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Laser microwelding has been an essential tool with a reputation of rapidity and precision for joining miniaturized metal parts. In
industrial applications, an accurate prediction of weld bead geometry is required in automation systems to enhance productivity of
laser microwelding.�e present work was conducted to establish an intelligent algorithm to build a simpli�ed relationship between
process parameters and weld bead geometry that can be easily used to predict the weld bead geometry with a wide range of process
parameters through an arti�cial neural network (ANN) in laser microwelding of thin steel sheet. �e backpropagation with the
Levenberg-Marquardt training algorithm was used to train the neural network model. �e accuracy of neural network model
has been tested by comparing the simulated data with actual data from the laser microwelding experiments. �e predictions of
the neural network model showed excellent agreement with the experimental results, indicating that the neural network model
is a viable means for predicting weld bead geometry. Furthermore, a comparison was made between the neural network and
mathematical model. It was found that the developed neural network model has better prediction capability compared to the
regression analysis model.

1. Introduction

Laser microwelding has a great potential in the joining
production development. �is microjoining technology is
expected to realize the demand for high quality and faster
joining method of thin metal sheets. �e advantages of laser
microwelding such as precision control of heat input, deep
weld penetration, and minimal distortion oer higher weld-
ing speed compared to the conventional welding method.
�e low cost of production has made laser microwelding
essential in various industries, including electronics, medical
instruments and automotive industry. In the joining process
of microproducts, the technological advancement in the
�eld of monitoring and control is required. �erefore, the
concentration must be given to the control of the factors
which aect the laser microwelding process.

Primarily, a proper model needs to be constructed and
tested before implementing for online control. �e

requirement to predict weld bead geometry as a function

of welding performance in the laser microwelding has
become more important to provide a basis for a computer-
based control system in the future. �e process parameters
determine the weld bead geometry, due to the combination
of these parameters control the heat input [1]. �e eect
of process parameters on weld bead geometry can be
studied with the help of developing mathematical models.
Many studies have been carried out to develop various
mathematical models for prediction of weld bead geometry
[2–4]. However, it is not easy to apply this conventional
technique to the practical situations because the relationship
between welding process and the weld bead geometry is a
very complex relationship.

Recently, neural networks have been widely used to
tackle problem which cannot be satisfactorily handled by
conventional analytical approaches.�e advantages of neural
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Table 1: Process parameters for laser microwelding.

Parameter Value

Laser power, W 10, 20, 30, 40, 50, 60, 70

Scanning velocity, m/s 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Spot diameter, �m 17.5, 35.0

network include extreme computation, powerful memory
and rapid learning. Furthermore, it can predict an output
parameter with accuracy even if the input parameter inter-
actions are not completely understood [5, 6]. It has been
reported that the implementation of neural network could
minimize the time and cost consumption during machining
process [7]. �ese capabilities make neural network a useful
prediction tool that can be implemented successfully in the
research and development of laser welding [8], laser forming
[9], laser cutting [10], and laser surface hardening [11].

In the present work, an attempt has beenmade to develop
a neural network model in order to predict accurately the
weld bead geometry in the laser microwelding process by
changing laser power, scanning velocity, and spot diameter.
�e experimental work was carried out on the thin stainless
steel sheet using a single-mode CW �ber laser with high-
speed scanning system for data collection to train and validate
the eectiveness of the neural networkmodel.�e prediction
capability of neural network model is also compared with the
performance of statistical regression model, which has been
developed from the same experimental datasets used for the
neural network model.

2. Experimental Work

A schematic diagram of experimental setup is shown in
Figure 1. In this study, the wavelength of 1090 nm single-
mode CW Yb �ber laser was used. �e laser was delivered
by optical �ber and focused by a telecentric type �� lens of
100mm in focal length. Instead of the conventional moving
stage, a Galvano scanner was used in order to achieve
the high-speed laser scanning. �e expander was installed
between the isolator and the bending mirror to change the
diameter of laser spot. �e main process parameters used
in the study are given in Table 1. In addition, the welding
experiments were carried out in shielding gas of nitrogen
with a constant pressure 100 kPa. �e austenitic stainless
steel SUS304 was used as a specimen. �e sizes of each
specimen were 30mm in length, 15mm in width, and 50 �m
in thickness. A�er the laser welding, the welded specimens
were cut perpendicular to the scanning direction for the
measurement of weld bead geometry by optical microscope.
Figure 2 shows the weld bead pro�le of laser welded bead-on-
plate joint.

