of the neuron (nx)
 calculate net; % Eq. (4)
 end;
 calculate neuron output; % Eq. (7)
 calculate neuron slope; % Eq. (6)
 end;
 for all outputs (no)
 calculate error; % Eq. (2)
%Backward computation

 initial delta as slope;
 for all neurons starting from output neurons (nn)

 for the weights connected to other neurons (ny)
 multiply delta through weights

 sum the backpropagated delta at proper nodes

 end;

 multiply delta by slope (for hidden neurons);

 end;

 end;
end;

Fig. 3. Pseudo code using traditional backpropagation of delta in second-
order algorithms (code in bold will be removed in the proposed computation).

The update rule of the EBP algorithm is

wn+1 = wn − α gn (13)

where n is the index of iterations, w is the weight vector, α is

the learning constant, and g is the gradient vector.

Derived from the Newton algorithm and the steepest descent

method, the update rule of the LM algorithm is [12], [18]

wn+1 = wn −

(

J T
n Jn + µ I

)−1
gn (14)

where µ is the combination coefficient, I is the identity matrix,

and J is Jacobian matrix shown in Fig. 2.

From Fig. 2, one may notice that, for every pattern p, there

are no rows of Jacobian matrix where no is the number of

network outputs. The number of columns is equal to number

of weights in the networks and the number of rows is equal

to np × no.

Traditional backpropagation computation, for delta matrix

(np × no × nn) computation in second-order algorithms, can

be organized as shown in Fig. 3.

III. FORWARD-ONLY COMPUTATION

A. Derivation

The proposed method is designed to improve the efficiency

of Jacobian matrix computation by removing the backpropa-

gation process.

The concept of δm, j was described in Section II. One may

notice that δm, j can be interpreted also as a signal gain between

net input of neuron j and the network output m. Let us extend

this concept to gain coefficients between all neurons in the

network (see Figs. 4, 6). The notation of δk, j is extension of

(9) and can be interpreted as signal gain between neurons j

and k and it is given by

δk, j =
∂ Fk, j

(

y j

)

∂net j

=
∂ Fk, j

(

y j

)

∂y j

∂y j

∂net j

= F
′

k, j s j (15)

1796 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

F'
k,jn

et
w

o
rk

 i
n
p

u
ts

n
et

w
o
rk

 o
u
tp

u
ts

net
j

net
k

s
j

s
k

o
1

o
m

y
j

y
k

m, j
δ

m,k
δ

δ
k, j

 � F '
k,j

s
j

Fig. 4. Interpretation of δk, j as a signal gain, where in feedforward network
neuron j must be located before neuron k.

w
1,2

w
2,3

w
3,4

w
1,3

w
1,4

w
2,4

in
p
u
ts

1

2

+1

3

4

Fig. 5. Four neurons in fully connected neural network, with five inputs and
three outputs.

where k and j are the indices of neurons and Fk, j (y j) is the

nonlinear relationship between the output node of neuron k

and the output node of neuron j . Naturally, in feedforward

networks, k ≥ j. If k = j , then δk,k = sk , where sk is the

slope of activation function (6). Fig. 4 illustrates this extended

concept of δk, j parameter as a signal gain.

The matrix δ has a triangular shape, and its elements can

be calculated in the forward-only process. Later, elements of

gradient vector and elements of Jacobian can be obtained using

(10) and (12), where only the last rows of matrix δ associated

with network outputs are used. The key issue of the proposed

algorithm is the method of calculating of δk, j parameters in

the forward calculation process and it will be described in the

next section.

B. Calculation of δ Matrix for FCC Architectures

Let us start our analysis with fully connected neural net-

works (Fig. 5). Any other architecture could be considered as

a simplification of fully connected neural networks by elimi-

nating connections (setting weights to zero). If the feedforward

principle is enforced (no feedback), fully connected neural

networks must have cascade architectures.

Slopes of neuron activation functions s j can be also written

in form of the δ parameter as δ j, j = s j . By inspecting Fig. 6,

the δ parameters can be written as follows.

For the first neuron, there is only one δ parameter

δ1,1 = s1. (16)

w
1,2

w
2,3

w
3,4

w
1,3

w
1,4

w
2,4

S
1

2,1
δ

3,1
δ

4,1
δ 4,1

δ

4,2
δ

3,2
δ

S
2

S
3

S
4

Fig. 6. δk, j parameters for the neural network of Fig. 5. Input and bias
weights are not used in the calculation of gain parameters.

For the second neuron, there are two δ parameters

δ2,2 = s2

δ2,1 = s2w1,2s1.
(17)

For the third neuron, there are three δ parameters

δ3,3 = s3

δ3,2 = s3w2,3s2

δ3,1 = s3w1,3s1 + s3w2,3s2w1,2s1.

