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Neural Network Modeling and Particle Swarm Optimization

(PSO) of Process Parameters in Pulsed Laser Micromachining

of Hardened AISI H13 Steel
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This article focuses on modeling and optimizing process parameters in pulsed laser micromachining. Use of continuous wave or pulsed lasers
to perform micromachining of 3-D geometrical features on difficult-to-cut metals is a feasible option due the advantages offered such as tool-free
and high precision material removal over conventional machining processes. Despite these advantages, pulsed laser micromachining is complex,
highly dependent upon material absorption reflectivity, and ablation characteristics. Selection of process operational parameters is highly critical
for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool
steel as work material. Several T-shaped deep features with straight and tapered walls have been machining as representative mold cavities on the
hardened tool steel. The relation between process parameters and quality characteristics has been modeled with artificial neural networks (ANN).
Predictions with ANNs have been compared with experimental work. Multiobjective particle swarm optimization (PSO) of process parameters for
minimum surface roughness and minimum volume error is carried out. This result shows that proposed models and swarm optimization approach
are suitable to identify optimum process settings.

Keywords Laser technology; Mold making; Neural network models; Surface roughness.

1. Introduction

Nowadays, lasers are increasingly used in numerous
industries to produce high precision products by means
of cutting, welding, marking, etc. Recently, the laser
machining (or milling) technology is increasing its presence
in production systems due to technological improvements
in laser machines. Laser machining of metals has become
a feasible and reliable technology for manufacturing and
industrial production. Today, laser machining is considered
as a good alternative to mechanical cutting due to its ability
and flexibility to process several quantities of difficult-to-
cut metal parts and geometrical features with minimum
amount of waste. The advantage of laser machining is that
the process does not need tools, special fixtures or jigs
for the workpiece because it is a noncontact operation [1].
Compared with other conventional mechanical processes,
laser machining (milling) removes much less material,
involves highly localized heat input to the workpiece,
minimizes distortion, and offers no tool wear. It does not
need replaceable or expensive tools and does not produce
mechanical forces that can damage workpieces [2].
Laser machining process is suitable for stainless steel and

other alloy steels that are used in die and mould inserts,
and achieves high accuracy with good productivity [3–5].
It produces geometrical features often desired in die and
mould inserts, and allows producing small and complex
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grooves and cavities with high precision. Laser machining
(milling) shapes a workpiece into a well-defined geometrical
feature that are typically very difficult to produce with
mechanical end milling such as straight/curved grooves,
angled channels with straight walls, and rectangular pockets
with sharp corners, especially in a length scale measured in
millimeters to micrometers.
Pulsed laser micromachining operates as a sequential

ablation process causing material vaporization, and, as a
result of this iteration, the geometrical feature is machined.
It offers, among others, the following advantages: deep
penetration, narrow heat affected zones, and reduced
tendency to spatter, incomplete fusion, and root bead
porosity [1]. Laser-workpiece material interaction is
influenced by many process parameters and considered
highly nonlinear. There are a number of operational
parameters which must be set when manufacturing process
is done. Considering the laser equipment those parameters
are: laser power, wavelength, efficiency, and emerging beam
diameter. On the delivery optics the parameters are focused
beam diameter, fiber diameter (in case of optical fiber
delivery), focal length of the focusing lens, focus depth, and
amount of power loss in the delivery optics and fiber. All
those parameters are specified by the desired penetration
depth so the operator cannot manipulate them. Furthermore,
the remaining parameters are concerning the operation such
as cutting and scanning speeds, focus position related to
the upper material surface, nozzle tip diameter, distance
between the tip and the material (stand-off distance),
assistant gas type, and assistant gas pressure [4–6]. In case
of pulsed lasers, pulse frequency, pulse duration, and peak
power should be also considered as additional parameters.
These operation parameters are variable and can be adjusted
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NEURAL NETWORK MODELING AND PSO 359

