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n'eural network model of visual cortex for determining 

surface curvature from images of shaded surfaces 

Department of Biophysics, Johns Hopkins LTniversity, Baltimore, Maryland 21218, 

U.S.A. 

(Communicated by F. H .  C.  Crick, F.R.S. - Received 11 January 1989 - 
Revised 26 October 1989) 

The visual system can extract information about shape from the pattern 
of light and dark surface shading on an object. Very little is known about 
how this is accomplished. We have used a learning algorithm to construct 
a neural network model that  computes the principal curvatures and 
orientation of elliptic paraboloids independently of the illumination 
direction. Our chief finding is that  receptive fields developed by units of 
such model network are surprisingly similar to some found in the visual 
cortex. I t  appears that  neurons that  can make use of the continuous 
gradations of shading have receptive fields similar to those previously 
interpreted as dealing with contours (i.e. 'bar  ' detectors or 'edge ' detec- 
tors). This study illustrates the difficulty of deducing neuronal function 
within a network solely from receptive fields. I t  is also important to 
consider the pattern of connections a neuron makes with subsequent 
stages, which we call the 'projective field'. 

Artists commonly convey a sense of volume and depth to a surface through 

c.hiaroscwo, the use of continuous gradations of light and dark. The effectiveness 
of this technique indicates the importance of shading as one cue for shape, among 
others, such as contours. texture, and stereopsis. Although information about 

surface shape is presumably encoded in patterns of neural activity, essentially 
nothing is known about the process, for in contrast with the extensive experimen- 

tal literature dealing with contours, little work has been done on shading. As far 
as  we know. there have been no neurophysiological studies, and psychophysical 
data are sparse (Todd & Rlingolla 1983 : Mingolla & Todd 1986: Ramachandran 

1988a, 6 ;  BulthoK & Mallot 1988). The major interest on the topic has come from 
c+omputer vision (Brady I 979 : Horn I 986 ; Ikeuchi & Horn I 98 I ; Pentland 1984; 

scc also the more psychophysically oriented theorizing of Koenderink & Van 
1)oorn. 1980). 

To investigate how the visual system may be structured to make use of shading 
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information. we have employed a learning algorithm to construct a neural net- 
work model capable of determining surface curvatures from images of simple 

geometrical surface. il preliminary description of this work has appeared in Lehky 
& Sejnowski (1988). In  the following sections. details of the network architecture 
and learning algorithm are given, followed by results, and ending with a consider- 
ation of the biological significance of this type of network modelling and its relation 

to machine-vision approaches for extracting image parameters. Although the 
psychophysical evidence indicates important interactions between shading and 

other cues for shape. particularly bounding contours (Ramachandran I 988 a),  this 
modelling considers shading in isolation. S o  claim is made that  this network is a 

general solution to problem of shape from shading. but rather that  it offers some 
insights into possible neural organizations for handling the problem. 

G O A L S  A X D  D E S I G X  C O N S I D E R A T I O X S  F O R  T H E  X E T W O R K  

Our desire was to create a neural network model that  would extract principal 
curvatures and their orientations from images of shaded surfaces. Curvature is 

defined as the rate of change in the direction of the surface-normal vector as a 

function of arc length along a surface. I t s  value depends upon the direction one 
travels along the surface. Principal curvatures refer to the maximum and mini- 

mum curvatures for all possible trajectories through a point on a surface; in 
general. the principal curvatures will be different a t  each surface point. This 
network will determine principal curvatures a t  only a single point.  the centre of 

the surface in question. By a theorem of differential geometry. the two principal 
curvatures are always oriented orthogonally (Lord & Wilson 1984). 

Curvature was selected because it is a relatively robust indicator of shape. I t s  
magnitude is independent or rotations or translations of the surface, which is not 
true for surface normals. Furthermore. this shape parameter provides information 

about qualitative properties of a surface even when its values are not precisely 
known. just knowing the signs of the principal curvatures can be informative. For 

example. if both principal curvatures are positive. the surface is convex: if both 
are negative, it is concave: and if they have opposite signs. the surface is saddle- 
shaped. I t  should be kept in mind that  extracting surface curvature is a different 

task than determining the curvature of a one-dimensional edge (Dobbins rt al. 

1987) 
A difficulty with using shading is that  the pattern of reflected light depends not 

only upon surface shape. but also upon illumination direction. Somehow our visual 
system is able to separate these two factors. Accordingly, a goal we set for the 
model was to determine curvature independently of illumination direction, il 

further goal was to be able to do this without regard for the position of the surface 
within the input field of the network. One other confounding factor. surface 
reflectance. is not considered In this model. All surfaces here have uniform 
reflectance. Overall. surfaces were defined by the following seven parameters, of 

which the network was to determine the last three (i) illumination direction (two 

parameters); (ii) surface position (two parameters); (iii) principal curvature 
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magnitudes (two parameters) : (iv) principal curvature orientations (one par- 

ameter). Because principal curvature orientations, also known as principal direc- 
tions, are always orthogonal, they are described by just one parameter. 

Inputs to the network were images of elliptic paraboloids, which are parabolic 
in depth and elliptical in cross section. We selected this class of surface because it 
has no occluding edges, and we were interested in finding what information could 

be extracted purely from shading. (In saying 'purely from shading' we refer to the 
restricted range of input images. and not the nature of assumptions built into the 

network, which will be discussed below.) The surface normal a t  the centre of the 
paraboloid was always pointed straight a t  the observer (i.e. it was perpendicular 
to the frontoparallel plane), so there was no rotation of the surface in depth. Again, 

this was done to avoid occluding edges. The surface was illuminated by diffuse 
light, by which we mean that  although illumination came predominantly from a 

particular direction. there were other components arising from light reflected and 

scattered about by the surrounding environment. Use of diffuse illumination 
avoided hard shadow edges, again motivated by our desire to study network 
responses purely to shading. The surface had matt  reflectance properties, without 
any specular highlights. Details of the illumination and reflectance model are given 
in Appendix 2. 

The input paraboloids can be thought of as approximating small patches of a 
smooth surface within a complex image. This network therefore models processing 

in a small portion of the visual field. perhaps the area serviced by a single cortical 
column. The network would have to be replicated a t  many locations to cover the 

visual field, and also replicated a t  different spatial scales. We envisage all these 
local networks as converging upon higher-level networks that  integrate local 

curvatures into more general shaped descriptions, although such higher-level 
networks will not be considered here. Modularization of large networks in this way 

may be necessary because the time necessary to train a network increases more 
than linearly as a function of network size (Hinton 1989). 

A problem faced by the network was that  it is impossible to distinguish a positive 
curvature from a negative one without knowing illumination direction. For 

example, the appearance of a convex surface with illumination coming a t  a tilt of 
30" is physically indistinguishable from a concave surface illuminated a t  a tilt of 

-30". (See Gregory (1970) for a striking illustration of curvature sign ambiguity 
in the picture of a face-mask.) The problem is not an idiosyncrasy of this model. 
but is intrinsic to the physics of image formation. 