(18)

One may notice that all δ parameters for third neuron can

be also expressed as a function the δ parameters calculated for

previous neurons. Equation (18) can be rewritten as

δ3,3 = s3

δ3,2 = δ3,3w2,3δ2,2

δ3,1 = δ3,3w1,3δ1,1 + δ3,3w2,3δ2,1.

(19)

For the fourth neuron, there are four δ parameters

δ4,4 = s4

δ4,3 = δ4,4w3,4δ3,3

δ4,2 = δ4,4w2,4δ2,2 + δ4,4w3,4δ3,2

δ4,1 = δ4,4w1,4δ1,1 + δ4,4w2,4δ2,1 + δ4,4w3,4δ3,1.

(20)

The last parameter δ4,1 can be also expressed in a compact

form by summing all terms connected to other neurons (from

1 to 3)

δ4,1 = δ4,4

3
∑

i=1

wi,4δi,1. (21)

The universal formula to calculate the δk, j parameters using

already calculated data for previous neurons is

δk, j = δk,k

k−1
∑

i= j

wi,kδi, j (22)

wherein the feedforward network neuron j must be located

before neuron k, so k ≥ j ; δk,k = sk is the slop of activation

function of neuron k; w j,k is weight between neuron j and

neuron k; and δk, j is a signal gain through weight w j,k and

through the other part of network connected to w j,k .

In order to organize the process, the nn × nn computation

table is used for calculating signal gains between neurons,

WILAMOWSKI AND YU: NEURAL NETWORK LEARNING WITHOUT BACKPROPAGATION 1797

Neuron
Index

1

1

2

2

j

j

k nn

w
1,nn

w
1,k

w
1, j

w
1,2

w
2,nn

w
2,k

w
2, j

w
j,nn

w
j,k

w
k,nnk

nn

δ
1,1

δ
2,1

δ
2,2

δ
j,1

δ
k,1

δ
nn,1

δ
nn,2

δ
nn, j

δ
k,2

δ
k, j

δ
nn,k

δ
nn,nn

δ
k,k

δ
j,2

δ
j, j

Fig. 7. nn × nn computation table: Gain matrix δ contains all the signal
gains between neurons, weight array w presents only the connections between
neurons, while network input weights and biasing weights are not included.

where nn is the number of neurons (Fig. 7). Natural indices

(from 1 to nn) are given for each neuron according to the

direction of signals propagation. For signal gains computation,

only connections between neurons need to be concerned, while

the weights connected to network inputs and biasing weights

of all neurons will be used only at the end of the process.

For a given pattern, a sample of the nn × nn computation

table is shown in Fig. 7. One may notice that the indices of

rows and columns are the same as the indices of neurons. In

the followed derivation, let us use k and j , used as neurons

indices, to specify the rows and columns in the computation

table. In feed forward network, k ≥ j and matrix δ has a

triangular shape.

The computation table consists of three parts: weights be-

tween neurons in upper triangle; vector of slopes of activation

functions in main diagonal; and signal gain matrix δ in lower

triangle. Only main diagonal and lower triangular elements are

computed for each pattern. Initially, elements on main diagonal

δk,k = sk are known, as slopes of the activation functions and

values of signal gains δk, j are being computed subsequently

using (22).

The computation is processed neuron by neuron starting

with the neuron closest to network inputs. At first, the row

no. 1 is calculated and then elements of the subsequent rows.

Calculation on the row below is done using elements from

the rows above using (22). After completion of the forward

computation process, all elements of the δ matrix in the form

of the lower triangle are obtained.

In the next step, elements of gradient vector and Jacobian

matrix are calculated using (10) and (12). In the case of neural

networks with one output only, the last row of the δ matrix is

needed for gradient vector and Jacobian matrix computation. If

networks have more outputs no, then last no rows of the δ ma-

trix are used. For example, if the network shown in Fig. 5 has

three outputs, the following elements of the δ matrix are used:
⎡

⎣

δ2,1 δ2,2 = s2 δ2,3 = 0 δ2,4 = 0

δ3,1 δ3,2 δ3,3 = s3 δ3,4 = 0

δ4,1 δ4,2 δ4,3 δ4,4 = s4

⎤

⎦ (23)

and then for each pattern, the three rows of the Jacobian

matrix, corresponding to three outputs, are calculated in one

step using (10) without additional propagation of δ
⎡

⎢
⎢
⎣

δ2,1 × {y1} s2 × {y2} 0 × {y3} 0 × {y4}

δ3,1 × {y1} δ3,2 × {y2} s3 × {y3} 0 × {y4}

δ4,1 × {y1}
︸ ︷︷ ︸

neuron 1

δ4,2 × {y2}
︸ ︷︷ ︸

neuron 2

δ4,3 × {y3}
︸ ︷︷ ︸

neuron 3

s4 × {y4}
︸ ︷︷ ︸

neuron 4

⎤

⎥
⎥
⎦

(24)

