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ABSTRACT Due to the widespread application of location information, the neural network localization

method with the advantage of high localization accuracy has received significant interests in recent years.

In this paper, we present two new neural network localization methods with time-of-arrival (TOA) mea-

surements. In order to deal with three types of error about TOA measurements such as measurement error,

non-line of sight (NLOS) error, and synchronization error, the proposed methods contain an offline training

stage and an online localization stage. In the offline stage, the artificial neural network (ANN) or radial basis

function (RBF) neural network is utilized to train the range measurements with the output of range errors

rather than the position of the mobile terminal (MT). Moreover, due to the unknown signal propagation

condition whether it is the line of sight or NLOS propagation, the k-mean clustering algorithm is used to

classifying the range errors into different clusters. In the online stage, the range errors are predicted and

updated, and then, the linear least square algorithm with the adjusted range measurements is applied for the

position estimate of MT. Comparing with the ANN or RBF neural network localization methods, the simu-

lation results show that the proposed methods can effectively reduce the localization error, especially when

the training sample is not adequate. In addition, they are insensitive to measurement error, synchronization

error, and the distribution of NLOS error. Finally, the memory requirement and computational complexity

about different algorithms are analyzed and compared.

INDEX TERMS Artificial neural network (ANN), localization, linear least square (LLS), non-line of

sight (NLOS), radial basis function (RBF), time of arrival (TOA).

I. INTRODUCTION

Location information is an integral and crucial component of

ubiquitous computing applications. Accurate indoor and out-

door localization aboutMobile Terminal (MT) is an important

technology for commercial, public safety, and military appli-

cation. In outdoor environments, the satellite-based local-

ization technology, such as the Global Positioning System

(GPS) is an effective and accurate localization technique.

The associate editor coordinating the review of this manuscript and
approving it for publication was Venkata Ratnam Devanaboyina.

However, the absence of direct line of sight (LOS) propa-

gation with satellite will lead to severe deterioration of the

localization performance [1]. There are some important sup-

plements to the satellite-based technique, such as Wireless

Sensor Network (WSN), Wireless Cellular Network (WCN)

and Wireless Local Area Network (WLAN) [2], [3] tech-

niques are used to localize the MT, especially in indoor envi-

ronments and some outdoor environments where the satellite

signals are heavily attenuated or blocked. These supplemen-

tal techniques have common principle to localize the MT.

Bymeasuring some signal parameters betweenMT and Fixed
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Terminals (FTs), such as Received Signal Strength (RSS),

Angle of Arrival (AOA), Time of Arrival (TOA), or Time

Difference of Arrival (TDOA) [4]–[7], the nonlinear rela-

tionship between these parameters and the position of MT

together with the position of FTs is formulated. Then some

algorithms are developed to estimate the position of MT

through utilizing this nonlinear relationship. However, many

difficulties intrinsic to the wireless environment make accu-

rate localization challenging. These challenges include signal

fading, multipath conditions and non-line of sight (NLOS)

propagation [8].

Recently, neural network localization methods have

received significant attentions due to the advantages of anti-

noise, fast operation speed, and high precision. The neural

network localization techniques discussed in open literature

can be categorized into two groups’ namely RSS-based and

TOA-based localization. The RSS-based localization which

is a low-cost localization technique without any additional

hardware has been investigated intensively. Instead of the

appropriate propagation-loss model about RSSmeasurement,

the work in [9] builds a flexible mapping between RSS and

position of the sensor nodes, and proposes the neural network

and grid sensor training phase for accurate localization of sen-

sors. The recorded RSS values through experiment are used to

train a feed-forward type of neural network in [10], it is shown

that the neural network-based localization method is better

than the well-known weighted k-nearest neighbor (KNN)

method in term of cumulative distribution function. Three

types of dynamic neural network (DNN) which can reduce

the impact of non-stationarity of RSS on localization per-

formance are used to localize the wireless device in [11].