To resolve this situation. assumptions about the world had to be built into the 
network. Specifically. two assumptions were made, one for each of the two prin- 
cipal curvatures. The first placed restrictions on possible illumination directions. 
The network always interpreted an image as if illumination came from above (light 
tilt between 0" and 180"). This was sufficient to fix the sign of one of the principal 
curvatures. The well-known 'crater illusion' suggests that  biological visual 
systems do make this assumption. A picture can be seen as depicting either a crater 
or a mound, depending on which way it is turned, and the interpretation is always 
consistent with the implicit assumption that  illumination comes from above 

(Ramachandran I 988 a) .  
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The second assumption was that  both principal curvatures had the same sign. 
That  is, images were always interpreted as either concave or convex, but never 

saddle-shaped. This assumption is more troublesome than the first, as there does 
not seem to be any supporting biological evidence for it. I t  could possibly be 
eliminated if the network were required to come up with a self-consistent global 

description over a larger, more complicated surface rather than the simple surface 

patches used here. 

C O N S T R T T C T I O N  O F  T H E  N E T W O R K  

This section describes aspects of the network that  were built into it: and not 

developed through use of the learning algorithm. This includes defining connec- 
tivity within the network, as well as the response properties of the input and 

output units, but not the hidden units. 

Network structure 

The network had three layers (figure 1): an input layer. an output laycr, and 
an intermediate, 'hidden' layer. Each unit connected with every unit in the 

subsequent layer. and could assume a continuous range of activities between 0 and 

1. Properties of input and output units were pre-defined for the network, based on 
the operations we wanted the network to perform. as well as being constrained by 

biological plausibility. The learning algorithm was then applied to organize the 

initially random connection strengths between input units and hidden units 

output units 

hidden units 

input units 

FIGURE I .  Schematic diagram of the network showing three layers: an input layer (122 units), 
a middle  hidd den' layer (27 units). and an output layer (24 units). Each unit projected to  
every unit in the next layer. There were no lateral connections within a layer, and no 
feedback connections. Activities of units in the input layer are determined by the environ- 
ment. and activities of other units are determined by linearly summing inputs from the 
previous layer. weighed by a connection strength, and passing the result through a sigmoid 
nonlinearity. 
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(hidden unit receptive fields), as well as connection strengths between hidden units 

and the output units (hidden unit projective fields). 

Input  units had circular, centre-surround receptive fields, similar to those of the 
retina and lateral geniculate nucleus. They were defined mathematically as the 
Laplacian of a two-dimensional gaussian curve (see Appendix 3). I n  accord with 

the biology, there were two classes on input unit:  on-centre (shown in figure 2 a ) ,  

having excitatory centres and inhibitory surrounds, and off-centre, which had the 

opposite cwntre-surround polarity. Although historically the on- and off-centre 
tcrminology is based on certain temporal features of biological cells. its use here 
does not imply any such temporal properties for the model units. 

lnput  units were organized into two hexagonal arrays. one for on-centre and the 
other for off-centre units. A hexagonal array was chosen rather than a square one 

bccausc it has a greater degree of rotational symmetry, which we felt would be 
more cwnducive to extracting curvature orientations. Biologically, there is too 
much watter in retinal ganglion cells to easily classify the sampling lattice (Wassle 

r t  0 1 .  1 9 8 1 ) .  The two input arrays were superimposed, so that  each point on the 
irnagc was sampled by both types of unit. Each array had 61 units for a total of 
122 units in the input layer. This is the minimum that  we felt would give a sufficient 

image sampling density, although the point was not examined systematically. (The 

specific number 61 happens to come out evenly on a hexagonal grid.) Splitting 
input units into these two sets prevented them from having negative activities, 
which would have been unbiological although compatible with the learning 

algorithm. 

Output units had two-dimensional tuning curves that  were functions of both 
the magnitude and the orientation of the principal curvatures (figure 2c) .  The 

equation defining the output responses was 

where A(&!) was a log-normal function of curvature magnitude, M (i.e. gaussian 
shaped on a logarithmic axis). and B ( 0 )  was a gaussian function of curvature 

orientation 0, as detailed in Appendix 3. This type of multidimensional response 

is typical of cortical cells tuned for parameters such as colour, contour orientation, 
motion sensitivity. and disparity, although neurons responding to aspects of 
surfacc curvature have not been demonstrated. Each output unit in the network 

had its peak response a t  a different point in the space (i.e. a different 
pair of magnitude and orientation values). It should be made clear tha t  these 

output unit properties were defined as such, and did not arise as  a result of training. 
A difficulty with units having non-monotonic tuning curves is tha t  multiple 

abscissa values will produce the same activity. For the two-dimensional case 
considered here. there are infinitely many combinations of curvature magnitude 
and curvature orientation that  give identical responses. 

A way to resolve this degeneracy is to have parameter values represented in a 
distributed fashion, by the pattern of activity in population of broadly tuned units 
having different, but overlapping. tuning curves. This network used a distributed 
representation for the output parameters. as will be described below: the import- 
ance of this concept is stressed here. The most familiar example of distributed 
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Frau~b; 2 .  (a)  R'eceptire field of' an input unit. This is the Laplacian of a two-dimensional 
gaussian function. which provides a circular centre-surround organization as found in the 
retina and lateral geniculate nucleus. The figure shoa-s an  on-centre unit, having an 
excitatory centre and inhibitory surround. The netlvork also include off-centre units, with 
excitatory and inhibitory lobes reversed. (b)  Input units were organized into hexagonal 
arrays. Circles represent receptive field centres. showing a high degree of overlap. The input 
image was sampled by on-centre and off-centre arrays of 61 units (c) Output units had two- 
dimensional tuning curves in a parameter space defined by orientation and magnitude of 
the principal curvatures, Details of the output tuning curve functions are given in Appendix 
3.  Each output unit. had its tuning curve sensitive to different range of curvature 
magnitudes and orientations. (d) Schematir surface showing two principal curvatures 
(maximum and minimum curvatures) a t  the centre of the surface. 

rcpresentation is found in colour vision. Responses of any one of the broadly tuned 

colour channels is ambiguous, but the joint pattern of activity of all classes of 
channel allows one to specify colours precisely. Note the economy of this form of 
encoding : it is possible to form fine discriminations with a small number of coarsely 

tuned units rather than a large number of finely tuned ones, as was originally 
pointed out by Helmholtz ( ~ g o g ) ,  and more recently by Hinton et al. (1986). 
Distributed representations have also been used to  code motor outputs 
(Georgopolous et a1 1986 ; Lee et al. 1988). 

Before discussing the output representation in detail, it would be helpful to 
review the overall organization of the network. This is illustrated in the state 
diagrams of figure 3: showing the responses (or states) of all units when the network 
was presented with typical input images. 

Magnitude and orientation of the principal curvatures were represented in a 
distributed fashion in the 4 x 6 array of output units as follows. The columns 
correspond to units tuned to six different, but overlapping, orientation bands, with 

peaks a t  0°, 30°, 60': 90': 120' and 150' (details in Appendix 3) .  It is the pattern 



correct outp 

output 

hidden 

off-centre 
input 

on-centre 
input 

network response input image network response input image 

FIG~JKE 3. Responses of the network to two typical input images, one convex (a )  and the other concave. ( b )  Double hexagons 
in the hourglass-shaped figure show responses of 61 on-centre and 61 off-centre input units, calculated by convolving 
their receptive fields with the image. The area of a black square is proportional to a unit's activity. Converging synaptic 
inputs from the input layer produced activity in the 27 hidden units, arranged in a 3 x 9 array above the hexagons. 
The hidden units in turn projected to the output layer of 24 output units, shown in a 4 x 6 array at  the top. This output 
should be compared with the 4 x 6 array a t  the very top (separated from the rest), showing the correct response for the 
image. The 4 x 6 array of output units is arranged as follows. The six columns correspond to different peaks in 

