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In present study, three roughness parameters defined in the Abbott-Firestone or 
bearing area curve, Rk, Rpk and Rvk, were modeled for the rough honing 
processes by means of Artificial Neural Networks (ANN). Input variables were 
grain size and density of abrasive, pressure of abrasive stones on the 
workpiece’s surface, tangential or rotation speed of the workpiece and linear 
speed of the honing head. A back propagation algorithm was used for training 
the networks. Two strategies were considered, use of either one network for 
modeling the three parameters at the same time and use of three networks, one 
for each parameter. Best network was chosen among different structures, 
having either one or two hidden layers. When one network is considered, best 
solution corresponds to two hidden layers having 26 and 11 neurons. However, 
overall best neural network consists of three networks, one for each roughness 
parameter, with one hidden layer having 25, 9 and 5 neurons respectively.  
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1 Introduction 

Surface finish of combustion engine cylinders is directly related to friction, wear and oil 

consumption (Tung & McMillan 2004). Final honing process performed to internal 

surface of cylinders provides a crosshatch pattern that favours oil flowing. Abbott-

Firestone related parameters Rk-core roughness, Rpk- reduced peak height and Rvk- 

reduced valley depth, defined in standard ISO 13565-2 (ISO 1996), are commonly 

employed for characterizing surface finish after honing operations (Deepak Lawrence et 

al. 2014). As a general trend, Rk value is recommended to be higher than Rpk and Rvk, 

in order to assure wear resistance of the surface. Next, Rvk should be higher than Rpk, so 

as to improve lubricant retention and oil efficiency. Thus, Rpk value is expected to be 

reduced after the running in period of an engine (Feng et al. 2002). It is possible to reduce 
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Rpk parameter from the manufacturing process by means of plateau-honing operation, in 

which a very fine grain size is employed to remove peaks from previous honing 

operations (Kanthababu et al. 2010; Lawrence & Ramamoorthy 2016). The plateau 

honing operation allows controlling bearing area at the top of the surface. 

Roughness achieved in honing processes depends on many parameters related to process 

kinematic, structure and composition of honing stones and lubrication oil among others 

(Bell et al. 1981; Feng et al. 2015). For this reason, analytical models are discarded. 

Some authors developed numerical models for defining surface obtained in honing 

processes (Voronov et al. 2009), while both regression and artificial neural networks 

(ANN) models are recommended in this case. As for ANN, for example, surface 

roughness and tool wear in turning processes were predicted by (Özel & Karpat 2005), as 

a function of edge geometry, hardness and cutting conditions. They used the 

backpropagation algorithm. In milling operations, (Benardos & Vosniakos 2002) 

employed the Levenberg-Marquardt algorithm to implement the backpropagation 

training, in order to model surface roughness as a function of cutting conditions and 

cutting tool wear among other factors. (Chavoshi 2013) used neural networks to predict 

roughness to be obtained in face milling. Regarding abrasive machining processes, for 

example, (Liao & Chen 1994) predicted average roughness Ra by means of two layer 

neural networks. They considered bond type, mesh size, concentration, work speed and 

depth of cut as inputs. (Petri et al. 1998). developed a neural network model for 

predicting surface finish and dimensional change as a function of workpiece parameters, 

media characteristics, machining parameters and technical specifications. (Teimouri & 

Baseri 2013) used ANN and neuro-fuzzy interference system to predict surface roughness 

in magnetic abrasive finishing processes, as a function of parameters such as voltage, 

mesh size and rotation speed. (Ben Fredj et al. 2002) simulated average roughness Ra and 

peak-to-valley roughness Rt as a function of process parameters such as table speed, 

depth of cut, grain size, dressing depth, number of passes and workpiece material in 

grinding processes. They employed one layer networks. (Deng et al. 2009) optimized 

surface roughness in a camshaft grinding operation as a function of different cutting 

conditions. They combined neural networks having one hidden layer with genetic 

algorithm. (Maksoud et al. 2003) employed neural networks for both designing the 

grinding process and taking a decision about accepting the process, redesigning it or 

dressing the grinding wheel. (Aguiar et al. 2008) used three layer networks for predicting 

average roughness Ra as a function of acoustic emission and cutting power in grinding 

processes. As for honing processes, only few studies are known about roughness 

prediction by means of ANN. For example, (Feng et al. 2002) modelled roughness 

parameters defined in the Abbott-Firestone curve for both rough and finish honing 

operations. They considered variables such as grit size, honing time and pressure. Later, 

they compared the use of networks with different cross-validation methodologies and 

different number of hidden layers (Feng et al. 2005). (Pu et al. 2010). optimized the 

honing process as a function of stone granularity, stroke length, stroke speed and spindle 

speed. They used the Levenberg-Marquardt function in a backpropagation model. 

