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A network of periodically bursting model neurons is proposed. Its unique feature is a complex 
representation of the cell variables and also of the synaptic matrix. In the strong-coupling limit, the 
model recovers the traditional neural network model of simple on-off units, while in the weak
coupling limit it reduces to the network of smooth phase oscillators. In the special case of all-to-all 
excitatory coupling, some numerical and analytical evidence is provided for the occurrence of global 
phase locking. More complicated collective behavior such as clustering is also discovered numeri
cally. Stimulus-evoked collective oscillations as observed in the cat primary visual cortex are 
explained within the present framework. 

Recent electrophysiological studies revealed that neuronal responses with oscil
latory modulation of the spiking frequency occur in various parts of mammalian 
brain.l),2) It has hence been suggested that multiple sensory inputs with some mutual 
similarity could be linked through the 'phase locking of this sort of neural oscillations, 
and that such linking could be crucial to the early stage neural information process
ing.3

) Unfortunately, however, traditional neural network models composed of the· 
simple McCulloch-Pitts elements or of their continuous analogues do not seem to 
provide a suitable framework for testing the above hypothesis nor for evaluating the 
computational power of oscillatory neural networks in generaL This is because such 
models ignore from the outset the basic fact that a single neural cell itself can behave 
as an oscillator and hence carry phase information_ It is not only meant here that cell 
membranes are capable of generating a periodic train of action potentials_ More 
importantly, they are known to exhibit quite commonly the periodic bursting, Le_, 
alternation between the period of rapid spiking and that of quiescence_4

),5) This 
second form of neural oscillation is of our main concern in the present paper-

Recent~y, some researchers studied oscillator networks in relation to sensory 
information processing in neural fields_6

),7) They used relatively simple oscillators 
such as the phase oscillators which are quite unlike the processing units postulated in 
the usual network models_ It may be wondered if it is not too busy for a neuron to 
behave in one case like an Ising spin as in the Hopfield modelS) while in the other case 
like a smooth phase oscillator or even like an XY spin as in Sompolinsky et aL's 
recent modeL6

) Is not there any way of integrating these seemingly conflicting 
aspects of a neuron into one simple dynamical unit? Once this has been done, one 
may be able to construct a new network model possessing high dynamical flexibility, 
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yet being simple enough to permit extensive mathematical and numerical analyses. 
This is exactly what we attempt in this paper. An earlier attempt along the same 
line was due to Abbott.9

) The main difference between his and the present 
approaches lies in the way of modeling the internal oscillatory dynamics of a cell. 
His model is based on a reinterpretation of the FitzHugh·Nagumo dynamics in such 
a way that the respective stable branches of the sigmoidal manifold are associated 
with the active and silent phases of a bursting neuron. The bursting mechanism 
assumed by Abbott is similar to that in Chay and Keizer's ordinary-differentia l
equation model4

) for insulin secreting ,B-cells of the mammalian pancreas .. In that 
case, the slow dynamics of the variable controlling the burst generation is basically 
relaxational but strongly influenced by the action potential itself. In contrast, what 
we do in the present paper amounts to an extreme simplification of Plant's model5) for 
pacemaker neurons of the Aplisia abdominal ganglion for which the slow subsystem 
forms an autonomous independent oscillator. As was discussed by Rinzel and Lee/D) 
the above gives the two representative mechanisms for bursting. From a mathemati
cal viewpoint, the model based on the second mechanism seems to be more naturally 
related to the phase oscillator model, and is easier to analyze especially for collective 
behavior. 

We present our network model by contrasting it with the conventional one. For 
comparison's sake, the latter is expressed in terms of an auxiliary variable Xi in the 
form 

S;(t)=F(x;(t)- h), 

xi(t+l)=~JijS/t) , 
j 

(la) 

(lb) 

where Si(t) represents the firing rate of the i-th cell averaged over some short interval 
about time t. The output function F(x) is an increasing function of X changing 
abruptly between ° and 1 near x=O, so that h represents the threshold value of Xi for 
depolarization. The summation in Eq. (lb) extends over all cells connecting to the 
i-th cell. . 

Besides Xi, we postulate in each cell an extra degree of freedom Yi, and this pair 
of cell variables defines a complex potential Zi(t) with amplitude ri(t) and phase CPi(t). 
Our model then takes the form 

S;(t)=F(Re Zi(t)- h), 

Zi(t+ 1)=zt(t)ei!.l+ ~C;jS/t), 
j 

(2a) 

(2b) 

where zt(t)= r*exp(icpi(t)) is the reduced potential with fixed amplitude r*. In 
aforementioned Plant's model,5) Xi may be interpreted as intracellular free calcium 
concentration, and Yi as the slow conductance for calcium. Intrinsic oscillatory 
dynamics of the cell is implemented by the first term on the right-nand side of Eq. (2b). 
The last term in the same equation has the usual form of synaptic coupling, except 
that the synaptic efficacies C;j are supposed here to be complex, i.e., Cij= I CijI exp(iaij). 