in areas to optimize the desired quality of the machined
features.
There have been many studies aimed at systematically

investigating the influence of process variables during
pulsed Nd:YAG laser machining [4–9]. Considering all
those operational parameters, it is highly difficult to model
the influence of them on resultant workpiece geometry
and surface quality using conventional methods. Usually,
the operator selects them based on experience or designs
appropriate experiments to determine somewhat reasonable
parameter combination for the desired results. But, this
trial-and-error approach is high costly in time and labor.
Especially when a prototyping batch is carried out and due
to the short lead time constraints, the results cannot be fully
optimized.
There are several research works which mainly deal with

how process parameters affect the quality of the resultant
surfaces or geometrical features using experimental
and statistical analysis tools [10–13]. Some researchers
implemented soft-computing tools such as neural networks
to represent the effects of process parameters on the
outcomes of the laser machining [14, 15]. Despite all
of these studies, it is still not well-understood how laser
milling performs machining complex 3-D features such as
grooves, channels, pockets, especially how to utilize laser
micromachining when the features become microfeatures.
The work presented in this article provides the

needed insight for improving the laser milling as a
micromanufacturing process. As a result, an artificial
neural network (ANN) model of the micromachining
process has developed in order to find more satisfactory
process parameters for a particular machining set-up. It
is highly useful to capture the influence of laser process
parameters such as pulse intensity, scanning speed and pulse
frequency on desired dimensions, and surface roughness and
develop a predictive system which identifies the optimum
set of process parameters. Considering all laser process
parameters, it is important to identify which ones have
more effect on resultant feature quality, and in what
degree changing these process parameters will affect the
feature quality. Therefore, this work will contribute to
the understanding the relations between process parameters
(pulse characteristics, speed, and laser intensity) and quality
of the geometrical features on the final products. The
work also deals with modelling the relations between
process parameters and dimensional quality and surface
roughness of the features produced by using ANN. The
ANN model also enables better process design, reduces
the use of trial-and-error methods, eliminates the need for
frequent experimental trials, and minimizes the need for
post-machining operations due to improved quality.

2. Experimental procedure and neural

network modeling

In this section, the experimental procedure and the results
will be discussed. In addition, the use of soft computing
methods such as neural network modeling and particle
swarm optimization (PSO) are explained.

2.1. Experimental Procedure

The main objective of this experimental work was
to investigate the influence of laser process parameters
on dimensional precision and surface quality in laser
micromachining of hardened AISI H13 tool steel which is a
popular material for die and mould inserts. The experiments
were performed using Deckel Maho Lasertec 40 machine,
Nd:YAG lamp pumped solid-state laser, 100W/0.134hp
average laser power, 1,064nm wave length with a laser
beam spot diameter 0.03mm. In the experiments, the
following process parameters were used: pulse intensity (PI)
50, 75, and 100%, scanning speed (SS) of 225, 375, and
525mm/s and pulse frequency (PF) of 60, 80, and 100Hz.
In laser micromachining the laser beam machines

directly to the material to be removed by creating a
high temperature which generates the ablation of the
material, and, consequently, the material was removed.
Figure 1 shows how laser beam move in rotation to
operate perpendicular. In that set-up the machine works
with four axes, which allows operating laser beam directly
perpendicular to surface to be machined. This operating
mode permits to obtain several geometrical angle groove
features; however, when the mirror is moving, the focal
distance is not always exactly the same so then energy used
to machine is not constant. The material was removed layer
by layer in the depth direction. The machine table where
the part is fixed moves in X direction meantime laser beam
is moving by rotation through the mirrors movement. This
combination of movements composes the volume which has
been removed.
AISI H13 hardened tool steel was used as a part test.