(Shaikh et al. 2015) used ANN for modelling surface roughness and material removal 

rate as a function of process parameters in electrochemical honing, However, other 

parameters such as density of abrasive and speed of honing stone are also known to 

influence roughness in honing processes (Buj-Corral et al. 2014). Moreover, in industry 

there is a strong demand for tools that allow predicting roughness without the need to 
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carry out a great amount of experimental tests before starting production of a certain 

workpiece.  

In a previous paper by the authors of the present paper, an indirect model for roughness 

was presented (Sivatte-Adroer et al. 2016). Main objective of this paper is to select best 

ANN configuration for modelling three Abbott-Firestone roughness parameters Rk, Rpk 

and Rvk as a function of five different variables of the honing process: grain size and 

density of abrasive, pressure, linear speed and tangential speed. For doing this, 

experimental tests were performed. A multilayer perceptron trained by means of the back 

propagation algorithm was used. From obtained results, best neural network 

configuration was selected among different ones considering one or two hidden layers. 

Two different strategies were considered, consisting of use of either one network for the 

three roughness parameters considered, or use of three different networks, one for each 

roughness parameter. Experimental data from design of experiments were used to train 

and validate the networks. Additional experiments were used as test data for comparing 

different models.  

Models presented in this paper will help users of honing machines to select most 

appropriate process parameters values that are necessary achieve required roughness 

values. It will not be necessary to perform a high number of experimental trial and error 

tests, which are cost and time consuming. Models will also be useful for investigating the 

effect of each process parameter separately on surface roughness. 

2 Materials and methods 

2.1 Honing tests 

In the interior honing process a honing head provided with abrasive stones removes 

material from the internal surface of a cylinder. In industrial machines, usually the  

honing head has a reciprocating movement combined with a rotation movement. Figure 1 

shows a schematic drawing of cylinders with tangential speed VT, linear speed VL and 

cutting speed VC. Honing angle α is defined by tangential and linear speed. 
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Figure 1  Schematic drawing of the honing process 

 

In the present paper, honing tests were performed in a horizontal Honingtec test machine. 

In this case, tangential speed is obtained by means of rotation of the workpiece, while the 

honing head has linear alternate movement (Figure 2). The honing head is provided with 

three abrasive stones. The machine was specially designed for monitoring different 

process variables such as pressure, linear and tangential speed, workpiece diameter, etc. 
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Figure 2  Honing test machine. 

 

Steel St-52 cold-drawn seamless tubes of dimensions 300 mm in length, 90 mm external 

diameter and 80 mm internal diameter were honed. Abrasive stones with metallic bond 

and cubic boron nitride (CBN) abrasive were used. 
 

Process variables considered were linear speed of the honing head VL (m/min), 
tangential speed of the workpiece VT (m/min), pressure with which honing stones are 
held against the workpiece PR (N/cm

2
) and features of the honing stones such as grain 

size of abrasive GS, according to (FEPA 1997), and density of abrasive DE, defined in 
(ISO 2005) [16]. GS number has a correspondence with grit range in μm. DE is defined 
by a number which is related to weight of abrasive in carats over volume of abrasive 
stone in cm

3 
(1 carat = 0.2 g). For example, number 100 indicates 4.4 carats of 

abrasive/cm
3
. Other quantities of abrasive can be found by following a linear relationship.  

Selected responses were three parameters from the Abbott-Firestone or bearing curve, 

Rk-core roughness, Rpk- reduced peak height and Rvk- reduced valley depth. Experimental 

tests were defined by means of a fractional factorial model design 2
5-1

, with one central 

point and ten face centered points, with a total amount of 27 experiments. They 

correspond to experiments 1 to 27 in Table 1. Data samples collected from experiments 

from the fractional factorial design were randomly divided into two groups: 22 samples 

(80%) were used for training the networks and 5 samples (20%), for validating them. 

Additional 6 test samples were employed for comparing the different models. They were 

numbered 28 to 33 in Table 1. Table 1 summarizes honing conditions as well as roughness 

results. 
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Table 1    Experiments performed and roughness Rk, Rpk and Rvk values 

 

Experiment 

 

GS 

(FEPA) 

 

DE 

(ISO6104) 

PR  

(N/cm
2
) 

VT 

(m/min) 

VL  

(m/min) 

Rk  
(μm) 

Rpk (μm) Rvk (μm) 