'The dynamical rule in Eq. (2b)tells that the transformation Zi(t)-> z;(t+ 1) can be 
decomposed ipto -three elementary steps as z;(t)-> zt(t)-> zt(t)exp(iQ)-> zt(t) 
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Z/(1+1) 

z/(I) 

Fig. 1. Dynamical rule producing z,(t + 1) from 
Zi(t) in the complex plane. Three elementary 
steps indicated by the arrows are involved. 

Xexp(iQ)+Pi(t)=Zi(t+ 1), where p;(t) 
= ~jc,jS/t) (see Fig. 1). The first step 
corresponds to the rapid relaxation of Zi 
to its native attracting cycle which is a 
circle of radius r* in the complex plane. 
Here the phase of Zi is preserved, which 
is consistent with the general fact that 
autonomous oscillators lack restoring 
force against phase disturbances. The 
second step corresponds to the rotation 
of Zi along the circle by an angle Q, 
reflecting the oscillatory nature of Zi. 
Finally, the input Pi kicks Zi out of the 
circle to give Zi(t + 1). Note that Pi 
generally changes the phase of Zi as well 
as its amplitude. 

An alternative way of modeling the 
internal oscillatory dynamics would be to assume the form 

Z;(t + 1)-Zi(t)= c{(1 + iQ)z;(t) -(1 + ic)lzi(t)l2z;(t) + ~ CuS/t)} , 
j 

(3) 

or its time-continuous version (E-+O), namely, coupled Ginzburg-Landau oscillators. 
The two models are expected to lead to similar behaviors. In the present study we 
will work with the first form (2b). 

Our model can be generalized in a number of ways. For instance, h, r* and Q 

may become cell~dependent parameters, and some random perturbations or more 
general external stimuli may be included in Eq. (2b). 

There are two trivial limits in our model. Suppose first that tpe oscillation 
amplitude of Zi is vanishingly small or, equivalently, the total input Pi is strong 
enough to mask the oscillatory nature of Zi. Then, by putting r*=O, the conventional 
model is recovered where x;(t) is identified with Rezi(t) and lu with ReCij (=1 CuI 
x COSaij). If seen from our complex synaptic matrix· viewpoint, a given cell j is 
excitatory or inhibitory according to lau[ < 71/2 or laul > 71"/2, respectively. As 
another limit, consider single-cell dynamics by switching off the coupling. Our model 
then reduces to 

Si(t)= F(r*cos ¢i(t) - h) , 

¢;(t+1)=¢i(t)+Q 

(4a) 

(4b) 

or ¢;(t)=Qt for Eq. (4b). For simplicity, let F(x) be represented by the unit step 
function e(x), where e(x) = 1 for x;;:: 0 and 0 otherwise. Then, under the condition I hI 
< r*, active phase (Si=1) and silent phase (Si=O) alternate. A periodically bursting 
neuron has thus been modeled in a.simplest way. Whether this condition for bursting 
is satisfied or not, Rezi oscillates smoothly like cosQt. Such smooth oscillations of 
membrane potential are commonly known under the name of slow waves. They can 
persist even when tetrodotoxin is used to suppress the spike, and hence some 
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researchers postulated an autonomous oscillator functioning independently of the 
action potential.5

) We follow exactly the same idea. 
The synaptic coupling is now switched on. Since too strong coupling leads to the 

usual network model as noted above, our main concern below will be the case of 
relatively weak coupling such that the oscillatory nature of the cells could hardly be 
masked. What we expect then is that the cells exchange phase information and, 
through mutual adjustment of the timing of burst~, a coherent temporal pattern of 
activity be created in the network. In order to demonstrate this possibility, some 
numerical simulations were carried out for Eqs. (2a, b). Without loss of generality, 
we put r* = 1 hereafter. Our numerical study is restricted to the special case of 
all-to-all excitatory coupling, so that we put C;j=N- 1C(1-aij), where C=IClexp(ia), 
lal < 7r/2 and N denotes the population size. The same form of coupling in the 
conventional model will be of little dynamical interest, except possibly for the 
occurrence of collective bistability. In the actual simulation, Q was replaced by 
cell-dependent quantities Qi, the latter being assumed to obey a Lorentz distribution 
L(Q-£20; y)=y[27r((Q-£20)2+ y2)]-I. This form of frequency distribution, as well as 
the assumption of all-to-all excitatory coupling, is particularly convenient when our 
numerical results are compared with analytical ones. We also assumed F(x)=f)(x). 
Recent extensive studies on large populations of coupled phase oscillators clarified 
that collective oscillations easily arise in the populations of globally coupled oscil
lators with frequency distribution. ll

),12) Our particular concern here is whether the 
same is true for our network model. 