3. Artificial Neural Network

Arti�cial neural network (ANN) is widely established in
the arti�cial intelligence (AI) research where a nonlinear
mapping between input and output parameters is required

for a function approximation [12]. Various types of ANN, like
multilayer perceptron (MLP), radial basis function (RBF),
and self-organizing map (SOM), are used for modeling.
�e MLP with backpropagation algorithm is widely used
because of its simplicity and great forecast ability in the weld
modeling [13]. �e �ow chart of modeling procedure with
backpropagation neural network is shown in Figure 3. In this
study, theANNmodeling is carried out in twophases: the �rst
phase is to train the network model, while the second phase
is to validate the network model with data, which were not
used for training.

3.1. Neural Network Architecture. Choosing the optimum
network architecture is one of the challenging steps in
neural networkmodeling. Figure 4 shows the neural network
architecture employed in this study. �e backpropagation
neural network (BPNN) has three layers: input layer, hidden
layer, and output layer. As there are three inputs and two
outputs, the numbers of neurons in the input and output layer
had to be set to 3 and 2, respectively. In themany applications,
the backpropagation architecture with one hidden layer is
enough [14]. �erefore, only one hidden layer has been used
in this study. In order to �nd an optimal architecture, dierent
numbers of neurons in the hidden layer were considered and
prediction error for each network was calculated. �e BPNN
is based on the error correction learning rule. �erefore, the
operation of the neural network model can be divided into
two main steps: forward computing and backward learning
[9].

3.1.1. Forward Computing. In the forward computing, the
input patterns applied to the neurons of the �rst layer are
just a stimulus to the network. On the other hand, there is
no computation in the input layer. As illustrated in Figure 5,
each neuron in the hidden layer determines a net input value
based on all its input connections.�ese nodes are connected
to each other so that the value of one node will aect the
value of another. �e relative in�uence that one node has on
another one is speci�ed by the “weight” that is assigned to
each connection. �e net input is calculated by summing the
input values multiplied by their corresponding weight. Once
the net input is calculated, it is converted to an activation
value. �e weight on the connection from the �th neuron in
the forward layer to the �th neuron is indicated as ���. �e
output value �� of neuron � is computed by the following
equation:

net� =
�
∑
�=0
���
� + 
0,

�� = �act (net�) ,

(1)

where net� is the linear combination of each of the 
� values
multiplied by ���, 
0 is a constant known as the bias, 
is the number of inputs to the �th neuron, and �act is the
activation of neuron �. In this study, the hidden layerwith log-
sigmoid (S-shaped curves) activation function is used for the
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Figure 3: Flow chart of ANN modeling procedure.

prediction of weld bead geometry.�e log-sigmoid activation
function is given in

�� =
1

1 + exp (−net�)
. (2)

3.1.2. Backward Learning. In backward learning, the gener-
ated output of the network is compared to the desired output,
and an error is computed for each output neuron. �e error
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Figure 4: Neural network architecture for predicting weld bead
geometry.
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Figure 5: Architecture of an individual neuron for backpropagation
neural network.

vector � between desired values and the output value of the
network is de�ned as

� = ∑
�
�� = ∑

�

1
2(�� − ��)

2, (3)

where �� is the output value of the �th output neuron and
�� is the desired value of the �th output neuron. Errors are
then transmitted backward from the output layer to each
neuron in the forward layer. �e process is repeated layer
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by layer. Connection weights are updated by each neuron to
cause the network to converge.�e network was trained with
the Levenberg-Marquardt training algorithm. �is training
algorithm was chosen due to its high accuracy in similar
function approximation. �e adjustments of weights and
biases are done according to transfer function

Δ��� = −(��� + ��)
−1���, (4)

where � is Jacobian matrix of derivation of each error, � is a
scalar and � is error function.

3.2. Training of Neural NetworkModel. �edevelopment and
the training of the network were carried out using MATLAB
Neural Network Toolbox [15]. �e input and output of the
model are illustrated in Figure 4. �ere are three neurons
in the input layer of network, which are the laser power,
scanning velocity, and spot diameter. �e output layer has
two neurons, which gives the weld bead depth andwidth.�e
input and output parameters datasets could not be trained by
neural network in their original form due to the wide range
of values among them. In order to become feasible neurons,
all the values in the input neurons had to be preprocessed
by normalizing and transformed within the range of −1 and
+1. �e normalized value (��) for each raw input and output
dataset (��) was calculated as

�� =
2

�max − �min

(�� − �min) − 1, (5)

where �max and �min are the maximum and minimum values
of the raw data, respectively.