By using Gaussian filter to process RSS value and fuzzy clus-

tering to determine the center of radial basis function (RBF),

two RBF neural network localization methods are proposed

in [12]. One is to learn the mapping relationship between RSS

and position of MT, the other is to add the difference of RSS

into the input layer of previous RBF neural network. Combin-

ing with Jensen-Shannon divergence as a measure of similar-

ity, a probabilistic neural network (PNN) localization method

is proposed in [13]. By transforming the problem of localiza-

tion into classification problem, the work in [14] proposes a

multi-layer neural network (MLNN) method for RSS-based

indoor localization. A denoising autoencoder based on the

deep learning model is introduced in [15] to reduce the effect

of noise, and then a KNN method is applied for location

estimate with a weighted average of those related reference

locations. However, the main problem in RSS-based localiza-

tion is the severe fluctuation of RSS even for a static position

and the localization accuracy is greatly affected by the change

of environment.

Comparing with RSS-based localization, TOA-based

localization has higher localization accuracy and is more

robust to the change of environment. However, it requires

precise time synchronization between MT and FTs, and the

localization accuracy degrades greatly when the NLOS prop-

agation is present. In [16], it indicates that neural networks

are a viable option for solving TOA-based localization

problems, and three different families of neural networks:

Multi-layer Perception (MLP), RBF, and Recurrent Neu-

ral Networks (RNN) are compared in terms of localization

accuracy, computational and memory resources. The work

in [17] proposes an artificial synaptic network for local-

ization, comparing with MLP and RBF, it has the lowest

localization error and highest efficiency in term of memory

cost. In order to deal with themiscellaneous noise sources and

harsh factory conditions, an artificial neural network (ANN)

approach is developed in [18]. Lagrange programming neural

network or its improved forms based on the TOA measure-

ments are proposed in [19]–[21] to locate a mobile source,

it is shown that the localization accuracy of this method

approaches to the Cramer-Rao lower bound. By using AOA

derived from phase differences in the signal received at the

multiple antenna array, a structured deep neural network [22]

is proposed to infer the position of MT. However, all the

simulation or experiment results of the above works are

based on perfect assumption that only LOS propagation is

present. In fact, signal NLOS propagation always happens

in indoor or outdoor environments where signal is blocked

by walls, buildings or other obstacles. By utilizing the statis-

tics of radio propagation channel metrics, a neural network

architecture is introduced to identify and mitigate the NLOS

conditions in indoor environments [23]. A machine learning

approach [24] is proposed to mitigate the range error based

on the features extracted directly from received waveform.

By utilizing particle filtering to reduce the TOA range error,

a fingerprinting localization algorithm is proposed in [25].

The channel parameters extracted from the down link signals

in the long term evolution (LTE) system are selected as the

feature or fingerprint [26], a feedforward neural network

whose input is feature or fingerprint vector and output is the

known position of user equipment (UE) is trained and used to

estimate the unknown positions. An indoor fingerprint local-

ization system with channel state information is proposed

in [27], a deep learning is utilized to train all the weights

of neural network in the offline stage, while a probabilistic

method based on the RBF function is presented to obtain the

estimated location in the online stage. Two forms of neural

network localization methods combining with hybrid lines

of position algorithm are proposed in [28] to determine the

position of MT without priori information about NLOS error.

Based on the NLOS channel classification and ranging error

regression model, a convolutional neural network (CNN)

localization method is proposed in [29]. To sum up, the above

research works mitigate the effect of NLOS error from two

aspects. One is to use the existing NLOSmitigation algorithm

combining with different types of neural network, the other is

to extract more features from propagation signal combining

with fingerprint or neural network method.