orientation tuning (O", 30°, 60°, 90°, 120°, and 150"). Rows correspond to different curvature magnitudes. The top two 
rows code for positive and negative values of the smaller principal curvature (C,) ; the bottom two rows code the same 
for the larger principal curvature (C,). (a )  Response for image of surface with smaller principal curvature equal to 
4.20 deg l  and larger principal curvature equal to 10.80 deg-', with the long axis of the surface rotated 37.8". The centre 
of the surface was shifted from the centre of the network input field by 0.27" a t  an angle of 245.5". lllumination tilt 
was 83.40" and slant was 13.70". (b) Itesponse for image of surface with smaller principal curvature equal to -4.10 deg-' 
and larger principal curvature equal to -8.70 deg-l, with the long axis of the surface rotated 11 1.4". The centre of the 
surface was shifted from the centre of the network input field by 0.10" at  an angle of 59.0". Tllumination tilt was 110.70" 

and slant was 47.90". 
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of activity in all six that  indicates orientation. and not that  of any one unit. The 

curvature orientation indicated by these units was that  of the smaller of the two 

principal curvatures. This implicitly defines the orientation of the other principal 

curvature, because they are orthogonal. The four rows represent tunings to 
diff'ercnt curvature magnitudes. The four rows are split into two pairs. The top 
pair codes the value of the smaller of the two principal curvatures (lying along the 

long axis of the elliptic paraboloid) ; the bottom pair codes the larger principal 
curvature (along short axis of the elliptic paraboloid). Within each pair of rows, 
the units in thc upper row (i.c. rows 1 and 3) responded if the curvature was positive 

(cwnvex surface) with a peak tuning of + 8  deg-l. The units in the bottom row in 
each pair (i.e. rows 2 and 4) responded if the curvature was negative (concave 

surface) with a peak tuning a t  -8 deg-l. Splitting the representation of positive 

and negative parameter values into two sets of output units prevented them from 
taking on negative activity levels. 

Curvature orientation was precisely defined by the joint activity of the popu- 
lation of units tuned to the overlapping orientation bands. However. this was not 

the case for curvature magnitude. whose representation in this network remains 

dcgenerate. The reason is that  there is no overlap between the tuning curves for 
d i f i ren t  magnitudes (+  8 deg-l and -8  deg-I). Because of the non-monotonicity 
of the tuning curves, a response can correspond to either of two magnitudes. 

located equidistantly above and below the tuning curve peak. This could be 
cwrrectcd by expand the network to include output units tuned to additional. 

overlapping ranges of curvature magnitude. equivalent to including units sensitive 
to diferent spatial scales. 

Applying thr learning algorithm 

We used th r  ' back-propagation ' learning algorithm to organize the network so 
as to provide a transform between the retinotopic space of the inputs and the 

caurvaturc parameter spacle of the outputs. (Details of the algorithm are given in 
Appendix 1.) In brief, the algorithm incrementally changed connection strengths 

while the nctwork was presented with many images of elliptic paraboloids. For 
each presmtation. responses of the input units were propagated up through the 
network to the output units. Responses of the output units were then compared 
with the correct output for that  image. Based on the difference between actual and 

c30rrect outputs. connection strengths throughout the network were slightly 

modified to rcducc thc error, starting with connections to the output units and 
thcn moving back down through the network (hence the name back-propagation). 
Each unit also had a bias, cffcctively equivalent to a negative threshold, whose 
strength was continuously modified throughout the learning process in accord 
with the algorithm. After thousands if image presentations, the initially random 
cmmcction strengths organized themselves to provide the correct input-output 

transf(.r function. 
The training set was 2000 synthetic images of elliptic paraboloid surfaces, 

desclribed in Appendix 2. This was empirically determined to be a corpus of 

sufficient size that  the network could not memorize each image. but rather would 

have to extract parameters in a more general manner. Each image had different 
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values for the seven parameters that  defined them, each independently chosen 
from a uniform random distribution, except for curvature magnitude. which was 
uniformly distributed on a logarithmic scale. Curvature magnitudes ranged from 

2.0 to 32.0 deg-' and also -2.0 deg-I to -32.0 deg-l. Curvature orientation ran 
between 0.0 and 180.0°. Illumination tilt was also between 0.0 and 180.0°, and 
illumination slant was between 0.0 and 60'. The centre of the paraboloid surface 
lay anywhere within the central third of the image. 

The performance of the network reached a plateau correlation of close to 0.88 
between actual network outputs and the correct outputs after about 40000 

presentation. To determine this figure. the correlation coefficient between the 
actual activities of the 24 output units and the correct activities was calculated for 
each of the 2000 input images. and then the median value of these 2000 correlation 

coefficients was found. 
The pattern of connection strengths that  developed is shown in figure 4, called 

the weights diagram. Each of the 27 hourglass-shaped figures in figure 4 indicates 
all the connection strengths associated with a single hidden unit. Within each 
hourglass icon, two sets of connections are shown. First. there are the connections 
from all 122 input units to that  hidden unit (hidden-unit receptive field). Secondly. 

there are the connections from the hidden unit to  all 24 output units (hidden unit 

projective field), depicted by the 4 x 6 array a t  the top of each icon. 

Receptive-jeld properties 

The weights diagram (figure 4) shows that  the hidden units formed a variety of 
receptive-field patterns. As seen in the double hexagon portion of each icon, many 

hidden units had receptive fields that  were orientation-specific. These oriented 
fields generally had several excitatory and inhibitory lobes. and different units 

could have the same orientation but have the lobes shifted in phase. This arrangc- 
ment is similar to that  observed in simple cells of cat and monkey visual cortex. 

which are often fitted with Gabor functions or other similar functions (DeValois 
et al. 1979; Kulikowski & Bishop 1981 ; Andrews & Pollen 1979). (The earlier 

studies of Hubel & Wiesel (1962, 1965) focused on the central two or three lobes. 
which are most prominent.) I n  addition to units that  were orientation-selectivc~. 
a number of units had receptive fields that  were more or less circularly symmetrlcl. 
An interesting observation is that  some hidden units failed to develop significvnt 
connection strengths (four units a t  the end of the third row of figure 4). I t  s e e ~ ~ i s  
that  only a limited number of hidden units are needed of achieve the task of tllc 
network. The extra hidden units undergo 'cell death '  (the consequence of a m a l l  

weight decay term in the learning algorithm (Appendix 1). apparently unalslc to  
s e n e  a useful role. Perhaps the number of hidden units required by thc nctv orli 
is a measure of the complexity of the task. 

Projective jields 

Three types of projective fields can be distinguished in figure 4. Type 1 Iias n 

vertical organization to the 4 x 6 array a t  the top of each icon; type 2 lias a 
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horizontal organization with alternate rows similar; and type 3 also has a hori- 

zontal organization. but with adjacent rows similar. Type 1 hidden units appear 
to provide information about orientation of the principal curvatures, type 2 about 
their signs (convexity or concavity of the surface) and type 3 about the relative 
magnitudes of the principal curvatures. Incidentally, during construction of the 

network the three types of hidden unit always developed in a particular temporal 
sequence. Convexity-concavity units (type 2) appeared first, followed by curva- 
ture orientation unit (type 1) and finally, curvature magnitude units (type 3). 

'Figure 4 groups together units with similar projective fields. This grouping was 

done manually for purposes of display. and is not a product of the model. In  reality. 

units developed in random order. Because this network is globally connected. the 
geometrical position of a unit's 'cell body ' is of no significance; in other words, the 

network has no topography. 

