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ABSTRACT

A Volterra series approach has been applied to the identification of

nonlinear systems which are described by a neural network model.

A procedure is outlined by which a mathematical model can be

developed from experimental data obtained from the network

structure. Applications of the results to control of robotic systems

are discussed.

INTRODUCTION

The Volterra series(l) approach to the identification of nonlinear

systems which is presented in this paper, is a natural extension of

earlier results in modeling of linear systems(2). In reference 2, the

impulse response of a linear dynamical system is shown to be given

by the weights of the network model. For nonlinear systems, in

addition to the impulse response of the linear approximation, the

higher order Volterra kernels must be expressed in terms of the

parameters of the trained network model. This relationship is

reported in this paper. The result obtained means that it is possible

not only to obtain a neural network model of the nonlinear dynamics,

but also to represent this model by a mathematical expression. This

opens a broad range of applications for the neural network modeling

of nonlinear dynamical systems. The Volterra series in neural

networks literature appeared recently in references 3 and 4. Both

papers showed that a model of the Volterra system can model a

nonlinear analytic system. However, this result follows directly from

the representation theorem, proved in reference 5. Some interesting



results of neural network applications to nonlinear systems control
can be found in reference 6.

In robotics, there are many places where nonlinear processes exist.
The nonlinearities to be controlled include motor dynamics, flexible
beam vibrations, harmonic drive stiffness, gear backlash, and full
arm dynamics. Some of these nonlinearities, for example, beam
vibrations and full arm dynamics, can be classified as analytic
nonlinearities. This paper shows how to obtain a mathematical
model of these nonlinearities using experimental data collected from

the system under investigation.

In manipulator control, it is required that the manipulator respond
quickly and accurately in spite of existing nonlinearities and inter-
joint couplings. To obtain a good design, one should use as much a
priori knowledge as possible and compliment the design with an
adaptive fine tuning algorithm. In principle, this is the structure of
the control scheme proposed by Koivo(7). In this structure, shown in
figure 1, the primary controller is developed based on the available
model of the manipulator and the secondary controller compensates
for unmodeled dynamics. Investigating the design of the primary
controller is proposed, using a nonlinear model of the manipulator to
be obtained as a Volterra series representation of a neural network
model. The system fine tuning can be done, if necessary, by an
adaptive loop using a Linear Quadratic Gaussian approach. In the
proposed design, the model-based approach (8) and the performance-
based approach (9) would be merged to obtain better performance,
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Figure 1.- Manipulator System
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MODELING OF LINEAR SYSTEMS

The input-output relation of a system described by a linear

differential equation may be given by a convolution integral
OO

y(t)= _h(x)x(t-x)dx (1)
0

that specifies the output y(t) in terms of the input x(t) and the system

impulse response h(x). The discrete-time representation has the

following form:
OO

y(k)= _ h(n)x(k-n) (2)
n=0

where the arguments k and n are shorthand for kT and nT with T

being the sampling interval to be selected for any particular system.

Information on the system bandwidth of interest is needed to choose a

proper value for T.

The relation (2) becomes approximate when-a finite number of terms r

is considered, that is, when
r-1

y(k)= _ h(n)x(k-n) (3)
n=0

which results in unmodeled dynamics, represented by the truncated

terms. Equation (3), written using standard neural network notation, is
r-I

y(k)= _ WlnX(k-n) (4)
n=0

that is, the finite (truncated) impulse response is given by:

lh(O) h(1).--h(r-1)l=lwlo Wll --. Wlr. 11 (5)

This relationship, at any time instant k, can be viewed as a

representation of a neural network with r inputs x(k-i), i=0,1,-..,r-1 and

a single output y(k), generated by a single linear neuron. This network

can be considered a member of the I; r class of feedforward

networks(5).