This material was selected because it is commonly used
when moulds inserts are needed. The part was machined
to obtain 3-D groove features as shown in Fig. 2. This
test part combines several geometrical and dimensional
characteristics and minimizes the volume to be removed
that helps experiments do not carry long time. Measurable
dimensions on test part are also indicated in Fig. 2. The
desired dimensions are angles A = 135 degrees, B =

135 degrees, C = 2mm, D = 1mm. Furthermore, the
surface roughness was measured as an indication of surface
quality. The dimensional measurements were performed
by 4× magnification lens attached to a ColorView™ high
definition camera supported by PerfectImage™ software.
The values were extracted and recorded throughout by using
the side view of test part. The measurement of surface
roughness parameter Ra on finish bottom surface, was
made by a stylus instrument, with a cut off of 0.8mm, in
accordance to ISO/DIS 4287/1E, on a Mitutoyo SV2000
Surftest equipment.

2.1.1. Experimental Design. A three factor-three level
factorial design was used to determine the effects of
pulse intensity, scanning speed, and pulse frequency on
resultant dimensional precision and surface roughness in
microlaser machining of H13 hardened tool steel. The
factors and factor levels are summarized in Table 1. These
factor levels results in a total of 27 unique factor level
combinations. The response variables are the work piece
surface roughness, Ra [�m], angular dimensions, A and B
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360 J. CIURANA ET AL.

Figure 1.—Illustration of the laser micromachining (milling) process.

Figure 2.—(a) Desired material removal volume with dimensions in mm;
(b) Geometry of the groove to be machined.

[degrees], linear width dimension, C [mm], linear depth
dimension D [mm] as indicated in Fig. 2, and process
time [min]. The experimental results obtained are given in
Table 2. In addition with all these values given in Table 2,
the actual volume of material removed is also calculated.
Considering that target volume should be 27mm3, volume
error can be obtained comparing actual volume removed
with the target volume, as shown in Eq. (1). At last, material
removal rate (MRR) parameter can be obtained dividing by

Table 1.—Factor and factor levels.

Factors Factor levels

Pulse intensity (PI) 50, 75, 100 [%]
Scanning speed (SS) 225, 375, 525 [mm/s]
Pulse frequency (PF) 60, 80, 100 [Hz]

process time according Eq. (2).

�vol = Actual Volume Removed− Target Volume (1)

MRR = Actual Volume Removed/Machining Time� (2)

2.2. Neural Network Modeling

Neural networks are nonlinear mapping systems
consisting of neurons and weighted connection links,
which consist of user-defined inputs and produce an
output that reflects the information stored in connections
during training. In this study, a multilayer neural
network consisting of three layers, i.e., input, hidden,
and output layer, was considered. We have tested several
backpropagation training algorithms, including gradient
descent with momentum and adaptive learning method,
resilient backpropagation algorithm, and the Levenberg–
Marquardt algorithm. In addition, the Levenberg–
Marquardt with Bayesian regularization is used to improve
the generalization capability of the neural networks [16].
In all of those neural network models, the nonlinear

tanh activation functions are used in the hidden layer,
and input data are normalized in the range of �−1� 1�.
Linear activation functions are used in the output layer.
The weights and biases of the network are initialized to
small random values to avoid immediate saturation in the
activation functions. The data set is divided into two sets
as training and test sets. Neural networks are trained by
using training data set, and their generalization capacity is
examined by using test sets. The training data were never
used in test data. Matlab’s neural network toolbox is used

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
z
e
l
,
 
T
.
]
 
A
t
:
 
2
0
:
3
3
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



NEURAL NETWORK MODELING AND PSO 361

Table 2.—Experimental results.