1 136 45 550 50 30 10.38 2.85 1.42 

2 136 45 550 40 30 10.67 2.74 1.75 

3 136 45 550 40 20 7.52 2.67 1.82 

4 181 45 550 40 30 12.45 3.22 2.64 

5 181 60 700 50 40 14.51 6.35 5.32 

6 91 30 400 50 20 6.46 2.07 1.82 

7 91 60 400 50 40 3.97 2.40 2.24 

8 181 60 400 30 40 15.71 5.40 4.03 

9 91 30 400 30 40 6.55 2.42 1.51 

10 91 60 400 30 20 6.18 3.06 1.64 

11 91 30 700 50 40 10.17 2.52 0.58 

12 136 45 550 40 40 11.04 3.83 1.66 

13 91 30 700 30 20 8.75 2.65 0.98 

14 91 45 550 40 30 8.57 2.48 1.39 

15 181 30 400 30 20 8.47 4.56 3.27 

16 136 60 550 40 30 11.21 4.33 2.53 

17 136 45 550 30 30 9.63 2.46 2.02 

18 181 30 400 50 40 14.78 4.80 1.76 

19 91 60 700 50 20 5.72 2.60 2.31 

20 181 30 700 50 20 9.42 3.65 3.65 

21 136 45 400 40 30 7.28 2.53 2.17 

22 136 45 700 40 30 9.21 2.83 2.55 

23 181 60 700 30 20 18.43 6.46 4.73 

24 181 30 700 30 40 14.05 3.71 1.70 

25 91 60 700 30 40 7.25 2.35 0.99 
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26 136 30 550 40 30 9.88 2.72 1.87 

27 181 60 400 50 20 15.55 5.48 5.02 

28 151 35 625 45 25 7.20 3.16 3.61 

29 181 45 534 46 40 15.01 7.04 3.64 

30 91 45 624 39 28 4.83 1.89 2.07 

31 136 45 542 44 28 7.00 3.68 2.93 

32 181 60 581 39 43 11.36 5.69 4.85 

33 136 45 545 43 25 6.41 4.04 2.92 

 

 

 

2.2 Roughness and cylindricity measurements 

Roughness measurement was conducted with a Taylor Hobson Talysurf 2 roughness 

meter with µltra software (v. 4.6.8). According to a previous study, for each cylinder 9 

roughness measurements were taken, which were separated 40 º along a diametric 

circumference on the internal surface of the cylinder at 50 mm from its end (Buj-Corral 

& Vivancos-Calvet 2011). Average value of the nine measurements was taken into 

account for each cylinder, for each roughness parameter considered, Rk, Rpk and Rvk. . 

A Gaussian filter was used with high pass cut-off and sampling length of 0.8 mm, low 

pass cut-off of 0.025 mm and evaluation length of 4 mm. 

Cylindricity was measured by means of a Taylor Hobson Talyrond 252 roundness meter, 

with Gaussian filter with roundness cutoff of 50 upr. 

 

2.3 Neural networks 

Networks addressed the direct problem, in which roughness parameters are predicted as a 

function of process variables. Two different strategies were taken into account for 

defining the networks. First one consists of one network with the five process variables as 

inputs and the three roughness parameters as outputs (Figure 3a). Second one consists of 

considering three separate networks, one for each roughness parameter as an output 

(Figure 3b). 
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(a) 

 

 

 
(b) 

 
Figure 3     Flow chart for the two different strategies: a) one network, b) three networks. 

 

Neural networks were modelled by means of Matlab 7.8.0 347, with a specific program.  
Different configurations were tested, based on feed forward multilayer perceptron and a 
back propagation supervised training algorithm with cross validation system. In the 
present paper, two different perceptron configurations were considered, first one with one 
hidden layer and second one with two hidden layers. It was discarded to use higher 
number of layers in order to avoid overtraining, which means memorizing training data 
rather than training the network. Networks were configured with five input variables, 
corresponding to the five process parameters GR, DE, PR, VT and VL, either one or two 
hidden layers with sigmoidal function, and an output layer with linear purelin function. 
The five input variables were normalized so as to avoid some of them to have more 
weight than the rest of the variables in the model. Output variables were roughness 
parameters Rk, Rpk and Rvk. It was not necessary to normalize responses, since they 
have similar values and units. As an example, Figure 4 shows the structure of one 
network with five input variables, one hidden layer with sigmoidal function, one output 
layer with purelin function and three output parameters.  
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Figure 4   Schematic drawing of one network with one hidden layer. 
 

Training data were used for training the networks in an iterative way by modification of 

the weight matrices IW1 and LW2 (Figure 4). Training was stopped when reduction in 

quadratic average error obtained with validation data was lower than a certain previously 

defined value, 1.00 e
-10

. Test data were used to evaluate and compare performance of the 

different neural models. 

One layer networks were trained with number of neurons ranging from 4 to 100. For two 

hidden layers, total number of neurons tested was N+50%, where N is best number of 

neurons selected for one hidden layer. First, 2/3 of total number of neurons was assigned 

to the first layer and 1/3 of total number of neurons was assigned to the second layer. 