where neurons’ input vectors y1 through y have six, seven,

eight, and nine elements, respectively (Fig. 5), corresponding

to number of weights connected. Therefore, each row of the

Jacobian matrix has 6 + 7 + 8 + 9 = 30 elements. If the

network has three outputs, then from six elements of the δ

matrix and three slopes, 90 elements of Jacobian matrix are

calculated. One may notice that the size of newly introduced

δ matrix is relatively small, and it is negligible in comparison

to other matrixes used in calculation.

The proposed method gives all the information needed

to calculate both the gradient vector (12) and the Jacobian

matrix (10) without the backpropagation process, instead,

the δ parameters are obtained in relatively simple forward

computation [see (22)].

C. Training Arbitrarily Connected Neural Networks

The proposed computation above was derived for fully con-

nected neural networks. If network is not fully connected, then

some elements of the computation table are zero. Fig. 8 shows

computation tables for different neural network topologies

with six neurons each. Note that the zero elements are for

unconnected neurons (in the same layers). This can further

simplify the computation process for popular MLP topologies

[Fig. 8(b)].

In order to further simplify the computation process, (22)

is completed in two steps

xk, j =

k−1
∑

i= j

wi,kδi, j (25)

and

δk, j = δk,k xk, j = sk xk, j . (26)

The complete algorithm with forward-only computation

is shown in Fig. 9. By adding two additional steps using

(25) and (26) (highlighted in bold in Fig. 9), all com-

putation can be completed in the forward-only computing

process.

IV. COMPARISON OF THE TRADITIONAL AND

THE PROPOSED ALGORITHM

The proposed forward-only computation removes the back-

propagation part, but it includes an additional calculation in the

forward computation (bold part in Fig. 9). Let us compare the

computation cost of the forward part and the backward part for

each method in the LM algorithm. Naturally, such comparison

can be done only for traditional MLP architectures, which can

be handled by both algorithms.

As is shown in Figs. 3 and 9, the cost of traditional

computation and the forward-only computation depends on

1798 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Index 1

1

2

2

3

3

4

4

5

5

6

6

Index 1

1

2

2

3

3

4

(a)

(b)

(c)

4

5

5

6

6

Index 1

1

2

2

3

3

4

4

5

5

6

6

s
1

s
1

s
1

s
2

s
2

s
2

s
3

s
3

s
3

s
4

s
4

s
4

s
5

s
5

s
5

s
6

s
6

s
6

w
1,2

w
2,3

w
1,3

w
1,3

w
1,4

w
2,4

w
2,4

w
3,4

w
1,5

w
1,5

w
1,6

w
1,6

w
1,6

w
2,5

w
2,5

w
2,5

w
3,5

w
4,5

w
2,6

w
2,6

w
3,6

w
3,5

w
3,5

w
3,6

w
3,6

w
4,6

w
4,5

w
4,5

w
4,6

w
5,6

δ
2,1

δ
3,1

δ
3,1

δ
4,1

δ
5,1

δ
6,1

δ
3,2

δ
4,2

δ
4,2

δ
5,2

δ
6,2

δ
4,3

δ
5,3

δ
5,4

δ
5,1

δ
5,2

δ
5,2

δ
5,3

δ
5,4

δ
5,4

δ
6,3

δ
6,4

δ
6,1

δ
5,1

δ
6,1

δ
6,2

δ
6,3

δ
5,3

δ
6,3

δ
6,4

δ
6,5

0

0

0

0

0

0

0

0

0 0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 8. Three different architectures with six neurons. (a) FCC network. (b)
MLP network. (c) Arbitrarily connected neural network.

the neural network topology. In order to do the analytical

comparison, for each neuron let us consider:

1) nx as the average number of weights

nx =
nw

nn
; (27)

2) ny as the average number of weights between neurons

ny =
nh × no

nn
; (28)

3) nz as the average number of previous neurons

nz =
nh

nn
(29)

where nw is the number of weights, nn is the number of

neurons, no is the number of outputs, and nh is the number

of hidden neurons. The estimation of ny depends on network

structures. Equation (28) gives the ny value for MLP networks

with one hidden layer. The comparison below is for training

one pattern.