Variability among networks 

The weights diagram in figure 4 is representative of many learning runs, each 

started from a different set of random weights. Similar receptive fields always 
developed. although there were variations in their detailed structure from run to 
run. In  addition. the same three classes of projective field were always found. 

However, on some runs the classes were more sharply distinguishable. and on 
others they tended to blend into each other. Also. inhibitory and excitatory 

weights throughout the network could be reversed. so that  the weights from 
different runs could form a negative image of each other. Finally, there was 

variation in the number of units that  failed to develop strong connections. Despite 

this variability, the final performance of the network remained quite uniform, with 
median correlations between actual and correct outputs remaining in the narrow 

range 0.87-0.90. 

l W 3  x number of trials 

FIGVRE 6 .  Setwork learning curves, showing correlation between actual and correct responses 
of the output units as a function of the number of learning trials. Curves for networks with 
different numbers of hidden units are shown: open squares, 0 ;  filled squares, 3 ;  open circles, 
27 1 filled circles, 40. 
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Dependence o n  number  of hidden  u n i t s  

The timecourse of network development is shown in the learning curves of figure 
5. which plot median correlation between actual and correct outputs as a function 

of image presentations. I t  can be seen that  including more than about 12 hidden 
units failed to improve network performance as measured by the correlation 
coefficient, although additional hidden units did develop connections until about 

20 such units were in place, a t  which point the previously mentioned 'develop- 
mental failure' occurred. Although performance failed to improve after about 

40000 trials, connection strengths continued to evolve until about 150000-200000 

trials. FTe also tried two other measures of network performance : the root mean 
square (r.m.s.) error and the vector dot product between actual and correct 
outputs. Neither seemed to add much information over that  provided by corre- 

lation (r.m.s. error was 0.10 in the mature network). 
One aspect of the learning curves that  may seem odd is that  network perform- 

ance d ~ c r e a s e d  going from zero to three hidden units. The explanation for this may 
lie in the total number of 'synapses', A network having zero hidden units, with 
input and output units directly connected, has a far greater number of connections 

than a network with three hidden units (figure 6) .  Having a very small number of 
intermediate hidden units causes a bottleneck within the network. Upon 

examining figure 6, however. we see that  even though a network with zero hidden 
units (a  two-layer network) does relatively well, it does not do as well as a three- 
layer network with an equivalent number of connections. The small difference 

between two- and three-layer networks may have occurred because the simple 
images used here did not extend very far beyond the capabilities of a two-layer 
network, and perhaps a greater advantage for three-layer networks might be 

apparent when dealing with more complex inputs. 

F I G ~ R E  6. Aspiptot ic  performance of'the network as a function ofthe number ofsynapses. The 
nnrnher of synapses was varied solely by changing the number of hidden units (indicated 
hy numbers in parenthesis). The figure shows that additional synapses improre network 
])~rformancr  u p  to  a limit. and that a two-layer network (0 hidden units) performs less well 
than a three-layer network h a ~ i n g  the same number of synapses. 
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I'attern qf errors 

M'c tricd to identify which aspects of the input gave the network the most 
troublc. This was done by plotting the 2000 cwrrelation cocfficicnts for all input 
irnagcs as a function of each of the seven parameters defining an image. Although 

thcsc plots wcrc highly scattered, it appeared that  performance was poorest for 
paramctcr valucs a t  thc cdges of the ranges over which the network was trained. 

The most severe problems were due to illumination arising from certain directions. 
I n  particular, if illumination came from close to horizontal (light tilt near 0.0' or 

180.0O) thc network would sometimes reverse curvature signs, interpreting con- 

cave surfacw as cwnvcx and viw vwsa. Another difficult illumination direction was 
straight onto thc surfacw (illumination slant close to 0.0'). 

Thc ability of thc nctwork to produce correct outputs when presented with 

inputs not in the training set was tested in the following manner. The corpus of 
2000 images was randomly dividcd into two equal sets. The network was trained 

on onc sct. and thcn had its performance tested on the other set. The results are 
givcn in figurc 7 .  Il'c also tested the network's ability to extract curvature 
intlcpcndcntly of illumination direction by presenting it with 100 new images with 

illumination along thc long axis of the paraboloid and the same 100 images with 
illumination orthogonal to the long axis. In both cases median correlation was the 
sarnc. a t  0.88. Thrsc results show that  the nctwork generalizes well for novel inputs 

c1rt~u.n from thc sarnc class it was trained upon. 

(kncralization \vas poorer when the test set differed more substantially from the 
training sct. \\'hen the network was tested with images produced by using uni- 

dirccbtional rather than partly diff'use illumination, so that  there were sharp shadow 

correlation 

FIGI.IXIG 7 ,  I~enlo11stl.tltio11 of'the ~ ~ e t w o r k ' s  ability to  generalize. The network was trained on a 
set of 1000 images. and then tested on another set of 1000 images. (a)  Distribution of 
rorrelation coefYicients between avtual and correct outputs for the training set (median = 
0.91). ( b )  IXstribution of' cvrrelation coefficients fbr the test set (median = 0.88). 
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edges, correlation decreased to 0.78. When tested with surfaces having specular 

highlights, correlation was 0.70, and when albedo was cut in half, correlation was 
0.59. When the network was tested with ellipsoid surfaces (which had occluding 
edges) after being trained on paraboloids (which did not),  it was 0.58. Rotating the 

paraboloids in depth randomly over the range ) 15' reduced correlation to 0.79. 

Asymmetric images produced by both stretching the positive x-axis and 
contracting the negative x-axis by a factor of 1 / 3  had a correlation of 0.81. 

Randomly changing pixel values by 50 .20  had no effect on correlation, which 
remained a t  0.88: increasing the pixel noise to 5 0.60 produced a correlation of 

0.82. The network was relatively immune to such high-frequency noise because it 
was not matched to the spatial frequency response of the centre-surround input 
units, whose centres were 64 pixels wide. Adding noise matched to the input filters, 

by placing a texture of polka-dots of random reflectance on the surface with the 

same diameter as the receptive-field centres. badly disrupted network perform- 
ance, producing a correlation of 0.37. In  general, despite the loss of accuracy, these 

results show that  some transfer to other types of surface occurred even without 
training on those surfaces. 

Features or Jilters ? 

An interesting question is whether the hidden units in this network act as feature 

detectors or as parameter filters. By a feature detector we mean a unit that  
responds strongly only when presented with an appropriate and specific stimulus 
and poorly to all other inputs, in essence an all-or-nothing response. By a par- 

ameter filter we mean a unit that  responds with a continuous range of activities 
when presented with various stimuli, which may encode the value of some par- 

ameter. To investigate the matter, we looked a t  the statistical distribution of 
responses of individual hidden units when presented with the 2000 images. By 

plotting a histogram of the unit's response levels we hoped to classify the unit. By 

our criteria, a unit having a unimodal response histogram with a peak a t  some 
intermediate level of activity was classified as a parameter filter, and a unit having 

a bimodal histogram with activities concentrated a t  either very high or very low 
levels was a feature detector. 