In this paper, we investigate the TOA-based neural network

localization method by relaxing the assumption of precise

time synchronization betweenMT and FTs.When TOA range

measurements are corrupted by measurement error, NLOS
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error and synchronization error, two new neural network

localization methods are proposed. In offline stage, unlike

the existing methods, we use the ANN or RBF neural net-

work to build the nonlinear mapping relationship between

the range measurements and range errors. Moreover, due to

the unknown link condition between MT and FTs, the range

errors can be further classified into different clusters whose

number is related to the number of FTs. In online stage, for

the range measurements, the corresponding range errors can

be predicted by the ANN or RBF neural network, and updated

by matching the training range error. Then linear least square

(LLS) algorithm with the adjusted range measurements is

applied for the position estimate of MT. Simulation results

show that the proposed methods are better than ANN or RBF

neural network and they are insensitive to measurement error,

synchronization error and the distribution of NLOS error.

The main contributions of this paper are as follow: 1) we

break the viewpoint that RBF neural network localization

method always has higher localization accuracy than ANN.

It is concluded that the performance of RBF neural network

degrades and fluctuates significantly when both the NLOS

error with random assignment and synchronization error are

present. 2) two new neural network localization methods

based on the learning model of range errors are proposed.

For different parameters, they are always better than ANN,

especially when the training sample is not adequate. 3) the

comparisons of different algorithms are simulated and ana-

lyzed in terms of localization accuracy, memory requirement

and computational complexity.

The remainder of this paper is organized as follow. The

related TOA localization methods about ANN and RBF neu-

ral network are presented in section II. The proposed local-

ization methods are presented in section III. The performance

comparison and results discussion are shown in section IV.

Section V concludes the paper.

II. RELATED TOA LOCALIZATION METHODS WITH

SUPERVISED LEARNING

A. TOA LOCALIZATION MODEL

In a wireless network, the FTs are assumed to synchronize

with each other, while MT is not synchronized with those

FTs. FT is usually a base station in WCN, an anchor node in

WSN, or an access point in WLAN. Thus, the TOA measure-

ments are significantly affected by NLOS propagation error

and time synchronization error. Denote the position of FTs by

(xi, yi), i = 1, · · · ,M, and the position of MT by (x, y). The

range measurements of TOA can be modeled as:

ri = c× ti = di + ε + ei + ni, i = 1, 2, · · · ,M

ε = c× 1t, di =

√

(x − xi)2 + (y− yi)2 (1)

where c is the speed of light, ti is the measured TOA between

MT and i-th FT,1t is time synchronization error betweenMT

and FTs, M is the number of FTs, ei and ni are the non-line

of sight (NLOS) error and range measurement noise, respec-

tively. Generally, ni ∼ N(0, σ 2) is a white Gaussian random

FIGURE 1. The architecture of ANN to localize the MT in two-dimensional.

variable with the same variance σ 2. However, the NLOS error

is caused by the signal’s reflection and diffraction whose

propagation path is longer than LOS path, and it depends

on the wireless propagation environment and the specific

technology under consideration (e.g., WCN, WSN, WLAN,

etc.). Thus, the NLOS error is modeled as positive random

variable with different probability density distribution, such

as exponential distribution ei ∼ E(γ ) [30], [31], uniform dis-

tribution ei ∼ U(0,B) [32]–[34], and Gaussian distribution

ei ∼ N (µ, σ 2
nlos) [35], [36]. If a signal between MT and FT

experiences LOS propagation, then ei = 0.

B. ANN LOCALIZATION

The ANN localization method shown in Fig.1 is proposed

in [16] and [18]. It has three layers consisted of input layer,

hidden layer and output layer. The hidden layer receives the

range measurements from input layer and builds the nonlin-

ear mapping relationship between range measurements and

position of MT. The output layer receives and transforms the

process information to response the corresponding location

information. The number of neurons in hidden layer is the

same as the input layer, and output layer only has two neurons

in two-dimensional space. The activation function is set as

sigmoid function in the hidden layer, while it is set as linear

transfer function in output layer. Neurons in hidden layer

compute their activations using following formulas

vj(n) = ϕ(

M
∑

i=1

wji(n) · ri(n) + bj(n)), j = 1, · · · ,M,

n = 1, · · · ,N (2)

where wji(n) is the connection link weights between input

layer and hidden layer, bj (n) signifies the bias terms on neu-

ron j in hidden layer, ri (n) is the range measurement between

MT and the i-th FT, N is the number of training samples, ϕ(·)

is the sigmoid activation function. Neurons in output layer

compute their activations with following formulas

x(n) =

M
∑

j=1

βj1(n) · vj(n) + b′
1(n)

y(n) =

M
∑

j=1

βj2(n) · vj(n) + b′
2(n) (3)
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FIGURE 2. The architecture of RBF to localize the MT in two-dimensional.