From the analytical results in Table I, one may notice

that, for the backward part, the time cost in backpropagation

for all patterns
% Forward computation
 for all neurons (nn)

for all weights of the neuron (nx)
 calculate net; % Eq. (4)

end;
calculate neuron output; % Eq. (7)

 calculate neuron slope; % Eq. (6)
set current slope as delta;
for weights connected to previous neurons (ny)

 for previous neurons (nz)
multiply delta through weights then sum; % Eq. (25)

 end;

 multiply the sum by the slope; % Eq. (26)

 end;

 end;
 for all outputs (no)
 calculate error; % Eq. (2)
 end;
end;

Fig. 9. Pseudo code of the forward-only computation, in second-order
algorithms.

TABLE I

ANALYSIS OF COMPUTATION COST IN LM ALGORITHM

Hagan and Menhaj Computation
Forward Part Backward Part

+/− nn × nx + 3nn + no no × nn × ny

×/÷ nn × nx + 4nn no × nn × ny +no × (nn – no)
exp∗ nn 0

Proposed forward-only computation
Forward Backward

+/− nn × nx + 3nn + no + nn × ny × nz 0
×/÷ nn × nx + 4nn + nn × ny + nn × ny × nz 0
exp nn 0

Subtraction forward-only from traditional
+/− nn × ny × (no – 1)
×/÷ nn × ny × (no – 1) + no × (nn – no) – nn × ny × nz

exp 0

∗Exponential operation.

computation is tightly associated with the number of outputs,

while in the forward-only computation, the number of outputs

is almost irrelevant.
Table II shows the computation cost for the neural network

that will be used for the ASCII problem in Section V, using

the equations of Table I.
In typical PC with arithmetic coprocessor, based on the

experimental results, if the time cost for “+/−” operation is

set as unit “1,” then “×/÷” and “exp” operations will cost

nearly 2 and 65, respectively.
For the computation speed testing in the next section, the

analytical relative times are presented in Table III.
Based on the analytical results, it can be seen that, in the

LM algorithm for single output networks, the forward-only

computation is similar with the traditional computation. while

for networks with multiple outputs, the proposed forward-only

computation is faster.

V. EXPERIMENTAL RESULTS

The experiments were organized in three parts: 1) ability

of handling various network topologies; 2) training neural

networks with generalization abilities; and 3) computational

efficiency.

WILAMOWSKI AND YU: NEURAL NETWORK LEARNING WITHOUT BACKPROPAGATION 1799

TABLE II

COMPARISON FOR ASCII PROBLEM

Hagan and Menhaj
computation

Proposed forward-only
computation

Forward Backward Forward Backward
+/− 4088 175 616 7224 0
×/÷ 4144 178 752 8848 0
exp 7280 0 7280 0

Total 552 776 32 200
Relative time 100% 5.83%

∗Network structure: 112 neurons in 8-56-56 MLP network

TABLE III

ANALYTICAL RELATIVE TIME OF THE FORWARD-ONLY

COMPUTATION OF PROBLEMS

Problems nn no nx ny nz Relative
Time (%)

ASCII conversion 112 56 33 28 0.50 5.83
Error correction 42 12 18.1 8.57 2.28 36.96
Forward kinematics 10 3 5.9 2.10 0.70 88.16

A. Ability of Handling Various Network Topologies

The ability of training arbitrarily connected networks of the

proposed forward-only computation is illustrated by the two-

spiral problem.
The two-spiral problem is considered as a good evaluation

of training algorithms [19]. Depending on neural network

architecture, different numbers of neurons are required for suc-

cessful training. For example, using standard MLP networks

with one hidden layer, 34 neurons are required for the two-

spiral problem [20]. Using the proposed computation in LM

algorithm, two types of topologies, MLP networks with two

hidden layers and FCC networks, are tested for training the

two-spiral patterns, and the results are presented in the tables

below. In MLP networks with two hidden layers, the number

of neurons is assumed to be equal in both hidden layers.
Results for MLP architectures shown in the Table IV are

identical, whether or not the Hagan and Menhaj LM algorithm

or the proposed LM algorithm is used (assuming the same

initial weights). In other words, the proposed algorithm has

the same success rate and the same number of iterations as

those obtained by the Hagan and Menhaj LM algorithm. The

difference is that the proposed algorithm can handle also other

than MLP architectures and in many cases (especially with

multiple outputs) computation time is shorter.

One may notice that the FCC networks are much more

efficient than other networks to solve the two-spiral problem,

with as few as eight neurons. The proposed LM algorithm is

also more efficient than the well-known cascade correlation

algorithm, which requires 12–19 hidden neurons in FCC

architectures to converge [21].