�e relationships of 70 combinations between weld bead
geometry and the process parameters obtained from the
experiments were used as the training and testing data. �ey
are randomly divided into two datasets, of which 63 were
used for training and 7 for testing or validation. �e neural
network con�guration for training is created and formulated
in MATLAB with speci�cation given in Table 2. In order to
identify the optimum network architecture, it is essential
to determine the number of neurons in the hidden layer.
�erefore, the number of neurons was chosen from 4 to
20 neurons in a hidden layer. �e accuracy of the network
was evaluated by the mean squared error (MSE) and the

coe�cient of multiple determination, �2. As can be seen in
Table 3, theMSE in the training process is not directly related
to increasing the number of neurons. It can be noted that
there is a small number of neurons in the hidden layer, and the
training performance of network is not satisfactory. However,
the increase in the number of neurons beyond 14 has no
signi�cant improvement on the performance of the networks.
From Table 3, it is clear that the network with 14 neurons
in hidden layer shows the minimum MSE and the highest

�2 during training process. Figure 6 shows the performance
of 3-14-2 network at the end of training. As the number of
epochs was increased, the error decreased and converged to a
value of about 0.00109 a�er 1000 epochs.�e calculated weld
bead geometry in the training of 3-14-2 network is con�rmed
by the correlation with the experimental data as shown in

Table 2:Neural network con�guration for the training inMATLAB.

Parameter Speci�cation

No. of neurons in input layer 3

No. of neurons in hidden layer 4–20 (in steps of 2)

No. of neurons in output layer 2

Training function Levenberg-Marquardt (trainlm)

Performance function Mean squared error (MSE)

Activation function logsig

Maximum epoch (training time) 1000

Performance goal 1.0 × 10−3
Learning rate 0.05

Normalized range −1 to 1

Table 3: Training performance of dierent network architecture.

Network architecture MSE �2 RMS error of training

Bead depth Bead width

3-4-2 0.03152 0.9907 2.584 6.891

3-6-2 0.01451 0.9908 2.577 4.070

3-8-2 0.01143 0.9939 2.094 3.783

3-10-2 0.00859 0.9931 2.228 2.881

3-12-2 0.00792 0.9940 2.077 2.832

3-14-2 0.00109 0.9991 0.822 0.989

3-16-2 0.00227 0.9979 1.239 1.366

3-18-2 0.00393 0.9971 1.438 2.027

3-20-2 0.00571 0.9958 1.749 2.420

Figure 7. It can be seen that there is high correlation between
the calculated and measured values of weld bead geometry.

4. Development of Mathematical Models

�e mathematical models for relationship between the pro-
cess parameters and weld bead geometry also have been
developed. In general, the response function can be repre-
sented as follows:

� = � (�, V, �) , (6)

where � is the weld bead geometry, � is the laser power, V
is the scanning velocity, and � is spot diameter. �e second-
order polynomial equation used to represent the response
surface for three factors could be expressed as follows:

� = �0 + �1� + �2V + �3� + �12�V + �13��

+ �23V� + �11�2 + �22V2 + �33�2,
(7)

where �0 is the constant of regression equation, the coe�-
cients �1, �2, and �3 are linear terms, the coe�cients �12, �13,
and �23 are interaction terms, and the coe�cients �11, �22, and
�33 are the quadratic terms.

�e same datasets, as used in neural network model,
were used to develop the mathematical models. �e values
of the coe�cients in the polynomial equation were calculated
using the statistical analysis so�ware ofMINITAB. In order to
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Table 4: Analysis of variance for testing adequacy of mathematical models.

Bead geometry
Sum of the squares Degrees of freedom �-ratio �

Regression Residual Regression Residual

Bead depth, ℎ 20134.2 2683.5 4 58 108.79 0.000

Bead width, � 8742.7 4748.3 5 57 20.99 0.000

Tabulated values of �: �0.05(4.58) = 2.531; �0.05(5.57) = 2.534.
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Figure 6: Performance of 3-14-2 architecture during training of
neural network.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Bead width

Bead depth

Measured weld bead geometry T

C
al

cu
la

te
d

 w
el

d
 b

ea
d

 g
eo

m
et

ry
A

A = T

Figure 7: Comparison between calculated andmeasured weld bead
geometry during training of 3-14-2 network.

guarantee the reliability of the model coe�cients were deter-
mined using a backward elimination procedure in which
insigni�cant terms were eliminated based on signi�cance
level of ≤0.05. A�er evaluation of the coe�cients, the �nal

forms ofmathematicalmodels for weld bead depth andwidth
are developed and given in (8) and (9), respectively,

ℎ = 9.763 + 1.725� − 0.724� − 0.288�V − 0.009�2, (8)

� = 10.115 + 0.968� − 0.081� + 0.011��

− 0.117V� − 0.009�2.
(9)

�e model adequacy is tested using the analysis of
variance (ANOVA) technique, which is presented in Table 4.
According to this technique, it was found that the calculated
�-ratio value of the models exceeded the standard tabulated
value at 95% con�dence level and the models are considered
to be adequate within the con�dence limit.