where βj1(n) and βj2(n) are the connection link weights

between hidden layer and output layer, b′
1(n) and b

′
2(n) signify

the bias terms in output layer.

In the training stage, the weights and biases are initialized

from a uniform distribution. Each neuron in output layer com-

pares its computed value with its target value to determine

the corresponding error and then propagates this error back to

the neurons in the previous layers to update the weights and

biases between neurons. Some existing algorithms, such as

back-propagation algorithm [18] and Levenburg-Marquardt

algorithm [28] can be used to update the weights and biases.

C. RBF NEURAL NETWORK LOCALIZATION

The RBF neural network localization method shown

in Fig.2 is proposed in [12] and [16]. It also has three layers.

Input layer and output layer are the same as ANN. Unlike

ANN, the links between input layer and hidden layer are

direct connections with no weights and biases. The number of

neurons in hidden layer is the same as the size of the training

sample. Each neuron is mathematically described by a RBF.

The output of RBF neural network can be expressed as the

following formulas

x(n) =

N
∑

i=1

βi1ϕi(r − r(n))

y(n) =

N
∑

i=1

βi2ϕi(r − r(n)) (4)

where βi1 and βi2 are the connection link weights between

hidden layer and output layer, r(n) = [r1(n), r2(n), · · · rM(n)]T

is the n-th input sample point, ϕi(·) is a Gaussian RBF, which

is defined by

ϕi(r − r(n)) = exp(−
1

2σ 2
i

‖r − r(n)‖2), i = 1, 2, · · ·N

where σi is a measure of the width of the i-th Gaussian

function with center r(n). Let d(n) = [x(n),y(n)]T and β(n) =

[βn1, βn2]
T, the equation (4) can be transformed into vector

FIGURE 3. Method I: ANN or RBF + LLS.

form

ϕN×NβN×2 = dN×2 (5)

where β = [β(1), β(2), · · · , β(N )]T ,d = [d(1),d(2), · · · ,

d(N )]T ,

ϕ =
{

ϕij

}N

i,j=1
, ϕij = exp(−

1

2σ 2
j

‖r(i) − r(j)‖2)

If the inverse matrix of ϕ exists, we can solve (5) for the

weight vector β, obtaining

β = ϕ−1
d (6)

III. IMPROVED ANN AND RBF NEURAL NETWORK

LOCALIZATION METHODS

In section II, we briefly introduce the principle of ANN and

RBF neural network localization methods. Their main ideas

directly build the nonlinear mapping relationship between

the corresponding range measurements and position of MT.

However, from the rangemeasurement model in (1), we know

that the extra error of each range measurement which is

the sum of NLOS error, synchronization error and measure-

ment error may deviate the nonlinear mapping relationship

between range measurements and position ofMT, and greatly

degrade the localization accuracy. In addition, the informa-

tion about the position of FTs is not used in ANN or RBF

neural network localization method. The following sections

will explain the proposed localization methods in detail.