Surface
Pulse Scanning Pulse Angle Angle Width Depth finish Machining Volume Actual

intensity speed frequency A B C D Ra time error MRR
Trial [%] [mm/s] [Hz] [degrees] [degrees] [mm] [mm] [�m] [min] [mm3] [mm3/s]

1 50 225 60 147.270 149.980 2.130 0.805 2.323 118 2.456 0.208
2 50 225 80 164.335 165.830 2.140 0.385 3.480 118 12.767 0.121
3 50 225 100 170.238 170.238 2.140 0.170 0.844 118 19.670 0.062
4 50 375 60 161.885 162.060 2.160 0.375 1.930 75 13.823 0.176
5 50 375 80 171.410 171.410 2.145 0.140 1.848 75 20.616 0.085
6 50 375 100 154.385 156.345 2.165 0.315 0.357 75 16.752 0.137
7 50 525 60 167.770 166.430 2.160 0.210 1.630 57 18.799 0.144
8 50 525 80 174.136 174.136 2.150 0.095 0.831 57 21.774 0.092
9 50 525 100 177.207 177.207 2.155 0.045 0.323 57 23.069 0.069
10 75 225 60 125.045 125.230 2.125 1.690 2.142 118 −19�663 0.395
11 75 225 80 128.575 128.990 2.175 1.615 2.358 118 −19�045 0.390
12 75 225 100 135.165 136.150 2.165 1.370 3.523 118 −12�799 0.337
13 75 375 60 134.790 134.860 2.130 1.390 1.762 75 −12�673 0.529
14 75 375 80 134.845 136.050 2.195 1.335 1.887 75 −12�233 0.523
15 75 375 100 150.560 148.370 2.130 0.610 2.095 75 8.302 0.249
16 75 525 60 143.230 140.555 2.005 0.950 1.057 57 0.504 0.465
17 75 525 80 144.685 143.435 2.090 0.885 1.013 57 1.141 0.454
18 75 525 100 151.595 154.995 2.070 0.405 2.618 57 14.514 0.219
19 100 225 60 118.815 120.305 2.120 1.960 2.072 118 −26�198 0.451
20 100 225 80 120.640 120.985 2.135 1.840 2.282 118 −23�433 0.427
21 100 225 100 123.420 124.945 2.140 1.690 4.375 118 −19�843 0.397
22 100 375 60 124.550 125.145 2.140 1.685 1.485 75 −19�790 0.624
23 100 375 80 123.860 127.235 2.275 1.685 1.674 75 −22�617 0.662
24 100 375 100 126.665 128.725 2.190 1.585 1.776 75 −18�330 0.604
25 100 525 60 129.760 129.045 2.100 1.480 2.615 57 −13�944 0.718
26 100 525 80 131.010 129.785 2.075 1.520 1.575 57 −14�729 0.732
27 100 525 100 128.440 128.950 2.060 1.465 1.839 57 −12�735 0.697

to train neural networks. Simulations with test data repeated
many times with different weight and bias initializations.

2.2.1. Prediction of Surface Roughness, Dimensional
Accuracy, and MRR. Surface roughness (Ra), geometrical
and dimensional features (A�B�C�D), error in volume
removed (�vol�, and MRR are predicted with a trained
feed-forward neural network as shown in Fig. 3. Pulse
intensity (PI), cutting speed (SS), pulse frequency (PF), and
time are used as inputs to neural network. These neural
networks are trained with 18 data sets (laser micromachining
conditions) without including 9 data sets as given in Table 2.
They are tested on 9 data sets which are not used in
training. Training algorithms and network architectures

Figure 3.—Architecture of multilayer feed-forward neural network used for
predictions.

are selected for minimum root-mean-squared (rms) error
for best predictions using a training procedure. Selection
process for the ANN architecture includes identifying
first most optimum training algorithm and most optimum
number of hidden layer neurons for a minimized rms error.
Hence, the number of neurons in the hidden layer is decided
by choosing the network structure that minimizes the rms
error with trial-and-error. The results of these tests are
summarized in Table 3.
The resilient backpropagation algorithm is found most

optimum for training neural networks and network
structures of 4-5-1, 4-4-1, and 4-4-1 are found sufficient for
neural networks designed for predicting surface roughness,
Ra, Angle A, and Angle B, respectively. On the other hand,
the Levenberg–Marquardt algorithm has performed better

Table 3.—Selection of ANN architecture and backpropagation training
algorithms.