We found examples of both kinds of response. Of the three hidden unit classes, 

the orientation units (type 1 )  and the magnitude units (type 3 )  had unimodal 
distributions (figure 8a ) ,  and we classified them as parameter filters. In contrast. 
theycurvature sign units (type 2) invariably had bimodal distributions (figure 8b )  

tending to be fully on or fully off. FYe interpret type 2 as feature detectors, which 

discriminate between convexity and concavity of surfaces. 
The distinctiveness of the type 2 units from both the type 1 and type 3 units is 

also seen in 'ablation' experiments, in which individual hidden units were 

destroyed by setting their connection strengths to zero and then observing the 
resultant degradation in network performance. Destroying a single type 1 or type 
3 hidden unit decreased the median correlation coefficient by an average of 0.03. 

There were a few cases in which ablating one of these units improved network 
performance very slightly. Ablating a single type 2 unit had much greater effect, 
decreasing the median correlation coefficient by an average of 0.16. The greater 
damage caused by removing a type 2 unit may happen because those units are 
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activity (relative units) 

FIGCRE 8. Distribution responses of individual hidden units when the network was presented 
with a set of 2000 images. (a) Unimodal distribution typical of a type I unit, selective for 
curvature orientation. Type 3 units, selective for the relative magnitudes of the principal 
curvatures, also had unimodal distributions. We interpret units with unimodal distributions 
as parameter filters. (b)  Bimodal distribution typical of a type 2 unit, selective for principal 
curvature sign (convexity or concavity). Units having this bimodal response are interpreted 
as feature detectors. 

involved in checking every image presented to the network for concavity or 

convexity, whereas the determination of orientation, for example, is split among 
a number of units tuned to different ranges of orientation, and only a fraction of 
the images fall within the jurisdiction of any one unit. 

Simulated neurophysiology 

The term 'receptive field' has so far referred to the pattern of excitatory and 

inhibitory connections arriving from the preceding layer of units. However, the 
true receptive field is something different: it is not a pattern of synaptic contacts 

but rather a mapping of a unit's response as a function of stimulus position. This 
mapping depends not only upon the immediate synaptic inputs to a unit, but also 
on the filtering properties of units in the preceding layer or layers. To explore true 
receptive fields of units we conducted simulated neurophysiology, presenting them 

with 'bars of light'. The bars were varied in position. orientation. width, and 
length: tuning curves for these parameters were determined for various units. Bar 

stimuli were chosen because there is an extensive experimental literature based on 
them, and so responses of model neurons could be compared with those of real 

ones. Because units in the network responded more vigorously to bar stimuli than 
to any of the paraboloid images (even though the network had been trained on 
paraboloids). it was necessary to reduce the 'luminance' of the bars so as not to 

saturate responses. 
Responses of hidden units to bars were easily predictable from the connections 

they received from the input units. I t  was possible to form a good estimate of the 
optimal bar stimulus just by examining the patterns in the double hexagons of 

each icon in figure 4. The ease in understanding hidden unit responses is not 
surprising, because the only intermediary between them and the stimulus was the 
array of centre-surround receptive fields of the input units. Figure 9 a  is an 
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position 

Flor~rn !). Esarnplrs of'hitlilen unit responses as a bar stimulus was swept across the input field 
of the net\vork, fbr ( a )  a hidden unit and (b)  an output unit. Dotted lines indicate 'spon- 
taneous' activities when the input was a uniform black field. 

c,xan~ple showing the response of one of the oriented hidden units as an optimal 
bar \+as swept across its receptive field in a direction perpendicular to the optimal 

oncntation. 
Thr situation lvas quite diff'erent for output units (figure 9 6).  Finding an optimal 

stimulus took extensive trial and error. Again. this may not be surprising: the 

response for each output unit is determined by convergent inputs from all 27 

hidden units. Despite the complrx organization of receptive fields for output units, 

it was in all rases possiblr to obtain smooth tuning curves for the various bar 
parameters. Tunings Mrerc generally broader than for hidden units. A feature of 

somc output units was the presence of strong 'end-stopped inhibition', to  use the 
ncurophysiologic.al terminology (Gilbert & WTiesel 1979). By this we mean that  
responses dropped sharply when bar length was extended beyond a certain point. 

111 addition. as t h r  bar was swept arross the network in a dircction perpendicular 
to  thc optirnal orientation, thc output units showed some degree of spatial 
tleloc~alization in thcir rcsponses compared with hidden units. responding over a 

hroatlcr i3patial rangc3 by a factor of about 1.5-2.0. 

Rcsponscw of unils in the hidtkn and output layers to bars were reminiscent of 

somc unith in visual rortcx. Hiddrn units appeared to have properties somewhat 
likc simple c~ l l s .  with thcir oricmtcd. wntre-surround organization. Output units 
wcrc niorc likc sonic types of complex cell. having a morc delocalizod response and 
end-stopped inhibition (although in cortex there are also end-stopped simple cells). 
\!'hat brings the analogy to mind most strongly. however. is again the point made 
ahovc. hidden units are easy to map out. but output unit responses seem to have 
subunits that makv their rt:sponses difficult to understand. In drawing this analogy 
i t  sho111d L)c k ~ p t  in mind that  the relationship between hidden units and output 

units in thv model v as strictly hierarc.hica1. bec.ause responses of output units were 
c.~itirckly s ~ ~ ~ t h e s i z c d  from the preceding hidden units without any lateral or 
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feedback connections. The extent to which the visual cortex follows such a 

hierarchical organization remains controversial (Gilbert I 983 ; Stone I 983). 

Alternative netu:ork architectures 

Lye have tested the sensitivity of the receptive and projective fields formed by 
the network to various ohanges in its architecture. Testing a limited number of 

alternatives. we found that  the patterns of connections were stubbornly resistant 
to structural perturbations. 

One change was to make all connections from hidden units to output units 

excitatory, instead of allowing both excitatory inhibitory ones. The rationale for 
this was that  output of real neurons are all of one type. In  particular, projections 
from the lateral gcniculate nucleus to the cortex are believed to be all excitatory 

(Toyoma ~t ul. 1977). On training a network with this new architecture. it formed 

projective and receptive fields that  were essentially the same as those in figure 4, 
apart from the obvious difference that .  because there were no inhibitory inputs to 
hidden units. the black squares in the receptive fields were all blanked out. 
Performance. as measured by median correlation coefficient. decreased only mar- 
ginally (by 0.02). Allowing only inhibitory connections between hidden and output 
units had the same effect. Another configuration we tried was to have only 
on-centre input units. which could form both excitatory and inhibitory connections. 

Again the network formed essentially the same pattern of connection as before, 
and decrease in performance was marginal. A third configuration combined the 

two abovc, that  is. there were only on-centre inputs and these were allowed to 
form only excitatory connections. Jn this case the receptive fields that  formed were 
poorly defined. although the performance of the network remained relatively high. 

with a median correlation of 0.84. 

l'hc ability to eliminate entire classes of connection without affecting perform- 
ancc suggests a high degree of synaptic redundancy within each hidden unit. The 
possibility remained, however. that  these impoverished networks did well, not 

because there was redundancy within hidden units. but because there was a 
redundancy of hidden units themselves, which allowed them to compensate for 
tlefic.its among each other. MTe examined this by using a network having only three 

hidden units tnstead of 27, again constraining connections between hidden units 
and output units to have positive weights only. In contrast to the network with 
27 hidden units. there was now a significant decrease in network performance, 

with median cwrrelation dropping from 0.76 to 0.65. This result suggests that  an 

cxccss of hidden units can indeed makc up for limitations in each one. 