A. IDEAS OF OUR PROPOSED METHODS

The ideas of our proposed localization methods are shown

in Fig.3 and Fig.4, respectively. Different to the traditional

ANN or RBF neural network localization method, the pro-

posed methods indirectly obtain the position estimate of

MT. In offline stage, we first construct the nonlinear map-

ping between range measurements and range errors by

ANN or RBF neural network. In online stage, when the

range measurements with unknown position are obtained

from different FTs, we can use the trained ANN or RBF

19092 VOLUME 7, 2019
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FIGURE 4. Method II: ANN or RBF + Match + LLS.

neural network to get the range error of each FT. If we subtract

range errors from the range measurements, the adjusted range

measurements are got. Then the position estimate of MT can

be obtainedwith the adjusted rangemeasurements by the LLS

algorithm. That’s the scheme of our proposedmethod I shown

in Fig.3. Moreover, for each link betweenMT and FTs, it may

experience LOS or NLOS signal propagation, which leads to

different range error. Therefore, the training range errors in

offline stage can be further classified. In online stage, this

classification may be helpful to revise the predicted range

error. That’s the scheme of our proposed method II shown

in Fig.4.

B. LLS ALGORITHM

Comparing with nonlinear least square algorithm, LLS algo-

rithm is an efficient localization algorithmwith low computa-

tional complexity [37]. If the adjusted range measurements r̂i
are obtained, we can set nonlinear range equations as follow

r̂i =

√

(x − xi)2 + (y− yi)2, i = 1, 2, · · · ,M (7)

In order to obtain linear equations, we can cancel out the

nonlinear terms in (7) by fixing one equation and subtracting

it from the rest equations. A simple way to select this equa-

tion is to choose the smallest one among the adjusted range

measurements. The index of the equation is given by [5], [37]

j = argmin
i

{

r̂i
}

, i = 1, 2, · · · ,M (8)

By doing some mathematical manipulation, the nonlinear

range measurements in (7) can be transformed into linear

equations

AX = P (9)

where X = [x, y]T

A =











x1 − xj y1 − yj
x2 − xj y2 − yj

...
...

xM − xj yM − yj











(M−1)×2

,

P =
1

2













r̂2k − r̂21 − x2j − y2j + x21 + y21
r̂2k − r̂22 − x2j − y2j + x22 + y22

...

r̂2k − r̂2M − x2j − y2j + x2M + y2M













(M−1)×1

The least square solution for (9) can be written as

X = (ATA)−1ATP (10)

C. K-MEANS CLUSTERING AND MATCHING

Because K-mean clustering algorithm is simple to implement

and effective in performance, it is used to classify the training

range errors. In offline stage, given a set sample of range

errors {Err(1),Err(2), · · · ,Err(N)}, where each sample is a

M-dimensional vector, K-means clustering algorithm aims to

partition the N samples into sets S = {S1,S2, · · · ,SK}. For

each range measurement, its range error has two conditions

LOS or NLOS. So the number of cluster is equal to K =

2M. Given an initial set of K means µ
(1)
1 , µ

(1)
2 , · · · , µ

(1)
K ,

where each mean is a M-dimensional vector whose element

is zero or the mean of NLOS error. The K-means clustering

algorithm proceeds in two steps:

(1) Assignment step

Assign each sample Err(p), p = 1, . . . ,N to the cluster

Si, 1 ≤ i ≤ K whose mean has the smallest squared

Euclidean distance, this is intuitively the nearest mean. It can

mathematically be expressed as

S
(t)
i = {Err(p) :

∥

∥

∥
Err(p) − µ

(t)
i

∥

∥

∥

2
≤

∥

∥

∥
Err(p) − µ

(t)
j

∥

∥

∥

2
∀j,

1 ≤ j ≤ K}, i = 1, · · · ,K

where t is the number of iteration and t = 1 is the initializa-

tion.

(2) Update step

When all the samples are assigned, the new means can be

calculated to be the centroids of the samples in the new cluster

µ
(t+1)
i =

1

|S
(t)
i |

∑

Err(j)∈S
(t)
i

Err(j)

The algorithm goes back and forth between these two steps

and it has converged when no further change is happened in

the cluster assignments. In the end, this algorithm outputs the

set of K means µ1, µ2, · · · , µK.