Once r is fixed for a linear system, no modeling improvement can be

reached by increasing the number of nodes and/or the number of

layers. However, the increase of the number of nodes/layers will ,

result in a structure redundancy and the robustness to neuron failure

will be obtained. Consequently, the time needed to recover from a
failure will be shorter.
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The network model of a linear system, discussed so far, is shown in
figure 2, in which q-1 denotes the unit delay operator, that is,

q-lx(k)=x(k-l).

This network is described by the following difference equation:

(w lO+W11q-I +w 12q-2+...+w lnq-n)x(k)=y(k) (6)

which is equivalent to equation (4). Also, (6) can be represented as the

vector product

y(k)=(1)T(k)O(k) (7)

with (I)T(k)=[x(k) x(k-1).., x(k-n)l and 0T(k)=[Wl0(k)Wll(k)... Win(k)], It

should be emphasized that by using the finite input sequence an

approximate model (7) of the system (2), known as the Finite Impulse

Response (FIR) model, is obtained.
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W q q _ q _
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Figure 2.- Single node FIR network
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MODELING OF NONLINEAR SYSTEMS

ANALYTIC SYSTEMS

Let a Sing!e-Input, Single-Output (SISO) nonlinear dynamical system be
described by a functional

y(t)=F[x(t)] (8)

where x(t) is the input, y(t) is the output and the functional F is

analytic, such that it can be represented exactly by a converging

infinite series of the following form:
OO OO

y(t)=Jh 1(x)x(t-x)dx+J Jh2(z, ,z2)x(t-Zl)X(t-z2)dzldZ2+...

OO OIO

+ J... fhn(Zl,...,'rn)X(t-Xl)X(t-x2)...x(t-xn)dzldx2...dxn+... (9)
0 0

Such a system can be represented to any desired degree of accuracy by

a finite series of the form of (9). This equation, known as the Voiterra

series expansion, can be interpreted as a functional generalization of

the Taylor series expansion and represents the solution to a large class

of nonlinear differential equations. For a linear system only the first

term in expression (9) is nonzero and represents the convolution

integral, with hi(x) being the impulse response of the system.

In expression (9), hn(Xl,...,Xn), n=2,3 .... are higher order Volterra

kernels, or higher order impulse responses, introduced to describe

nonlinear dynamic behavior.
form

OO

Y(k)= _yn(k)
n=l

where

If (8) is discretized, then (9) assumes the

(10)

OO OO

yn(k) = _... _hn(nl,n2 .... ,nn)x(k-nl)...x(k-nn)
nl=0 nn=0

(11)

ACTIVATION FUNCTION SUITABLE FOR MODELING OF

NONLINEAR DYNAMICAL SYSTEMS

Let us assume that this equation (11) is to be modeled by a network.

This implies the requirement that the number of inputs to the network
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is finite. However, assume that the equation could be modeled by a Xr
network with the network input defined as follows:

xT=[x(k) x(k-1) ... x(k-r+l)l (12)
where r will be a number of time delayed inputs, and an activation

function _F(.) as an operator which is applied to the sum of the
weighted inputs to a node to produce an output from the node.

We have assumed so far that the modeling of nonlinear dynamical
systems will require a multiple node zr network.

Definition: The activation function for Z r networks, suitable for

modeling nonlinear systems, is defined as a function _F: R--c[a, b] which
is differentiable, nondecreasing, limW(X)=b and limq-'(X)=a.

X--,oo 7t--,-oo

Two examples of an activation function, both widely used in I;r

networks, are the logistics function and the hyperbolic tangent
function:

1. Logistics function W: R_[0, 1], defined by the following equation:

1

W(X)= l+e -x with the derivative q_'(X)=q_(_.)(l-W(X))

2. Hyperbolic tangent function q': R_[-1, 1], defined by the following

equation:

q'(_.)=tanh(Z.)= l'e-2X
l+e_2X with the derivative _F'(;L)=I-tI'2(X)

Note that the computation of the derivatives of both functions,

repeatedly performed while using a gradient method such as the error

backpropagation for training, is computationally efficient.