B. Train Neural Networks with Generalization Abilities

To compare generalization abilities, FCC networks, which

proved to be the most efficient in Example 1, are applied

for training. These architectures can be trained by both the

EBP algorithm and the proposed LM algorithm. The slow

TABLE IV

TRAINING RESULTS OF THE TWO-SPIRAL PROBLEM WITH THE PROPOSED

IMPLEMENTATION OF THE LM ALGORITHM, USING MLP NETWORKS

WITH TWO HIDDEN LAYERS; MAXIMUM ITERATION IS 1000; DESIRED

ERROR = 0.01; THERE ARE 100 TRIALS FOR EACH CASE

Hidden Success Average number Average
neurons rate iterations time (s)

12 Failing — —
14 13% 474.7 5.17
16 33% 530.6 8.05

18 50% 531.0 12.19
20 63% 567.9 19.14
22 65% 549.1 26.09
24 71% 514.4 34.85
26 81% 544.3 52.74

TABLE V

TRAINING RESULTS OF THE TWO-SPIRAL PROBLEM WITH THE PROPOSED

IMPLEMENTATION OF LM ALGORITHM, USING FCC NETWORKS;

MAXIMUM ITERATION IS 1000; DESIRED ERROR = 0.01; THERE ARE

100 TRIALS FOR EACH CASE

Hidden Success Average number Average
neurons rate (%) iterations time (s)

7 13 287.7 0.88
8 24 261.4 0.98
9 40 243.9 1.57

10 69 231.8 1.62
11 80 175.1 1.70
12 89 159.7 2.09
13 92 137.3 2.40
14 96 127.7 2.89
15 99 112.0 3.82

convergence of EBP algorithm is not the issue in this ex-

periment. Generalization abilities of networks trained with

both algorithms are compared. The Hagan and Menhaj LM

algorithm was not used for comparison here because it cannot

handle FCC networks.

Let us consider the peak surface [20] as the required surface

[Fig. 10(a)] and let us use equally spaced 10 × 10 = 100

patterns [Fig. 10(b)] to train neural networks. The quality

of trained networks is evaluated using errors computed for

equally spaced 37 × 37 = 1369 patterns. In order to make

a valid comparison between training and verification errors,

the SSE, as defined in (1), is divided by 100 and 1369,

respectively.

For EBP algorithm, the learning constant is 0.0005 and

momentum is 0.5, maximum iteration is 1 000 000 for EBP

algorithm and 1000 for LM algorithm, desired error = 0.5,

there are 100 trials for each case. The proposed version of

LM algorithm is used in this experiment.

The training results are shown in Table VI. One may notice

that it is possible to find the acceptable solution (Fig. 11)

with eight neurons (52 weights). Unfortunately, with EBP

algorithm, it was not possible to find acceptable solutions in

100 trials within 1 000 000 iterations each. Fig. 12 shows the

best result out of the 100 trials with EBP algorithm. When the

network size was significantly increased from 8 to 13 neurons

(117 weights), EBP algorithm was able to reach the similar

training error as with LM algorithm, but the network lost its

1800 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

8

6

4

2

0

−2

−4

−6

−8
10 9

9 108
87

76
65

54 43 32

(a)

(b)

21 1

8

6

4

2

0

−2

−4

−6

−8
10 9

9 108
87

76
65

54 43 32 21 1

Fig. 10. Surface matching problem. (a) Required 2-D surface with
37 × 37 = 1369 points, used for verification. (b) 10 ×10 = 100 training
patterns extracted in equal space from (a), used for training.

TABLE VI

TRAINING RESULTS OF PEAK SURFACE PROBLEM USING

FCC ARCHITECTURES

Neurons Success rate Average Average

iteration time (s)

EBP (%) LM (%) EBP LM EBP LM

8 0 5 Failing 222.5 Failing 0.33

9 0 25 Failing 214.6 Failing 0.58

10 0 61 Failing 183.5 Failing 0.70

11 0 76 Failing 177.2 Failing 0.93

12 0 90 Failing 149.5 Failing 1.08

13 35 96 573 226 142.5 624.88 1.35

14 42 99 544 734 134.5 651.66 1.76

15 56 100 627 224 119.3 891.90 1.85

generalization ability to respond correctly for new patterns

(between training points). Note that with a larger number of

neurons (13 neurons), the EBP algorithm was able to train the

network to a small error SSET rain = 0.0018, but as one can

see from Fig. 13, the result is unacceptable with verification

error SSEV eri f y = 0.4909.

From the presented examples, one can see that often in

simple (close to optimal) networks, the EBP algorithm cannot

converge to the required training error (Fig. 12). When the

8

6

4

2

0

−2

−4

−6

−8
10 9

9 108
87

76
65

54 43 32 21 1

Fig. 11. Best training result in 100 trials, using LM algorithm, eight
neurons in FCC network (52 weights); maximum training iteration is 1000;
SSETrain = 0.0044, SSEV eri f y = 0.0080, and training time = 0.37 s.