In online stage, by using the ANN or RBF neural network,

the range errors Err′ = [Err′1,Err
′
2, · · · ,Err′M]T can be pre-

dicted with the input of range measurements. We compare it

with the output of K means µi and update the range errors as

following

j = arg min
1≤i≤K

{
∥

∥Err′ − µi

∥

∥}

Err′ =
1

2
(Err′ + µj) (11)

The position estimate of MT is obtained by LLS algorithm

shown in section III.B with the updated range errors and

corresponding adjusted range measurements.
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FIGURE 5. Layout of Simulation Setup.

IV. RESULTS AND DISCUSSION

A. PERFORMANCE COMPARISON

In order to train the ANN or RBF neural network, a wireless

network containing 4 FTs and some grid MTs is arranged

in a square area of 200m × 200m shown in Fig.5. The FTs

are located at the edges of the squared area, while MTs are

located inside the squared area with grid arrangement.

The range measurement model shown in section II.A is

used to train the network and predict the range errors. Due

to the unknown signal propagation environment about each

link between MT and FTs, the NLOS error is randomly

assigned to the range measurement model. The input layer

contains the range measurement column vectors for every

grid MT. Each range vector is composed of range measure-

ment values obtained from all the FTs. The output layer

contains the known position of the MTs or the range errors

between MTs and FTs. The range errors can be computed

by subtracting true distances from range measurements. Two

important parameters denoted as T and P significantly affect

the performance of the training ANN and RBF neural net-

work, where T is the number of range measurement about

each MT and P is the adjacent distance between MTs shown

in Fig.5. We set σlos = 2m, ei ∼ U(0, 20) and ε = 0 in (1),

table.1 shows the different types of location error with dif-

ferent combinations about T and P. For RBF neural network,

the direct mapping relationship between range measurements

and position of MT is not a feasible localization scheme

when the NLOS error with random assignment is present.

Formulation of RBF neural network shown in section II.C

is based on interpolation theory. Unfortunately, the use of

interpolation based on noise data could lead to misleading

results [38]. Due to the range measurement noise and NLOS

error as well as the unknown propagation condition, the range

measurements fluctuate heavily for different position of MT.

Therefore, incorrect position estimate is happened by utiliz-

ing RBF neural network. The ideas applied to RBF neural

network can remarkably improve the localization accuracy,

and the proposed method II has higher localization accuracy

than the proposed method I. However, they easily fluctuate

TABLE 1. The Location Error with different parameter for different
algorithms.

with the change of parameters and don’t show regular change.

For ANN, ANN localization method can adapt to the ran-

domNLOS error and achieve comparatively high localization

accuracy, especially when the training sample is adequate

enough. Unlike the case of RBF neural network, the train-

ing of ANN is achieved by the back-propagation algorithm

rather than interpolation. As a general rule, every training

sample presented to the back-propagation algorithm should

be chosen on the basis that its information content is the

largest possible for the task [38]. Due to the radically different

range measurements from different position of MT, the back-

propagation algorithm can search more of the weight and

bias space. Therefore, ANN-based localization is suited for

our localization model. However, as the value of P increases,

the localization error of ANN increases. It means that the

performance of ANN localization method degrades when the

training sample is reduced. In addition, as the value of T

increases, the training sample also increases, but it has little

improvement in terms of average location error. When the

training sample is not adequate, the proposed method II has

the highest localization accuracy, followed by the proposed

method I and then ANN. As the training sample increases,

these three methods perform nearly the similar localization

performance. Comparing RBF neural network with ANN,

most of the time, we see that ANN-based localization meth-

ods have higher localization accuracy than RBF-based ones

when the NLOS error with random assignment is existed.
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FIGURE 6. The CDF of location error when NLOS error is uniform
distribution ei ∼ U(0, 20).