Figure 2 shows a typical case in which a domain of mutually synchronized cells 
develops out of the state of complete incoherence. Initially, the phases of bursting 
are totally random, while in a period of a few oscillations a major part of the entire 
population comes to behave in a coherent fashion. 

The degree of global synchronization in sufficiently large populations may be 
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Fig. 2. Formation of a phase-locked domain ex
hibited by 100 globally coupled cells obeying 
Eqs. (2a, b) with distributed Q. The cells are 
numbered vertically in order of increasing 
natural frequencies. Active phases are in
dicated by dark horizontal bars. Parameter 
values: h=0.90, .l&,=0.50, y=0.02, Icl=0.70, a 
=0.50. 

quantified by the average of the reduced 
potential, i.e., Z(t)=N- I 2},jz!(t). A 
slightly more convenient measure will be 
the order parameter R defined by 

R=XY-YX, (5) 

where X and Y are the real and imagi
nary parts of Z, the bar denoting a long
time average, and the dots should be 

e understood as A( t) = AU) - A( t -1). 
Since collective oscillations imply a 
closed orbit in the complex Z-plane, 
their absence/presence may be indicated 
by vanishing/non-vanishing value of R; 
such a simple property is not shared by 
Z except for highly symmetric cases. 
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Figure 3 shows how R changes with the synaptic strength I CI. As is expected, a 
critical value of I CI for the onset of collective oscillations seems to exist. 

There are some striking similarities of our numerical results to what we know 
about the populations of the phase oscillators studied earlier. We suspect that the 
present model itself might be reduced to the network of phase oscillators under 
suitable conditions. The reduction is in fact possible when the synaptic coupling is 
sufficiently weak, as we see below. 

Since the deviation of IZil from r*( =1) may still be neglected when the coupling 
introduced is weak, we retain Eq. (4a) as valid. The only remaining problem is 
therefore to find an approximate form of the coupling term to be added to the 
right-hand side of Eq. (4b). Comparing the phases of the respective sides of Eq. (2b) 
with each other, and putting ri=l, we obtain to the lowest order in the coupling 
strength 

(6) 

Substituting Eq. (4a) for Sj, and using new phase variables ¢i defined by ¢i=</Ji-Qt, 
we rewrite Eq. (6) in the form 

where iiij=aij-Q. Since the time-variation of ¢i should be $ufficiently slow, the 
left-hand side of Eq. (7) may be approximated by d¢;/dt and, moreover, the right-hand 
side may be time-averaged over the oscillation period 2rc/Q under fixed ¢/s over the 
same period. In this way, we get 

or 

where 

¢i= ~ICijI2~ 1271: d)' sin(¢j- ¢i+ iiij- ).)F(cos). - h) 

=~Kijsin(¢j- ¢i+ iiij) 
j 

lQd.1271: 
Kij= 2: 0 d)' cos). F(cos). - h) . 

(8) 

(9) 

(10) 

Equation (9) gives the standard form of the phase model. When the natural period of 
bursting changes from cell to cell as we assumed in our numerical simulations, one 
may simply replace Q by Q i in Eq. (9). A little careful examination shows that such 
replacement is consistent with our perturbative reduction only when the width of the 
distribution of Q i is much smaller than the average frequency J20. This condition is 
assumed to be satisfied below. 

Remember that our numerical simulations assumed: (a) all-to-all coupling, (b) 
a=J20 so that iiij~a-J20=O, (c)F(x)=8(x) and (d) Lorentz distribution L(Q-J20; r) 
for Qi. Under these conditions, Eqs. (9) and (10) are reduced to 
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and 

K ={I elJI - h
2 /Jr , 

0, 

(Ihl < 1) 

(Ihl ;;:::1) 

(11) 

(12) 

respectively. Previously, the phase model of the form of Eq. (11) with Qi obeying the 
Lorentz distribution L(Q-Qo; y) was solved exactly for Z.12) The result is Z 
=JI -(2y/K) exp(i~t) for K;;:::2y and 0 otherwise. Thus R becomes 

R=j ~(1-~), 
0, (13) 

where K is given by Eq. (12). This approximate result for R is now compared with 
our numerical curve for the same quantity, which is shown in Fig. 3. Their agree
ment is satisfactory at least not far from the critical point. 

Although still preliminary, further numerical study revealed the occurrence of 
more complicated collective dynamics when the coupling becomes stronger. Figure 
4 shows an example of such behavior for a population without frequency distribution, 
where the system is decomposed into two subpopulations with different timing of 
bursts. The states of three, four: and more clusters were also found under different 
conditions. This kind of clustering behavior was first discovered by Kaneko13

) for 
globally coupled chaotic units and then by Golomb et al. 14

) for globally coupled 
non-smooth phase oscillators. 