8

6

4

2

0

−2

−4

−6

−8
10 9

9 108
87

76
65

54 43 32 21 1

Fig. 12. Best training result in 100 trials, using EBP algorithm, eight neurons
in FCC network (52 weights); maximum training iteration is 1 000 000;
SSETrain = 0.0764, SSEV eri f y = 0.1271, and training time = 579.98 s.

size of networks increases, the EBP algorithm can reach

the required training error, but trained networks lose their

generalization ability and cannot process new patterns well

(Fig. 13). On the other hand, the proposed version of LM

algorithm in this paper works not only significantly faster but

can also find good solutions with close to optimal networks

(Fig. 11).

C. Computational Speed

Several problems are presented to test the computation

speed of both the Hagan and Menhaj LM algorithm, and the

proposed LM algorithm. The testing of time costs is divided

into forward part and backward part separately. In order to

compare with the analytical results in Section IV, the MLP

networks with one hidden layer are used for training.

1) ASCII Codes to Image Conversion: This problem is to

associate 256 ASCII codes with 256 character images, each

of which is made up of 7 × 8 pixels (Fig. 14). So there

are 8-bit inputs (inputs of parity-8 problem), 256 patterns,

and 56 outputs. In order to solve the problem, the structure,

i.e., 112 neurons in 8-56-56 MLP network, is used to train

those patterns using LM algorithm. The computation time is

WILAMOWSKI AND YU: NEURAL NETWORK LEARNING WITHOUT BACKPROPAGATION 1801

8

6

4

2

0

−2

−4

−6

−8
10 9

9 108
87

76
65

54 43 32 21 1

Fig. 13. Best training result in 100 trials, using EBP algorithm, 13 neurons
in FCC network (117 weights); maximum training iteration is 1 000 000;
SSET rain = 0.0018, SSEV eri f y = 0.4909, and training time = 635.72 s.

TABLE VII

COMPARISON FOR ASCII CHARACTERS RECOGNITION PROBLEM

Computation methods Time cost (ms/iteration) Relative
Forward Backward time (%)

Traditional 8.24 1028.74 100.0
Forward-only 61.13 0.00 5.9

TABLE VIII

COMPARISON FOR ERROR CORRECTION PROBLEM

Problems Computation Time cost (ms/iteration) Relative
methods Forward Backward time (%)

8-bit signal
Traditional 40.59 468.14 100.0

Forward-only 175.72 0.00 34.5

presented in Table VII. The analytical result is 5.83%, as

shown in Table III.

Testing data in Table VII shows that, for this multiple

outputs problem, the forward-only computation is much more

efficient than traditional computation, in LM training.

2) Error Correction: Error correction is an extension of

parity-N problems [14], [15] for multiple parity bits. In

Fig. 15, the left side is the input data, made up of signal

bits and their parity bits, while the right side is the related

corrected signal bits and parity bits as outputs. The number of

inputs is equal to the number of outputs.

The error correction problem in the experiment has 8-bit

signal and 4-bit parity bits as inputs, 12 outputs, and 3328

patterns (256 correct patterns and 3072 patterns with errors),

using 42 neurons in a 12-30-12 MLP network (762 weights).

Error patterns with one incorrect bit must be corrected. Both

traditional computation and the forward-only computation

were performed with the LM algorithm. The testing results

are presented in Table VIII. The analytical result is 36.96% as

shown in Table III.

Compared to the traditional forward-backward computation

in LM algorithm, again, the forward-only computation has

a considerably improved efficiency. With the trained neural

network, all the patterns with one bit error are corrected

successfully.

Fig. 14. First 90 images of ASCII characters.

signal

bits

parity

bits

corrected

signal

bits

corrected

parity

bits

Neural

Networks

Fig. 15. Using neural networks to solve an error correction problem. Errors
in input data can be corrected by well-trained neural networks.

TABLE IX

COMPARISON FOR FORWARD KINEMATICS PROBLEM

Computation methods
Time cost (ms/iteration) Relative
Forward Backward time (%)

Traditional 0.307 0.771 100.0
Forward-only 0.727 0.00 67.4

3) Forward Kinematics: Neural networks are successfully

used to solve many practical problems in the industry, such

as control problems, compensation nonlinearities in objects

and sensors, which are issues of identification of parame-

ters that cannot be directly measured, and sensorless control

[22]–[24].

Forward kinematics is an example of these types of practical

applications [25], [26]. The purpose is to calculate the position

and orientation of robot’s end effector as a function of its joint

angles.