We first compare the performance of the different neu-

ral network localization methods. From Fig.6 to Fig.8, they

show the cumulative distribution function (CDF) of differ-

ent methods’ location error with three different NLOS error

distribution. The results are obtained by setting P = 50,

T = 5, σlos = 2, and ε = 0. For different NLOS error

distribution, the CDF curves show that the location errors of

our proposed methods are smaller than ANN and RBF neural

network methods, and the proposed method II is better than

the proposed method I. In our simulation, the mean of the

NLOS error with different distribution is the same. The vari-

ance of the NLOS error with exponential distribution is the

same as Gaussian distribution, while the variance of uniform

distribution is the smallest. Therefore, from Fig.6 to Fig.8,

we know that the location error with exponential or Gaussian

distribution is higher than uniform distribution. Taking the

ANN + Match + LLS algorithm as an example, the 80%

location error is less than 10m when the NLOS error is

uniform distribution, while the 70% location error is less

than 10m when NLOS error is exponential or Gaussian dis-

tribution. Location-based service (LBS) is usually achieved

through cellular network or assisted global navigation satel-

lite systems (A-GNSS) due to widespread use of cellphone.

At present, the 67% location error is less than 50m for cellular

network, while it is less than 10m for A-GNSS [39]. There-

fore, our proposed neural network localization method is

suited for the application of LBS due to the high localization

accuracy.

We then examine the effect of different parameters, i.e. the

standard deviation of range measurement σ , the NLOS error

e, and the synchronization error ε, on the accuracy of different

localizationmethods. Due to the large location error about the

RBF neural network localization method, it is not used as a

comparison. Average location errors (ALEs) is chosen as the

performance criteria, which is defined as

ALEs =
1

1000

1000
∑

i=1

√

(xi − x̂i)2 + (yi − ŷi)2 (12)

FIGURE 7. The CDF of location error when NLOS error is exponential
distribution ei ∼ E(10).

FIGURE 8. The CDF of location error when NLOS error is Gaussian
distributionei ∼ N(10, 100).

where the position ofMT (xi, yi) is randomly generated inside

the square area shown in Fig.5, (x̂i, ŷi) is the estimated posi-

tion of MT.

The simulation parameters are set as P = 30,T = 5, σ = 2

and ε = 0, respectively. Fig.9-Fig.11 depict the effect of

σ on the localization accuracy with different NLOS error

distribution. It is easy to see that, most of time, ALEs of

ANN-based methods increase as σ gets larger, while ALEs

of RBF-based methods fluctuate greatly. Besides, the ALEs

of the proposed methods are smaller than ANN, and the

proposed method II is better than the proposed method I.

Fig.12-Fig.14 show the effect of NLOS error on the localiza-

tion accuracy with different NLOS error distribution. As the

mean of NLOS error increases, ALEs get higher. But the

ALEs do not increase linearly as the mean of NLOS error.

For ANN + Match + LLS algorithm, when the mean of

NLOS error increases 10m, ALE only increases about 7-8m.

This demonstrates that the proposed methods can remarkably

reduce the effect of NLOS error. As expected, the proposed

methods have better performance, and the proposedmethod II
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FIGURE 9. The ALE VS standard deviation of range measurement with
uniform distribution ei ∼ U(0, 20).

FIGURE 10. The ALE VS standard deviation of range measurement with
exponential distribution ei ∼ E(10).

is superior to the proposed method I. Fig.15-Fig.17 show the

effect of synchronization error on the localization accuracy

with different NLOS error distribution. It is shown that the

ALEs of RBF-based localization methods fluctuate greatly as

the increase of ε, but ALEs of ANN-based localization meth-

ods almost have no change. Therefore, the synchronization

error has little effect on ANN-based localization methods.

The same conclusion can be also obtained that the proposed

method II has the highest localization accuracy, followed by

the proposed method I and then ANN.

B. ALGORITHM COMPARISON

The memory requirement in offline stage and computational

complexity in online stage are chosen as the criteria of algo-

rithm comparison. In the following expressions for algorithm

comparison, M is the number of neurons in input layer, N

is the number of training samples, and K is the number of

clusters. In offline stage, some trained parameters are used

to predict the output. So these parameters need to be saved.

FIGURE 11. The ALE VS standard deviation of range measurement with
Gaussian distribution ei ∼ N(10, 100).

FIGURE 12. The ALE VS the mean of NLOS error with uniform distribution.