Two other network configurations were tried, both with 27 hidden units. First. 
we reduced the overlap between receptive fields of input units. This did not affect 
patterns of connections or network performance. Secwndly, we increased the 
number of input units from 122 to 434 without changing receptive-field overlap, 

almost doubling the diameter of the input field of the network. The resulting 
projective fields were the same as before, but there was an interesting variation in 
the hidden units' receptive fields. Their shapes were identical, but their sizes were 
normalized to fill the larger size of the network input field. For example, for 
oriented units the widths of the 'stripes' were double in absolute terms, but 
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remained the same relative to the increased diameter of the network input field. 
The performance of this network was the same as before. 

Overall. the network appeared resilient to perturbations in its architecture. I t  

is not known if including lateral connections within a layer or feedback connections 
would lead to a fundamentally different pattern of organization. A generalization 
of the back-propagation algorithm (Pineda 1987) would allow exploration of 

networks with these more complex architectures. 

Biological signi$cance 

I t  is not obvious what this network is doing if one simply examines receptive 
fields of individual units (figure 4). One might be tempted to classify them into 

such categories as 'edge' detectors or 'bar '  detectors. However, having 
constructed this network, we know that  they are engaged in something entirely 
different : they are extracting information about surface curvatures from the 

continuous gradations of shading in an image. Yet it seems unlikely that  this 
interpretation would be among the first that  spring to mind. Although this model 

of course does not prove that  cortical cells that  have receptive fields similar to 
those found in the network are engaged in the analysis of shaded surfaces. it does 

demonstrate that  detecting bounding contours is not the only possible function of 
cells with such receptive fields. 

When we say that  the units in this network are not acting as bar detectors. that 
docs not mean that  they do not respond well t o  bars. In  fact we known that  some 

respond more strongly to bars than to any of the shaded objects that  were used 
to create them. \$'hat we mean is that  from a computational point of view their 
response to bars is not the relevant aspect of their behaviour in this network. To 

label them as bar detectors would give-a misleading impression of their functional 
role. 

An important lesson from this modelling is that  knowledge of a unit's receptive 
field is not sufficient to deduce its function. Units with similar receptive fields can 
have different functions because of different projective fields; indeed. it is possible 

that  a single unit may have multiple functions if it projects to several areas. 
Understanding the function of a neuron within a network appears to require not 

only knowledge of the pattern of input connections, which forms its receptive field. 
but also knowledge of the pattern of output connections. which forms its projective 
field. This raises questions about conventional interpretations of the receptive 
fields of real neurons. not only in visual pathways but in other sensory systems as 
acll .  

Although responses of units in our model were similar in some respects to those 
in visual cortex, the detailed manner in which these properties actually arise in 
cortex could be quite different from that  in the network. As an example. oricntcd 
responses of cells in visual cortex may arise in part from inhibitory interneurons 

(Sillito 1975) .  which we did not include. We feel that  the network in its prescnt 
form should not be taken literally as a model of cortical circuitry. which is m u ~ h  
morc complex, but rather should be thought of in a more abstract sense as a model 
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that  may capture certain essential features of the cortical representation of 

information about surfaces. The same representations could be constructed 

differently in different systems. as indeed the orientation tuning of neurons in 
different species might also have different origins although they serve the same 
function. 

The distributed output representation we chose may seem unintuitive, because 

one cannot easily recognize what it represents in the same way that  one could if 

parameter values were made explicit in the activity of a single unit. The 
advantages of a distributed representation were outlined earlier. If such a rep- 

resentation happens not to be well matched to out ability to extract information 
from it,  that  should not be regarded as an argument against it : it is an internal code 

of the brain and not meant for our perusal. M'e believe that  i t  is a form of the 
homuncular fallacy to expect that  parameter values are made explicit a t  some 

point in the brain. In  our view, a value is represented by a pattern of activity, with 
the output pattern of one network acting as the input pattern for the next, until 

eventually it may reach a motor output,  which again is a pattern of activity 
because movement is the product of an ensemble of muscles, or the pattern may 
be stored in memory in some form. 

The performance criterion we used, the correlation between actual output and 
the 'correct ' output, indicates that  we can use the learning algorithm to construct 

a network that  produces a specified input-output transfer function. This begs 
the question of the appropriateness of the transfer function we selected, and in 

particular the appropriateness of our output representation, which is speculative 
(although based on principles that  have some experimental support). Further- 
more, a particular transfer function can arise through different algorithms, and our 

performance measure does not indicate how well the network follows a particular 
algorithm, in particular the one used biologically. Because none of the relevant 
biological information is available, network performance cannot be compared 

directly. h'evertheless, there are some tests that  could be done. Psychophysically, 

the model could be evaluated by seeing whether it fails in the same way that  
humans do when asked to extract shape parameters from shaded surfaces. Phy- 

siologically, it would be interesting to use shaded images to test the responses of 
visual neurons. We expect that  a class of end-stopped complex cells will be 

sensitive to the local surface curvature over a wide range of illumination directions. 

Signi$cance of the back-propagation algorithm 

Back-propagation was used purely as a formal technique for constructing a 
network with a particular transfer function between inputs and outputs. This is 
not a model of developmental neurobiology, and no claims are made about the 
biological significance of the process by which the network was created. Nor is this 
intended as a cognitive model of learning, describing, for instance, a process by 

which a person may become more adept in extracting particular visual features 

through repeated exposure to them. That  being the case, the learning curves in 
figure 5 are presented as technical indicators of the performance of the algorithm, 
and the 'number of trials' for network performance to  plateau is not in any sense 

a psychological prediction. The significance attached to this model is not in the 
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process by which it was created, but rather in the resulting properties of the mature 

network. 
Many features of the network are non-biological. For example, summation of 

inputs to a unit is linear in the model, whereas in reality the process can be a highly 

nonlinear, dependent on the biophysics and geometry of dendrites (Koch & Poggio 
1987; Rall & Segev 1987). Furthermore, connections arising from a single model 
unit can be both excitatory and inhibitory, whereas in real cortical neurons all 

connections are either one or the other. There are no lateral interactions between 
units of the same layer in the network, nor are there any feedback loops. Those are 

both important features of real neural networks. Besides problems in physical 
organization, there are also those involving the procedures of the learning algor- 

ithm. I t  requires a 'teacher', which provides a standard to which outputs can be 
compared and adaptively corrected. I t  also requires and implausible two-step 
sequential cycle in which responses are first propagated up through the connections 

of the network, and then information about the output errors propagated back 
down these same connections (although there is a version of back-propagation that  

segregates the two streams of information into separate sets of units (Parker 1985). 
In  response, we have already mentioned that  the model network appears robust 

to various changes that  would make it more physiological. How much biological 

detail this class of model can support before becoming unwieldy remains to be 
seen. Concerning the existence of a 'teacher ', there are other algorithms that  may 
be more realistic from a developmental point of view, for example the reinforce- 

ment algorithms (such as that  Barto et al. (1983)) in which the network receives 
feedback about whether its response is appropriate or not without being told the 

nature of the error, as well as the entirely unsupervised algorithms (Linsker I 986 ; 
Kohonen 1984). On the other hand, those algorithms are not as suitable as the 

supervised algorithm used here when one wants to construct a network with 
particular characteristics. 

Finally, we wish to emphasize that  blind application of a learning algorithm is 

no substitute for thoughtful consideration of the problem a t  hand. We believe that  
careful selection of the input and output representations for the network, based on 
knowledge of biological visual systems, were essential for creating conditions that  

allowed the algorithm to generate interesting results. A good strategy for 
constructing model neural networks may be to incorporate as  much knowledge as 
possible into its initial structure, and then use the algorithm to extend one's reach 
by filling in gaps and details. 