In this experiment, 224 patterns are applied for training the

MLP network 3-7-3 (59 weights) using the LM algorithm. The

comparison of cost between the forward-only computation and

traditional computation is shown in Table IX. In 100 trials with

different starting points, the experiment got 22.2% success rate

and the average iteration cost for converge was 123.4. The

analytical result is 88.16% as shown in Table III.

The presented experimental results match the analysis in

Section III well, for networks with multiple outputs, the

forward-only computation is more efficient than the traditional

backpropagation computation.

1802 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

VI. CONCLUSION

One of the major features of the proposed algorithm is that

it can be easily adapted to train arbitrarily connected neural

networks and not just MLP topologies. This is very important

because neural networks with connections across layers are

much more powerful than commonly used MLP architectures

[14], [27], [15]. For example, if the number of neurons in the

network is limited to eight, then popular MLP topology with

one hidden layer is capable of solving only parity-7 problem.

If the same eight neurons are connected in FCC, then with

this network parity-255 problem can be solved [27].

It was shown (Figs. 12 and 13) that, in order to secure

training convergence with first-order algorithms, an excessive

number of neurons much be used, and this results in a failure

of the generalization abilities of the neural network. This was

the major reason for frustration in industrial practice when

neural networks were trained to small errors but would respond

very poorly for patterns not used for training. The presented

computation for second-order algorithms can be applied to

train arbitrarily connected neural networks, so it is capable of

training neural networks with reduced number of neurons and

as consequence has good generalization abilities (Fig. 11).

The proposed method of computation gives identical num-

ber of training iterations and success rates as the Hagan

and Menhaj implementation of the LM algorithm, since the

same Jacobian matrices are obtained from both methods. By

removing backpropagation process, the proposed method is

much simpler than traditional forward and backward procedure

to calculate the elements of the Jacobian matrix. The whole

computation can be described by a regular table (Fig. 7) and a

general formula (22). Additionally, for networks with multiple

outputs, the proposed method is less computationally intensive

and faster than traditional forward and backward computations

[12], [2].

The algorithm was implemented in the neural networks

trainer (NBN 2.10), and the software can be downloaded from

http://www.eng.auburn.edu/users/wilambm/nnt/.

REFERENCES

[1] P. J. Werbos, “Back-propagation: Past and future,” in Proc. IEEE Int.

Conf. Neural Netw., vol. 1. San Diego, CA, Jul. 1988, pp. 343–353.
[2] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Comput-

ing gradient vector and Jacobian matrix in arbitrarily connected neural
networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784–3790,
Oct. 2008.

[3] N. Ampazis and S. J. Perantonis, “Two highly efficient second-order
algorithms for training feedforward networks,” IEEE Trans. Neural

Netw., vol. 13, no. 5, pp. 1064–1074, Sep. 2002.
[4] C.-T. Kim and J.-J. Lee, “Training two-layered feedforward networks

with variable projection method,” IEEE Trans. Neural Netw., vol. 19,
no. 2, pp. 371–375, Feb. 2008.

[5] B. M. Wilamowski, “Neural network architectures and learning algo-
rithms: How not to be frustrated with neural networks,” IEEE Ind.

Electron. Mag., vol. 3, no. 4, pp. 56–63, Dec. 2009.
[6] S. Ferrari and M. Jensenius, “A constrained optimization approach to

preserving prior knowledge during incremental training,” IEEE Trans.

Neural Netw., vol. 19, no. 6, pp. 996–1009, Jun. 2008.
[7] Q. Song, J. C. Spall, Y. C. Soh, and J. Ni, “Robust neural network

tracking controller using simultaneous perturbation stochastic approxi-
mation,” IEEE Trans. Neural Netw., vol. 19, no. 5, pp. 817–835, May
2008.

[8] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation
algorithm with momentum,” IEEE Trans. Neural Netw., vol. 5, no. 3,
pp. 505–506, May 1994.

[9] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. Int. Conf.

Neural Netw., San Francisco, CA, 1993, pp. 586–591.
[10] A. Toledo, M. Pinzolas, J. J. Ibarrola, and G. Lera, “Improvement of the

neighborhood based Levenberg–Marquardt algorithm by local adaptation
of the learning coefficient,” IEEE Trans. Neural Netw., vol. 16, no. 4,
pp. 988–992, Jul. 2005.

[11] J.-M. Wu, “Multilayer Potts perceptrons with Levenberg–Marquardt
learning,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2032–2043,
Dec. 2008.

[12] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp.
989–993, Nov. 1994.

[13] H. B. Demuth and M. Beale, Neural Network Toolbox: For Use with

MATLAB. Natick, MA: Mathworks, 2000.
[14] M. E. Hohil, D. Liu, and S. H. Smith, “Solving the N-bit parity problem

using neural networks,” Neural Netw., vol. 12, no. 9, pp. 1321–1323,
Nov. 1999.