The effect of an external stimulus I is now considered, and we add this term to 
the right-hand side of Eq. (2b). For simplicity, I is assumed to be real positive, as 
weak as lei, constant in time and cell-independent. We will show below that the 
collective dynamics is very sensitive to I when the threshold parameter h is near its 
R 

lei 
o 0.1 0.2 0.3 0.4 

Fig. 3. Order parameter R versus coupling 
strength I CI. Circles indicate the data from 
computer simulation on Eq. (2a, b) with 100 
globally coupled cells. The analytical result 
in Eq. (12) valid in the weak-coupling limit is 
indicated by a solid curve. Parameter values: 
h=0.7, .Q,=0.5, y=0.02, a=0.5. 
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Fig. 4. Temporal pattern of bursts exhibited by a 
population of 100 globally coupled cells with
out frequency distribution (displayed in a way 
similar to Fig. 2 except that the cells are 
renumbered suitably). Parameter values: 
h=0.51, Q=0.31, Icl=0.70, a=2.20. 
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critical value L In such a situation, we are no longer allowed to neglect the small 
amplitude-deviation of Zi from 1, but instead we have to come back to the original 
expression (2a) for Si(t) with 

ReZi(t)=COS(l/li(t)+.Q)+ ~ICijlcosQ'i.;Sit)+ I. 
j 

(14) 

In the O-th order approximation in which the last two terms were neglected, Sj(t) is 
vanishing for the most period on account of the assumption h:S L This implies that 
in Eq. (14) the coupling term is negligible compared to the input I. Thus, in the first 
order approximation, we may use in Eq. (6) the expression 

Sit) =F(cos(l/lit)) + I-h). (15) 

On the other hand, the new term -sin(¢i(t)+Q)I which appears on the right-hand 
side of Eq. (6) vanishes on averaging. Consequently, the previous result (9) without 
external stimulus remains valid if we change the definition of Kij as 

Kij= I f;'12lC 

d}' cos}. F(cos}. + I - h) . (16) 

It is clear that the effective coupling Ku is strengthened by I, so that if the system is 
originally near and below the threshold for collective oscillation, the external stimu
lus may easily bring it into the oscillatory regime. Stimulus-evoked collective 
oscillations of neural populations have been observed in the cat primary visual 
cortex. 1) This phenomenon is thus naturally understood if we suppose our idealized 
population with all-to-all excitatory coupling to represent one orientational column in 
the visual cortex. It is also suggested from the experiments that each neuron gives 
rise to at most a few spikes per oscillation period. This is consistent with our 
assumption h:S1, namely, the assumption of brief active period. 

We conclude this paper with a few additional remarks. First, the reduced 
dynamics in Eq. (8) bears some resemblance to the relaxational XY spin dynamics. 
In fact, if iru=O and if at the same time the synaptic matrix is symmetric, then Eq. (8) 
derives from the hamiltonian H=(1/2)~i~jKijcos(jJ;-l}j) via ¢i=-8H/8I}i. Gener
alization to finite temperature XY spins would also be easy to achieve by including 
random noise in Eq. (2b). Secondly, the form of the phase coupling in Eq. (9) implies 
that a given pair of cells favors in-phase/out-of-phase configurations if the corre
sponding I aul is smaller/larger than 7r/2. On account of the difference between Q'u 
and au, the above condition for I aul does not correspond precisely to the 
excitatory/inhibitory condition. This difference Qo is unimportant, however, as far 
as the typical period 27r/Qo of bursting remains, as usual, much longer than the 
minimum interval between successive spikes which is 0(1). Thirdly, our proposed 
mechanism leading to phase locking seems to be quite efficient energetically because 
it can work when the synaptic coupling is too weak to change the level of activity to 
a meaningful extent. In the framework of the conventional neural network model 
with global coupling, the only way to produce oscillations will be to assume a 
feedback loop between excitatory and inhibitory neuron populations. IS) This of 
course presupposes strong synaptic coupling. Finally, our extension of synaptic 
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efficacies to complex numbers suggests the possibility of a new learning scheme based 
on the orientational plasticity of Cu in the complex plane. In this connection, very 
suggestive is the fact that au (Le., essentially the phases of Cu) are important 
parameters in determining phase wave properties associated with a space-continuous 
version of the phase equation (9).16) Possible roles of the phases of Cu in neural 
information processing are yet to be clarified. 

The present work is supported by the Japanese Grant-in-Aid for Science Research 
Fund from the Ministry of Education, Science and Culture (Nos. 03234109 and 
03247107). 
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