rms error
Gradient
descent

w/momentum rms error rms error rms error
Network & adaptive Resilient Levenberg– Bayesian

Output structure learning back-propagation Marquart regularization

Ra 4-5-1 12.4915 2.1175 7.2351 27.1388
A 4-4-1 0.6296 0.4354 1.5421 1.9446
B 4-4-1 0.9448 0.4536 0.7029 1.4334
C 4-4-1 0.4512 0.4103 0.2735 2.3599
D 4-5-1 1.9654 0.6894 0.1279 8.1878
�vol 4-5-1 85.3276 27.3398 0.1931 54.0504
MRR 4-5-1 1.9044 1.2828 0.3020 6.3671
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for training neural networks. Network structures of 4-4-1
for predicting Width C and 4-5-1 for predicting Depth D,
volume error, and actual MRR are found to be sufficient.
This approach decreased the size of each neural network
thus enabled faster convergence and better predictions of
output values as explained in [17, 18]. Predictions using
these neural networks are given in Section 3.1.

2.3. PSO

In this study, PSO as an evolutionary computation
(EC) method inspired by flocking birds is utilized.
This population-based stochastic optimization technique
developed [19] and applied to many different systems
including machining [20].
PSO is initialized with a population of random solutions,

and this initial population evolves over generations to
find optima. However, in PSO, each particle in population
has a velocity, which enables them to fly through the
problem space instead of dying and mutations. Therefore,
each particle is represented by a position and a velocity.
Modification of the position of a particle is performed
by using its previous position information and its current
velocity. Each particle knows its best position (personal
best) so far and the best position achieved in the group
(group best) among all personal bests. These principles can
be formulated as:

vk+1
i = wvki + c1rand1�pbesti − xk

i �

+ c2rand2�gbesti − xk
i �� (3)

where

vki : velocity of agent i at iteration k
xk
i : current position of agent i at iteration k

pbesti: personal best of agent i
gbest: best position in the neighborhood
rand: random number between 0 and 1

w: weighting function
cj : learning rate j = 1� 2

xk+1
i = xk

i + vk+1
i � (4)

The first term on the right-hand side of Eq. (3) is the
previous velocity of the particle. Weighting function w is set
at a large value at the beginning of the search and decreased
to a smaller value over the iterations to confine the search
in a smaller region in later iterations, or it could be selected
randomly. The second and third terms are used to change the
velocity of the particle according to pbest and gbest values.
The random numbers used in the velocity update step give
the PSO a stochastic behavior. The iterative approach of
PSO can be described as follows:

Step 1: First, a population size is specified. Initial
positions and velocities of agents are generated randomly.
Then, objective function values for each agent (or particle)
are calculated. For the first iteration, pbest is set as the
current position of each particle. The pbest with best
objective function value among the agents is set as gbest
and this value is stored.

Step 2: In the next iteration, the new position of the
agents (particles) in the solution space is determined by
using Eqs. (3) and (4). Therefore, the particles begin to move
towards the particle with best objective function value,
gbest.

Step 3: The objective function value is calculated for
new positions of each particle. If an agent achieves a better
position, the pbest value is replaced by the current value.
As in Step 1, gbest value is selected among pbest values. If
the new gbest value is better than the previous gbest value,
the gbest value is replaced by the current gbest value and
stored.

Step 4: Steps 1–3 are repeated until the iteration number
reaches a predetermined iteration number.