FIGURE 13. The ALE VS the mean of NLOS error with exponential
distribution.

The memory requirement of ANN or RBF neural network as

compared to the proposed methods is described in table.2.

Clearly ANN has the least memory requirement, and the large

number of neurons in hidden layer results in the increased
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FIGURE 14. The ALE VS the mean of NLOS error with Gaussian
distribution.

FIGURE 15. The ALE VS the synchronization error with uniform
distribution ei ∼ U(0, 20).

FIGURE 16. The ALE VS the synchronization error with exponential
distribution ei ∼ E(10).

memory requirement for the RBF neural network. It is easy to

see that RBF neural network has more memory requirement

than ANN. In addition, for ANN, the proposed method II has

the highest memory requirement, followed by the proposed

FIGURE 17. The ALE VS the synchronization error with Gaussian
distribution ei ∼ N(10, 100).

TABLE 2. Comparison of memory requirement among different
localization methods.

method I and then ANN. The same conclusion can be also

obtained for RBF neural network.

In online stage, the computational complexities of different

neural network localization methods are investigated. The

number of multiplications and additions required in the com-

putation of different localization methods are provided in

table.3. In order to better understand these results, we take

the proposed method II (ANN + Match + LLS) as an exam-

ple to explain. To be specific, from input layer to output

layer for ANN, the neurons in different layer are the same,

the number of multiplications is the same as the number of

additions whose value is 2M2. For each centroid of cluster,

the matching procedure does M multiplications and M − 1

additions. It is assumed that the comparison operation in (11)

is equivalent with addition operation. So the total number

of multiplications is the same as the number of additions

whose value is KM + M in matching and updating step. The

final step is the LLS procedure. It first needs M additions to

transform the range measurements into the adjusted measure-

ments. Then constructing the matrix A and P in (9) needs 3M

multiplications and 7M − 7 additions. In addition, the matrix

operation in (10) needs 6M − 2 multiplications and 6M − 10

additions. It is shown in [40] that 6 multiplications and 4 addi-

tions are needed for performing the matrix inverse operation

with the Gaussian elimination method. Thus, the LLS algo-

rithm needs 9M + 4 multiplications and 14M − 13 additions
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TABLE 3. Comparison of computational complexity among different
localization methods.

in total. From the above discussion, the total number of multi-

plications and additions for ANN + Match + LLS are shown

in table.3. We can also easily get the results of other methods

with the same analysis. From table.3, we see that the proposed

method II has the highest computational complexity, followed

by the proposed method I and then ANN or RBF neural

network.

V. CONCLUSION

In this paper, unlike the traditional neural network local-

ization methods, the NLOS error and synchronization error

are introduced, and the mapping relationship between range

measurements and range errors is formulated. Then LLS

algorithm or together with clustering technique is applied to

obtain the position estimate of MT. Thus, two new neural

network localization methods based on the error learning

and matching are proposed. Simulation results and algorithm

comparison show that 1) Due to high memory requirement

and computational complexity as well as bad location error,

RBF-based localization method is not suited for the sce-

nario when the NLOS error with random assignment and

synchronization error are present. 2) The 70%-80% location

error of our proposed method II is less than 10m. Comparing

with ANN, the localization accuracy is improved more than

0.5 m. In addition, the proposed method II is better than the

proposed method I, especially when the training sample is

not adequate. But this improvement is slightly at the cost

of high memory requirement and computational complexity.

3) The standard deviation of range measurement, synchro-

nization error and different NLOS error distribution have

little effect on the ANN-based localization method. But the

RBF-based localization methods easily fluctuate by these

parameters. 4) As the mean or variance of NLOS error

increases, the performance of all the algorithms degrades.

Although the simulation results can prove the effectiveness

of our proposed localization methods, experiment results are

more convinced. Due to the limitation of experimental condi-

tion, it is not possible at present. However, the advantages of

our proposed methods make them very appealing to practical

applications in different indoor and outdoor environments.
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