5. Results and Discussion

�e prediction results for the best architecture of the neural
network and the established mathematical model are ana-
lyzed and discussed.�e e�ciency and predictability of these
developed models have been de�ned as follows:

�� =
���������
�� − �	
��
× 100
���������
, (10)

where �� is the absolute prediction error and �� and �	
represent the experimental and predicted weld bead geom-
etry, respectively. �e prediction errors of bead depth by
the mathematical model and neural network model are
shown in Figure 8. It shows that the prediction error of
mathematical model ranged from 0.26 to 137.93%, while
neural network model ranged from 0.004 to 57.45%. Figure 9
shows the results of prediction error of bead width by both
models. It can be seen that the prediction errors by the
mathematical model and neural network model range from
0.47 to 49.50% and from 0.02 to 11.88%, respectively. It can be
noted that the prediction error obtained fromneural network
model showed better and more accurate results than those
of the developed models using regression analysis method.
In addition, it is very di�cult to establish the relationship
between process parameters and welding performance with
mathematical model because of the complex and nonlinear
relationship. It proves the superiority of neural network
model to predict the weld bead geometry with high precision
due to its high robustness to establish the relationship
between thewelding performance and its process parameters.

Next, the validation of developed models from the neural
network and mathematical models is presented. �e model
has been validated using a fresh set of data as listed in
Table 5 and the predicted results of both models on the



6 Advances in Optical Technologies

0

25

50

75

100

125

150

0 10 20 30 40 50 60 70

Number of data

P
re

d
ic

ti
o

n
 e

rr
o

r 
(%

)

Neural network model

Mathematical model
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Figure 9: Prediction error of bead width.

bead depth and bead width are shown in Figures 10 and 11,
respectively. Based on the training results of neural network,
the 3-14-2 network with the weights and biases obtained
from the training process was selected for the validation
process. According to Figures 10 and 11, it can be seen that
the distribution of data points for neural network model
is similar and close to the � = � line with accuracy of
97.56%, while the prediction accuracy ofmathematical model
was 81.28%. �e neural network model gives the best �t
to the experimental results and produced better prediction
of the weld bead geometry than the traditional regression
model. �e performance of the neural network was less
aected by architecture changes or the number of neurons
in hidden layer [11]. In addition, the neural network model
was performed with non-linear mapping between input and
output parameters [12]. From the results, the neural network
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Figure 10: Comparison between calculated andmeasuredweld bead
geometry using mathematical model.
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Figure 11: Comparison between calculated andmeasuredweld bead
geometry using neural network model.

technique has been shown as an eective method to predict
the complex relationship between the welding performance
and its process parameters.

6. Conclusions

An ANN-based model was developed to predict the weld
bead geometry of thin steel sheet in laser microwelding. �e
main conclusions obtained in this study are as follows.

(i) �e ANN network which is a backpropagation with
the Levenberg-Marquardt training algorithm was
used to learn the training data of weld bead geometry
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Table 5: Dataset of process parameters and welding results for
model validation.

No.
Laser
power

Scanning
velocity

Spot
diameter

Bead
depth

Bead
width

1 10 1.5 17.4 7.45 13.82

2 20 3.0 34.8 2.97 19.61

3 30 1.0 17.4 41.47 42.97

4 40 2.5 17.4 19.36 26.58

5 50 1.5 34.8 20.42 40.00

6 60 0.5 17.4 50.00 50.43

7 70 2.0 34.8 25.95 68.08

resulting from the experimental work. �e architec-
ture of the neural network has 14 neurons in hidden
layer and the prediction result of the neural network
model was found to be in good agreement with the
experimental results.

(ii) �eneural networkmodel has better predictive ability
compared with the mathematical model in predict-
ing weld bead geometry. �e predicted weld bead
geometry of the neural networkmodel is much closer
to the actual weld bead geometry than those of the
mathematical model.

(iii) Neural network is a powerful tool and is easy to use
in complex problems. Neural network can be used
reliably, successfully, and very accurately for the pre-
diction of weld bead geometry in laser microwelding.
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