Relation to machine vision models 

There are several approaches to extracting shape from shaded surfaces in the 

machine vision literature (see for example, Ikeuchi & Horn (1981);  Pentland 

(1984) but for the purposes of comparison here they are all models of the same 
class in that  all formulate explicit rules for extracting shape, rules expressed by 
sets of mathematical equations. On the other hand, the approach used here differs 
fundamentally. In  the network model, rules, or algorithms are never explicitly 
stated. but rather are implicit within thousands of connections interacting within 
a nonlinear system. 
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This raises the question of whether the algorithm implicit within the network 

can in principle be reduced to a simple set of equations comparable to the ones in 

machine vision. First of all, there is no guarantee that  this can be done, and it is 
vcry possibl(> that  there is no simpler description of the network than itself. 

Purthcrmore. evcn if a c30mpact algorithmic description exists, there is no 
prinriplcd way of finding it, and the difficulty increases rapidly with the size of the 

nctwork. Thcsc qucstions remain as research issues within neural network mod- 

clling, and a t  present much of the work in the field, including that  reported here, 
should be considered experimental rather than theoretical. 

Xcvcrthclcss, thcrc are some apparent differences in the algorithms 
implemented by the machine-vision and network models. The machine algorithms 

pro(wed by sorially examining relations between adjacent pixels, whereas the 

nctwork intcgratcs information over the entire image in parallel. Because this 
t~ctwork is fully connected, its response to any region of the image is 

simultaneously influenced by all other regions in a nonlinear fashion. We would 
thcrcforc classify the algorithm implemented by the network as intrinsically 
global. whcrc.as globality in machine algorithms is achieved by iterating some local 

analysis. Even if one viewed our entire nctwork as processing a local patch of a 
morc cwmplex image, as was suggested earlier, the more general network to which 

all thc locd networks project would still be analysing the image in a global manner. 
Thc tlistinctivcness of the network a t  the algorithmic level is a result of the 

cwnstraints. imposed a t  the hardware level, of being constructed out of large 
numbers of highly interconnected analogue units each having very limited capa- 

bilitics. I t  is common in rcsearch on artificial intelligence and cognitive modelling 
to forus exclusively on algorithms a t  the expense of questions of implementation 
and hardware. Although it is true that  a particular algorithm can be implemented 

in innumerable ways. thc converse is not t rue:  a particular hardware configuration 
cannot ncccssarily cmbody a wide variety of algorithms. If one is constrained to 

solving a problem by using a nctwork architecture similar to that  occurring in the 

brain, the resulting solution may be quite different from that  that  would have 
bccn cwncvivcd if one were trying to solve the problem in any manner possible. 

So claim is made here that  the network has found a general solution to the 
shape-from-shading problem. The network was constructed to deal only with a 

particular set of simple surfaces. The aim here was to study the basic capabilities 
of the nctwork learning algorithm, and to use the algorithm to investigate possible 

organizations of the visual cortex, rather than to construct a practical system for 
interpreting images of the real world. The simple surfaces we used could have been 
solvcd by cwnvcntional algorithms (even local algorithms, although we claim that  
ours is global). Howevcr, we feel that  the highly parallel and connected nature of 
networks may take tht.m particularly suitable for integrating informatioil across 

complex images to form a globally self-consistent description, although this 
remains to be demonstrated. That  is not to say that  networks will be able to 
recover a mathematically exact description of a surface, but only a sufficient 
approximation, which may be the best that  biological systems can do in any ease. 
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Although neural network modelling is a t  an early stage of development, it is 

apparent that  new principles are emerging concerning the representation and 

transformation of information within populations of neurons. For example, 
Georgopoulos et al. (1986) have shown tha t ,  in motor cortex, information about the 
intended direction of arm movement is distributed in populations of neurons 
broadly tuned to that  direction, analogous to the output representation used in this 

model. Zipser & Andersen (1988) have applied the same learning algorithm used 

here to construct a transform from retina-based coordinates to head-centred coor- 
dinates. They report that  hidden unit properties in their model are similar to those 

of some neurones in parietal cortex. The success of their model and ours depended 
to a large extent on incorporating knowledge about single unit properties and the 
style of representation found in cerebral cortex. Learning algorithms provide a 

new technique for drawing out the implication of these assumptions and exploring 
some of the principles of distributed processing in sensory and motor systems. 

A central task in modelling is to abstract features of the system that  are relevant 
to the behaviour in question. Depending on what one wants to study, different 

levels of abstraction become appropriate. Incorporating as much realism as poss- 
ible into model neurons or the organization of the network ought not to be a goal 
in itself. I n  doing so one risks a model whose complexity, although perhaps capable 

of mimicking the data, may not provide any insight into function. For example, 
detailed models of orientation-selectivity of simple cells in visual cortex provide a 
useful way of exploring the anatomical basis for this selectivity (Sejnowski et al. 
1988; m7ehmeier et al. 1989), but do not explain the possible functions of these 
properties. The claim for 'simplifying' models, which omit many biophysical 

features of real neurons, is that  the general organization of a richly interconnected 

network of simplified units captures certain essential computational features of the 
cortex, while being different in detail (Sejnowski et al. 1988). 

We have shown that  a network model can determine surface curvatures from 
images of certain shaded surfaces independently of illumination direction. 

Processing units in the model had receptive fields similar to those found in the 

visual cortex. As was stressed earlier, it is unlikely that  anyone would infer, merely 
by examining receptive fields, that  the network deals with smooth gradations of 

shaded curves. To understand a network it appears essential to  know the 
organization of the projective fields as  well as the receptive field. Yet even with the 
entire circuit laid out before our eyes it was still difficult t o  comprehend. This 

provides a lesson for research aimed a t  trying to understand real neural networks, 
in which we are given access to an infinitesimal part of the circuit and in which 

determination of projective fields is beyond the present technology. In  this difficult 
situation, perhaps the greatest contribution this modelling can provide is to help 
us realize that  a neuron can be doing something entirely different from what initial 
impressions would suggest. 
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APPEKDIX 1. B A C K - P R O P A G A T I O N  L E A R N I N G  A L G O R I T H M  

Back-propagation is a supervised learning procedure, developed by Rumelhart 

et al. (1986) (and independently by Le Cun (1985), Parker (1985) and Werbos 
(1987)), which modifies connection strengths throughout a feedforward neural 
network to reduce the error between the actual and correct outputs. 

The input to a unit i ,  E,, is the sum of all unit activities sj in the previous layer: 

where wij is the weight from the j t h  to the i th  unit. The output of the i th unit, s,, 

is formed by passing Ei through the sigmoid nonlinearity: 

The algorithm minimizes the average squared error between the actual outputs, 
sin), and correct outputs, SF. (A superscript denotes the layer, with the output 

layer designated N . )  The error arising from a single input pattern is: 

J 

error = C (sf - sjN))', 
i=l 

where J is the number of output units. 