According to the q'(.) definition, the following functions are not the

activation functions :

1. _F(JL)=signK

2. {

with a<b and o_ being a positive constant.

a for Z,<a/tz

o_X for a/ct< X<b/ot

b for K>b/ot
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Now, let us justify the definition of W(.) and the choice of one of those
activation functions. First of all, let us realize that the activation
function of a node should, for a given input x, encode within finite
limits the amount of the preferred feature represented by this node
and generated by this input. This preferred feature is abstracted in
the learning process by the vector of weights w. The closeness of two
vectors w and x is given in the vector space by their inner product

n

w.x=Zwix i (13)
i=l

w.x=llwll Ilxll cos0 (14)

where 0 is the angle between the vectors w and x. By requiring the

activation to be nondecreasing, the sense of closeness established by

the inner product is preserved. Furthermore, since the derivative of

the activation function is used in training the backpropogation

network, the derivative must exist. Continuity is not sufficient.

Also, note that for both the logistics function and the hyperbolic

tangent function the requirements formulated so far hold. However,

the linear approximation of tanh(.) in the neighborhood of zero is the

straight line passing through zero. It was shown in an earlier paper(2)

that with such an activation function the product of the weight

matrices of a multiple layer feedforward network, trained to model

linear dynamics, represents the impulse response of a simulated linear

system. Futhermore, it is shown below that if the single hidden layer

network, using the hyperbolic tangent as an activation function, is

trained to represent the nonlinear system (10), then its weights form

the kernel hi(') of the functional Yl(k) given by (11). The kernel hi(. )

is interpreted as the impulse response of the linear approximation of a

nonlinear system. It is important to have a simple relation between

hi(.) and the network weights. Consequently, the hyperbolic tangent is

a better choice of an activation function.

NETWORK REPRESENTATION OF SISO NONLINEAR SYSTEMS

Using the hyperbolic tangent as the activation" function, a nonlinear

system can be modeled by a delay network generating the vector x,

defined by (12), and followed by a single hidden layer network _:r(w)

with q nodes. In other words, the model is defined as
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where

,,q,
f: Rr_R: f(x)=__.,wjtanh(netj), wjE R,

j=l

(15)

r

netj=bj+_wjix(k-i+l) and bjeR
i=l

Therefore, the dynamics of a complete network model are defined by

the weight matrix W=[wjil, the output weight vector w=[w 1 w 2 ... Wq] T,

and the bias vector b=[b I b 2 ... bq] T. Hornik et al.(5) proved that the _r

network is capable of approximating any Borel measurable function

from Rr to R to any desired degree of accuracy, provided sufficiently

many hidden nodes are available. If the system to be modeled has the

input-output relation y=F(x), with the input vector x=[x(k) x(k-1) ...

x(k-r+l)] T, such that at any sampling instant k it represents a nonlinear

Borel measurable function from R r to R, the following claim follows

directly from the representation theorem in reference 5.

Claim: Under the assumptions made above and for a fixed r, the

accuracy of the approximation of a system modeled increases with an

increase of the number q of available hidden nodes. This accuracy can

be improved to any desired degree by increasing both r and q.

Note that under the assumptions made, the signal-dependent

nonlinearities such as hysteresis are excluded.

Example of Obtaining Volterra Kernals

First, we shall partially analyze the network, showing the relations

between the weights of a trained network and the Volterra kernels

of the system modeled. Assume that the network is of the form

shown in figure 2, with only one node (r=2) and no bias (b=0).

Assuming that the nonlinear system (8) is analytic, then the network

output y*(k) is given by:

y*(k)=tan h(w I I x(k)+w 12x( k- 1)) (16)

Expanding y*(k) into a Volterra series, one obtains
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Y*(k)=Wl lX(k)+Wl2X(k-1) - 3 w ?lX3(k)-W?lWl2X2(k)x(k-l)

-Wl i w ?2x(k)x2(k-l) - 3w 132x3(k- l )

+(fifth-order terms)-(seventh-order terms)+... (17)

If a nonzero bias is assumed, then the even-order terms will appear in

the expansion (17). It was assumed that the system output y(k) can be

represented by a Volterra series, that is, equation (10) holds.