It should be noted that recently Chakraborti et al. [21, 22]
have pointed out that PSO is actually a real-coded genetic
algorithm, and not a new paradigm. They have also shown
how the basic equations in PSO may be dimensionally
inaccurate and suggested some better form to be used in the
future.
For a single objective problem, the result of the

optimization problem will be the position vector of gbest
at final iteration. The above given PSO procedure is not
suitable for solving multiobjective optimization problems,
since there is no absolute global minimum (or maximum).
The velocity update step in the PSO is stochastic due

to the random numbers generated, which may cause an
uncontrolled increase in velocity and, therefore, instability
in the search algorithm. In order to prevent this, velocities
are limited to the dynamic range of the particle on each
dimension. The formulation of the PSO given with Eqs. (3)
and (4) corresponds to the global version of the PSO. In
addition, a local version of the PSO algorithm also exists.
In the local version, particles have information only of their
own, and their nearest neighbour best (lbest). gbest is then
replaced by lbest in the algorithm.
The algorithm needs more modifications to locate the

Pareto front in multiobjective optimization problems. Hu
and Eberhart [23] proposed Dynamic neighborhood-particle
swarm optimization (DN-PSO) for this purpose. In this
approach, instead of defining one global best for the whole
population, neighborhoods are defined for each particle,
and local gbests are found within these neighborhoods. If
a two-dimensional objective function space in a min–min
problem is considered, the Pareto front is the boundary
of the objective value region, which is the lower left side
of the objective function space for min–min problems.
The objective of the proposed algorithm is to drop those
solutions onto the boundary line indicated by a solid line.
For this purpose, the first objective function is fixed to
define neighborhoods, and the second objective function is
used in optimization. According to the DN-PSO algorithm
(1) the distances between the current particle and other
particles are calculated in terms of the first objective
function, (2) based on these distances, the nearest m
(neighbourhood size) particles are found, (3) the local
best particle among neighbours is selected in terms of the
second objective function. In order to handle constraints,
a simple modification to the PSO algorithm is sufficient.
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The additional rules that should be implemented in DN-
PSO algorithm are: (1) particles should be initiated within
feasible region; (2) when updating memories, only the
particles within feasible region should be kept in memory.
DN-PSO optimization algorithm combined with constraints
was converted into a code in Matlab software. This
procedure is explained in detail in the previous work [20].

3. Results and discussion

The geometrical features and surfaces are inspected
using the imaging system described in Section 2.1.
The dimensional and geometrical quality of the grooves
produced with the laser milling process exhibit large
variations. Table 4 shows some of the grooves produced
by using different laser input parameters. These pictures
clearly indicate how irregular the laser milling process
becomes when grooves with microfeatures are desired to be
manufactured. The feedback control which operates on the
machine was seen insufficient in order to keep the target
width or depth. The effects of input parameters on angles,
width, depth, and surface roughness are given with 3-D
plots.
Effect of scanning speed and pulse frequency parameters

on the surface roughness Ra is presented in Fig. 4,
which shows that best surface roughness was obtained at

Table 4.—Test part results pictures.

Figure 4.—Effect of pulse frequency and scanning speed on surface
roughness.

the highest pulse frequency and highest scanning speed
combination. The influence of scanning speed on surface
roughness in laser micromachining process can be explained
as such that laser beam may not affect the surface roughness
as much when movement is fast but when movement is slow
then surfaces roughness does not improve. However, higher
level of pulse intensity improves the surface roughness.
Figure 5 shows the effect of pulse frequency and scanning
speed on angle geometrical features which is robust and
consistent. When scanning speed and pulse intensity is low,
the resulting feature angle becomes lower than target feature
angle. It is more important to achieve a target feature angle
than to obtain trends with the changes in input parameters.
For example, it was not possible to achieve target feature
angles for A and B when pulse intensity was set to 100%
at all. When pulse intensity decreases then there are some
cases in which the target feature angle can be obtained.
Medium values of scanning speed and pulse frequency are