During each learning trial, input trials are exposed to the stimulus and their 
activities propagated up through subsequent layers by repeated use of equations 

1.1 and 1.2 until the output layer is reached. 
Given the outputs, the error gradient dlN) for each output unit is: 

Error gradients for units in earlier layers are found by propagating errors down 
the network, layer by layer : 

The weight gradient Awl?) in equation 1.6 depends on the two factors in square 
brackets: (i) the activity along the output line for the weight and (ii) the unit's 

error gradient. The weight change is based on a running average of the weight 
gradient with an exponentially decaying filter, and the rest of equation 1.6 
concerns this smoothing : 

Awjjn) (new) = aAw6jn) (old) + (1 - a)[djn+l)sjn)], (1.6) 

where a = 0.95. We averaged equation 1.6 over five input patterns before updating 
Aw6jn)(new). The smoothed Aj?) are then used to update the weights: 

where the learning rate s = 10.0 and P = 0.0001 is a weight decay term. The error 
signal was back-propagated only when the output error was greater than 0.03. 

I n  Rumelhart et al. (1986), e rather than (1 -a) is used in equation 1.6. Our 

parameter a smooths the weight gradient independently of e, and our averaging 
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procedure makes it unnecessary to  scale e by the number of presentations per 

weight update. Finally, in our notation the subscripts i and j are reversed 
compared with Rumelhart et al. (1986). 

The illumination and reflectance model is illustrated geometrically in figure 10. 

The value of 8 indicates the angle between the surface-normal vector and the 

predominant illumination. The light intensity reflected from a surface is indicated 
by the length of the vector extending from the origin to the circle. 

FIGURE 10. Geometrical summary of illumination and reflectance model under three illumination 
conditions. of which the second was used in the shape-from-shading model. The angle 
between the surface normal and the predominant illumination direction is represented by 
19, and the length of the vector from the origin to  the circle indicates the light intensity 
reflected from the surface. (a) completely diffuse illumination : (b)  partly diffuse illumination ; 
(c) completely directed illumination. 

For completely diffuse illumination, the surface is uniformly lit from all 
directions and there is no shading. This is represented in figure 10a by a circle 

centred on the origin, in which the reflection vector has constant length indepen- 
dent of orientation. Going the other extreme, completely directed illumination 
(figure 10c) is represented by a circle tangent to the ordinate. Here the length of 
the reflection vector is cos 8,  which is Lambertian reflection, provided -90 < 8 
< 90. Those limits correspond to the occurrence of sharp shadow edges, because the - 
reflectance vector is zero beyond them. Because we wanted illumination properties 
between these two extremes, we modelled it by simply shifting the circle to an 
intermediate position, as shown in figure 10 b. 

The equation for this is 

where a = 0.5- (Rmin/2.O), 

This is the equation for a circle in polar coordinates, where b is the radius of the 
circle whose centre has been shifted by a from the origin. R,,, is the minimum 
intensity of light reflected from the surface (the left edge of the circle), which occurs 
when the surface normal is 180" from the predominant illumination direction. The 
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parameters a and b both depend on Rmin. Intuitively, a determines the contribution 

of scattered illumination and b is a normalization factor setting maximum reflected 

intensity to 1.0 (i.e. it expands or contracts the circle so that  its right edge lies a t  
a unit distance from the origin). This normalization is not shown in figure 10, where 

all circles are of equal diameter. 
If R,,, = 0 then equation 2.1 reduces to Lambertian reflectance R = cos 8,  with 

light coming entirely from one direction. At the other extreme, if Rmin = 1.0 then 

equation 2.1 reduces to the constant R = 1.0. In  this ease the illumination is 
entirely isotropic, and there is no shading. By setting 0.0 < Rmin < 1.0, the degree 
of anisotropy in the illumination can be continuously varied. For the work 

presented here R,,, was always 0.05. 
This model is an empirical method for handling diffuse illumination, and is not 

based on a consideration of the physics of the situation. Scattered light is handled 
by the fiction that  there is non-zero reflection of the incident light when 8 lies 
beyond the range -90" to 90°, conditions for which the surface in reality is not 

directly exposed to the illumination. 
Moving to a different topic, the terms ' t i l t '  and 's lant '  have been used to 

described illumination direction. These have the following meanings. Let the image 

plane be defined by the x and y axis, the depth plane by the z axis, and the 
illumination direction by the vector (x, y, x)  from the surface to the light source. 
Tilt is the angle formed by the projection of the illumination vector within the x-y 

plane (arctan (y lx) )  and slant is the angle formed by the projection of the illumi- 
nation vector within the x-y plane (arecos(x)). These two angles will uniquely 

identify the direction of illumination. 

A P P E N D I X  3. R E S P O N S E  F U N C T I O N  O F  I N P U T  A N D  O U T P U T  U N I T S  

Input units 

The equation for the spatial receptive fields of the input units was 

R(x,  y) = (1 - [(x2 + y2)/u2]) exp - [(x2 + y2)/u2] (3.1) 

(illustrated in figure 3a ) ,  which is the Laplacian of a two-dimensional gaussian. 
Equation 3.1 defines an on-centre unit. An off-centre unit would be -R(x, y). The 

space constant u was 0.07". The diameter of the receptive-field centre was 
dctcrmincd by the zero-crossings of R(x, y) and was equal to 2u. Receptive-field 
ccntres in the hexagonal array of the input layer were separated by a distance u .  

lTnit responscs wcre normalized to 1.0 when presented with an optimal light 
stimulus. This was a light intensity whose spatial extent exactly matched the 
excitatory regions of the receptive fields, leaving the inhibitory regions in darkness. 

Also, responses of the input units wcre rectified so that  they could not assume 
ncgativc valucs. Positivt: cwnvolution values were assigned to the on-centre unit 
and the off-cvntrc unit a t  the same location was set to zero. If the convolution was 
negative, the on-centre unit was set to zero and the corresponding off-centre unit 
was sct to thc absolute value of the convolution. 
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Output units 

This section describes the ideal output values of the network, and expands on 

equation ( 1 )  of the main text 

where the output unit's response was a function of both the magnitude, M, and 
orientation, 0,  of the stimulus' principal curvatures. The first term, A(&!), was a 

log-normal function of curvature magnitude, normalized to have a peak value of 

whereLupeak, the peak of the curvature magnitude tuning curve, equalled + 8 deg-l 
or -8  deg-l, and g = 0.69 deg-l, set to  give a tuning half-width of one octave a t  

l / e  height. The second term, B(O) ,  was a gaussian function of curvature orien- 
tation : 

4 0 )  = EWL,1vs )  e ~ p - { ( O - p ) ~ / [ u / E ( ~ ~ ~ , ~ ~ ~ ) ] ~ ~ ,  (3.4) 

where orientation tuning bandwidth r~ = 30" and orientation tuning peaks p = 0". 
30°, 60°, 90". 120°, and 150". ,IfL and Xs refer to the absolute magnitudes of the 
larger and smaller of the two principal curvatures. 

The factor E ( X L , X , )  in equation (3.4) is the eccentricity function, which is a 
sigmoid function of the ratio of the two principal curvatures. 

E(1VL,MS) = 1.0/{1.0 + exp - [(kfL/lVs - m ) / n ] ) :  (3.5) 

where m = 1.3 and n = 0.14. I t  is called such because it is a function of the 
.roundedness' or eccentricity of the elliptical surface cross sections, and has 

nothing to do with position in the visual field. I t s  effect is to make orientation 
tunings of output units increasingly broad and shallow as the ratio of the two 

principal curvatures approaches unity. This was desired because when XL/,WS = 

1.0, curvature in every direction is identical and it becomes meaningless to talk 
about curvature orientation. Under this condition, we wanted all orientation 
mechanisms to respond equally. and also respond poorly. Including the 

eccentricity function was a device for creating the network, and was not in place 

during operation of the mature network. 
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