Assuming as above r=2 and b=0,
1 1 1

y(k)=_hl(n)x(k-n)+_ _h2(n,m)x(k-n)x(k-m )
n=0 n=0 m=0

1 1 1

+_ _ _h3(n,m,l)x(k-n)x(k-m)x(k-l)+... (18)
n=0 m=0 i=0

which, showing separately first-, second- and third-order terms, can be
rewritten as

y (k)=h 1(0)x (k)+hl( 1)x(k-1 )

+ h2 (0,O)x2(k)+l h 2 (0,1 )+h2( 1,0)] x (k) x(k- 1)+h2( 1,1 )x2(k - 1)

+h3(0,0,O)x3(k)

+[h3( 1,0,0)+h3(0,1,0)+h3 (0,0,1 )] x2(k)x(k - 1)

+ [h3( 1,1,0)+h3 ( 1,0,1 )+h 3 (0,1,1 )] x (k)x2(k - 1)

+h3(l,1 ,l)x3(k-1)+...

The coefficients in this expression are to be equated to the sum of

proper coefficients expressed in terms of network weights in each of q

expressions of the type (17). From this analysis, that is, assuming q=l,
one can find that

hl(0)=wl l

hl(1)=wl2

In other words, one can obtain Volterra kernels from the trained

network. Some of those kernels will not be uniquely defined. Instead,

their sum, e.g., h3(l,0,0)+h3(0,1,0)+h3(0,O,1) will be equal to a constant

uniquely defined by the network parameters. In such a case, this

constant can be arbitrarily distributed among the components of this

9



sum. For any distribution, the model obtained will have the same
properties.

Using the network (15) for modeling, the output y(k) of a nonlinear
system is, in general, approximated by

y*(k)= wjtanh(netj) (19)
j=l

If the function tanh(.) is replaced by its Taylor series, then

q

1 3 2
y*(k)= Z_ wj[netj-_-(netj) +-_5(netj)5-...] (20)

j=l
1"

with netj=bj+_wjix(k-i+l ). In equation (20), the expression in
i=l

brackets corresponds to the expression given by (17) for the specific

example discussed above. On the other hand, according to (10),
r-1 r-I r-I

y(k)='_hl(n)x(k-n)+_ _?.,h2(n,m)x(k-n)x(k-m)
n=0 n=0 m=0

r-1 ri_=r?l _=

+,__., _ ,__.h3(n,m,I)x(k-n)x(k-m)x(k-I)+... (21)
n=O m=O I=0

The coefficients in this expression are then equated to the coefficients

in the expression for y*(k) given by equation (20). As a result one

obtains the following equations Specifying the first three Volterra

kernels in terms of the parameters of the network model:

h l(n)=_._wjwj n+l(l-tanh2(bj)),

j=l

n=0 .... ,r-I (22)

h2(n,m)=_wjwj n+lWj m+l(-2tanh(bj)+2tanh3(bj))/2!,

j=l

n=0,...,r-1, m=0, .... r-1 (23)

h3(n,m,l)=_t_wjwj n+lWj m+l wj l+l(-2+8tanh2(bj)-6tanhn(bj))/3!,

j=l

n=0,...,r-1, m=0, .... r-l, l=0,...,r-I (24)

If necessary, the equations specifying the higher order Volterra

kernels can be obtained.
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Concluding Remarks

This paper has demonstrated a method of determining the Volterra

series representation of an analytic nonlinear dynamical system from a
neural network that was trained on the nonlinear system to be

identified. This procedure can be used to obtain a Volterra kernel

with respect to a Taylor expansion of an arbitrary order. A simple

example was demonstrated and the equations for the first three

Volterra kernels were presented.

Current work is focused on a formal derivation of the general

equations, in terms of network parameters, for any Volterra kernel.
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