[15] B. M. Wilamowski, D. Hunter, and A. Malinowski, “Solving parity-
N problems with feedforward neural networks,” in Proc. IEEE IJCNN,
Piscataway, NJ: IEEE Press, 2003, pp. 2546–2551.

[16] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg–
Marquardt training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930–
937, Jun. 2010.

[17] R. Hecht-Nielsen, “Theory of the back propagation neural network,” in
Proc. IEEE IJCNN, Washington D.C., Jun. 1989, pp. 593–605.

[18] K. Levenberg, “A method for the solution of certain problems in least
squares,” Quart. Appl. Math., vol. 2, no. 2, pp. 164–168, 1944.

[19] J.-X. Peng, K. Li, and G. W. Irwin, “A new Jacobian matrix for optimal
learning of single-layer neural networks,” IEEE Trans. Neural Netw.,
vol. 19, no. 1, pp. 119–129, Jan. 2008.

[20] S. Wan and L. E. Banta, “Parameter incremental learning algorithm for
neural networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1424–
1438, Nov. 2006.

[21] S. E. Fahlman and C. Lebiere, “The cascade-correction learning archi-
tecture,” in Advances in Neural Information Processing Systems 2, D.
S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990.

[22] B. K. Bose, “Neural network applications in power electronics and motor
drives—An introduction and perspective,” IEEE Trans. Ind. Electron.,
vol. 54, no. 1, pp. 14–33, Feb. 2007.

[23] J. A. Farrell and M. M. Polycarpou, “Adaptive approximation based
control: Unifying neural, fuzzy and traditional adaptive approximation
approaches,” IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 731–732,
Apr. 2008.

[24] W. Qiao, R. G. Harley, and G. K. Venayagamoorthy, “Fault-tolerant in-
direct adaptive neurocontrol for a static synchronous series compensator
in a power network with missing sensor measurements,” IEEE Trans.

Neural Netw., vol. 19, no. 7, pp. 1179–1195, Jul. 2008.
[25] J. Y. Goulermas, A. H. Findlow, C. J. Nester, P. Liatsis, X.-J. Zeng, L.

Kenney, P. Tresadern, S. B. Thies, and D. Howard, “An instance-based
algorithm with auxiliary similarity information for the estimation of gait
kinematics from wearable sensors,” IEEE Trans. Neural Netw., vol. 19,
no. 9, pp. 1574–1582, Sep. 2008.

[26] Y. Zhang and S. S. Ge, “Design and analysis of a general recurrent
neural network model for time-varying matrix inversion,” IEEE Trans.

Neural Netw., vol. 16, no. 6, pp. 1477–1490, Nov. 2005.
[27] B. M. Wilamowski, “Challenges in applications of computational intelli-

gence in industrials electronics,” in Proc. IEEE Int. Symp. Ind. Electron.,
Bari, Italy, Jul. 2010, pp. 15–22.

Bogdan M. Wilamowski (M’82–SM’83–F’00) re-
ceived the M.S. degree in computer engineering, the
Ph.D. degree in neural computing, and the Dr.Habil.
degree in integrated circuit design, in 1966, 1970,
and 1977, respectively.

He is currently the Director of the Alabama Mi-
cro/Nano Science and Technology Center, Auburn
University, Auburn, AL, and a Professor with the
Department of Electrical and Computer Engineer-
ing. He is the author of four textbooks and about
300 refereed publications and holds 28 patents.

WILAMOWSKI AND YU: NEURAL NETWORK LEARNING WITHOUT BACKPROPAGATION 1803

He was the Major Professor for over 150 graduate students. His cur-
rent research interests include computational intelligence and soft comput-
ing, computer-aided design development, solid-state electronics, mixed- and
analog-signal processing, and network programming.

Dr. Wilamowski was one of the founders of the IEEE Computational
Intelligence Society and the President of the IEEE Industrial Electronics
Society. He served as an Associate Editor for six journals including the IEEE
TRANSACTIONS ON NEURAL NETWORKS. He also was the Editor-in-Chief
of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. Recently, he
was appointed Editor-in-Chief of the IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS.

Hao Yu received the M.S. degree in electrical
engineering from Huazhong University of Science
and Technology, Hubei, China, in 2006. He is cur-
rently working toward the Ph.D. degree in electrical
engineering in Auburn University, Auburn, AL.

He is a Research Assistant with the Department of
Electrical and Computer Engineering, Auburn Uni-
versity. His current research interests include compu-
tational intelligence, neural networks, and computer
aided design.

Mr. Yu is a reviewer for the IEEE TRANSACTIONS

ON INDUSTRIAL ELECTRONICS.