Figure 5.—Effect of pulse frequency and scanning speed on angle geometrical
feature.
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found to be more appropriate to ensure target feature angles
for A and B. When most extreme values of scanning speed
and pulse frequency are used, the resultant values of feature
angles are the worst.
The effects of scanning speed and pulse frequency

on the width feature is different when compared to the
feature angles. The target width of 2mm is achieved at
the combination of lowest pulse frequency and highest
scanning speed at the 75% pulse intensity (see Fig. 6).
All other combinations gave poor results for achieving the
width of the groove. Depth feature effects arising from
scanning speed and pulse frequency are as expected. Pulse
intensity plays an important role in achieving the target
depth value. When pulse intensity is lower, it is difficult
to obtain the target depth as shown in images in Table 4.
When pulse intensity is highest, the groove depth is always
larger than the target value of 1mm. Medium pulse intensity
(75%) gives most satisfactory results in groove depth.
Combination of higher scanning speed and lower pulse
frequency values provide depth values close to the target.
Effect of scanning speed and pulse frequency parameters
on the volume error �vol is presented in Fig. 7, which shows
that best target volume approximation was obtained at the
highest scanning speed and lower pulse frequency values
combination. The influence of pulse frequency on volume
error in laser micromachining process can be explained as
such that laser beam pulses may not affect the volume error
as much when those frequency are around lower values.
But volume error is affected when high pulse frequency
values are considered. However, with scanning speed effects
consideration volume error increases when scanning speed
gets lower values. Effect of scanning speed on volume
error is much significant than pulse frequency. Figure 8
shows the effect of pulse frequency and scanning speed on
MRR which is robust and consistent. All combinations of
pulse frequency and scanning speed are considered good in
order to carry out laser micromachining process but the best
option considering productivity rate will be those in which
MRR is higher. High MRR is obtained when scanning speed

Figure 6.—Effect of pulse frequency and scanning speed on width geometrical
feature.

Figure 7.—Effect of pulse frequency and scanning speed on error volume.

is high and pulse frequency is low. Trends in the figure
show how moving pulse frequency from high to low and
scanning speed from low to high represents good selections.
These figures (Figs. 4–8) illustrate the trends in effects

of process parameters on the process outcome; however,
these offer no prediction capability, and it is hard to directly
utilize the in process planning without using any intelligent
computational tool. Therefore, ANNs are employed to
capture these complex relations between process inputs
and outputs. Selection of optimal process parameters are
achieved with PSO by utilizing these neural network
models.

3.1. Prediction of Geometrical and Dimensional Features
and Surface Roughness Using ANNs

Although the data set presented in Table 2 is not
large, it is assumed adequate to train ANNs for modeling
the relationships among the laser machining parameters
and the geometrical and dimensional features of the

Figure 8.—Effect of pulse frequency and scanning speed on MRR.
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Figure 9.—Comparison of surface roughness predictions.

grooves. Therefore, the experimental data is also utilized
in training the ANN as described in Section 2.2. Prediction
simulations are arranged with respect to scanning speed
and pulse frequency by using trained neural network
models. Measured and predicted surface roughness, values
of geometrical and dimensional features using the ANN at
pulse intensity of 75% and pulse frequency of 60, 80, and
100Hz are given in Figs. 9–15. These figures indicate the
goodness of predictions when neural networks are utilized
for selection most optimum laser machining parameters.

3.2. PSO of Laser Micromilling Process Parameters

This work also presents the effects of process parameters
on responses such as surface roughness, dimensional and
geometrical features, volume error, and MRR. Optimal
selection of process parameters of laser micromilling can
be formulated and solved as an optimization problem.

Figure 10.—Comparison of predictions for angular feature A.

Figure 11.—Comparison of predictions for angular feature B.

According to the experiments carried out in this work, laser
micromilling operation requires simultaneous consideration
of multiple objectives, including achieving minimum
surface roughness, minimum error in volume of material
removed, and maximum MRR. Usually, process parameters
set for one objective function are not suitable for another
objective function. This presents a challenge for the
optimization problem, since selection of the parameter
settings for given multiple choices which may be in
conflict to each other. In the laser micromilling process, the
optimization problem can be defined as:

min 	f1�x�� f2�x�� f3�x� � � � 

s.t. gi�x� ≤ bi for i = 1� � � � � m

gi�x� = bi for i = m+ 1� � � � � m+ k
x ∈ X�

(5)

Figure 12.—Comparison of width predictions.
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Figure 13.—Comparison of depth predictions.

where

f1�x� is surface roughness function�

f2�x� is volume error function�

f3�x� is MRR function�

� � �

gi�x� = ith constraint�

bi = ith constraint limit�

x is decision variable vector �x1� x2� � � � � xn��

x1 is pulse intensity�

x2 is scanning speed�

x3 is pulse frequency�

Figure 14.—Comparison of volume error predictions.

Figure 15.—Comparison of MRR predictions.

X is solution space of all possible laser micromachining
parameter values, not considering gi�x� constraints.
In this formulation, the objective is to simultaneously

optimize, minimize, or maximize each objective function.
The constraints are related to limits of scanning speed
and pulse frequency. In solving this optimization problem,
there are two general approaches. The first one is based
on combining the multiple objectives into single objectives
through the use of weights or utility function. The second
one is based on Pareto-optimal set of nondominated decision
variables settings. The combined objectives approach yields
a unique solution that can readily implement, but largely
depends on numerical weights that are often difficult to
select, and often somewhat selected arbitrarily, in practice.
The selection of a Pareto-optimal set avoids this problem,

Figure 16.—Pareto frontier of optimal laser micromachining parameters.
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but may provide numerous prospective solutions that must
be considered.
In the case of pulsed laser micromachining process, the

following optimization problem can be defined for laser
micromachining process with multiple objectives. Decision
variables scanning speed SS, and pulse frequency PF,
pulse intensity PI are constrained within the ranges of the
experiments.

f1 = minimize (surface roughness)�

f2 = minimize (volume error)�

Subject to:

225mm/min ≤ Scan speed ≤ 575mm/min

60Hz ≤ Pulse frequency ≤ 100Hz

50% ≤ Pulse intensity ≤ 100%�

The process models are integrated with the PSO to obtain
a family of process parameters that satisfies both minimizing
surface roughness and minimizing volume error during the
selection of laser micromachining parameters. Therefore,
Pareto-optimal fronts are computed for representing
machining parameters yielding to a certain merit of interest
such as MRR, surface roughness, as shown in Fig. 16,
that can be selected by the user according to production
requirements.

4. Conclusions

In this study, surface finishing and geometrical and
dimensional features of the grooves/cavities have been
investigated in laser micromachining (laser milling) process
of hardened AISI H13 tool steel using pulsed Nd:YAG
laser. Multiple linear regression models and neural network
models are developed for predicting surface roughness,
and geometrical and dimensional features. Predictions of
geometrical features and surface roughness with neural
network are carried out and compared with experimental
data. The results obtained show how neural network models
are suitable to predict geometrical features and surface
roughness patterns, and can be utilized in process planning
for micromachining with Nd:YAG laser technology. In
addition an evolutionary computational approach, PSO is
applied to the optimizing laser micromachining parameters.
The results indicate that the proposed swarm intelligent
approach for solving the multiobjective optimization
problem with complex objectives is efficient, and can assist
the user in process design. Some specific conclusions can
be drawn as following:

1. Results obtained in experiments demonstrate large
variations in dimensional quality and a need to
control laser parameters for precision manufacturing of
microgrooves.

2. In the meantime, prediction of geometrical and
dimensional quality can be carried out by using ANN
which offers good opportunities to select appropriate
machining conditions to achieve desired dimensions,
angles, and roughness features.

3. Width dimensional feature is difficult to achieve. This
feature is in perpendicular direction to the laser beam
operation, so as expected the controlling this target is
more difficult to carry on.

4. It should be noted that the depth dimensional feature
is directly obtained from the same direction of laser
beam applied. Therefore, it is highly influenced by the
laser pulse intensity, and it is best to use moderate pulse
intensity values.

5. Pareto frontier provides a nondominated set of solutions
for optimum laser micromachining process parameters.
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