Later, variations of ±1 neurons in each layer were considered, so that summation of 

neurons was constant. The perceptron configuration that better models validation data was 

searched. Thus, best network was selected as the one that minimizes root mean squared error 

(mse) of validation data (Equation 1).   

∑
n

1=i

2
ii

n

)y-t(
=mse

 

 (Eq. 1) 

  

where ti denotes the experimental value of variables Rk, Rpk or Rvk corresponding to 

variables of the ‘ith’ experiment, yi is the simulated value of variables Rk, Rpk and Rvk 

for the ‘ith’ process, and n is number of experiments considered. Root mean squared error 

has the same units as the magnitude being considered. 

3 Results 

3.1 Roughness and cylindricity 

Experimental Rk, Rpk and Rvk values, corresponding to average of two replicates, are 

presented in Table 1 for the 33 experiments performed. As a general trend, highest Rpk, 

Rk and Rvk values correspond to high grain size of 181 and high density of 60, for 

example in experiments 5, 8, 23 and 27. It is well known that grain size of abrasive is 

directly related to roughness (Bell et al. 1981). The higher grain size of abrasive, the 

broader honing marks are and the higher roughness is. As for density, a higher proportion 

of grains will help cutting operation, although an excessively high density could lead to 

difficulties in cutting due to lack of space to accommodate chip, and subsequent clogging 

of the stones. On the other hand, lowest Rpk, Rk and Rvk values were obtained when 
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using low grain size, regardless of density employed (experiments 6, 7, 9, 10, 11, 13, 14, 

19 and 25). This suggests that, for rough operations performed with high grain size, 

influence of density is important. However, for semifinish operations performed with 

lower grain size, lower quantity of material is removed and clogging is not so likely to 

appear. 

Highest Rk, Rpk and Rvk value corresponds to high grain size combined with high 

density, high pressure and low linear and tangential speed (experiment 23). Experiment 5, 

which was performed with high grain size, high density, high pressure and high linear 

and tangential speed also provided high roughness values. However, high roughness 

values can be also achieved with low pressure values, as shown in experiments 8, 18 and 

27. This suggests that, within the range studied, effect of pressure is not so important as 

effect of grain size and density of abrasive.  

Very low effect was found in this case between tangential speed VT and roughness 

parameters Rk, Rpk or Rvk, as well as for linear speed VL and the same roughness 

parameters. 

Cylindricity error measured values ranged between 12.0 µm and 41.8 µm. Similar 

cylindricity values up to 36.7 µm were reported by Lei et al(Lei et al. 2011).  

 

As an example, roughness profiles are shown in Figures 5a and 5b for experiments 23 

and 9 respectively. 
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Figure 5. Roughness profiles for: a) Experiment 23, b) Experiment 9. 

 

 

Irregular profiles were obtained in both cases, which are usual in abrasive machining 

processes. Higher peaks and valleys are observed for high grain size, density and pressure 

(Figure 5a) than for low grain size, density and pressure (Figure 5b). 

 

 

3.2 One neural network model 

For one neural network and one hidden layer, number of neurons was tested between 4 

and 100. Average value for the three roughness parameters of mse for the validation 

experiments is shown in Fig. 6 for different number of neurons. 
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Figure 6.   Average mse of validation experiments vs. number of neurons, for one   
network and one hidden layer. 

 

For one network and one hidden layer, a first analysis recommends that use of number of 

neurons of 85 or higher be discarded, since especially high mse values for validation data, up 

to almost 6 were found in many cases. Lowest mse values for the validation data 

correspond to 75 and 80 neurons. However, such mse values are very close to zero, 

suggesting that the networks have memorized data instead of learning during training 

process. In order to check this, models having lowest mse of validation data were 

compared. For doing this, test data were employed. Model with 25 neurons was selected, 

since average mse value for test experiments was lowest among all models studied.  

Taking into account 25 neurons as a start point for one layer, different number of neurons 
was tested for two layer networks: 20-17, 21-16, 22-15, 23-14, 24-13, 25-12, 26-11, 27-
10, 28-9, 29-8 and 30-7, according to explanation in Section 2. Results are presented in 
Figure 7.  
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Figure 7. Average mse of validation experiments vs. number of neurons, for one 
network and two hidden layers 

For one network and two hidden layers, low mse values below 2 were found for 
validation data in all cases studied. Thus, highest mse values were higher for one layer 
than for two layers, when one network was considered. For two layers, best network, 
having lowest mse value of validation experiments, corresponds to 26 and 11 neurons in 
the first and second layer respectively.  
 

In order to compare the model with one hidden layer having 25 neurons, with the model 
with two hidden layers with 26 and 11 neurons respectively, test experiments were 
employed. Results are presented in Table 2.  

 
Table 2      Comparison between models for one network. 

 

Number 
of layers 

Number of 
neurons 

mse 

One layer 25 2.335 

Two 
layers 

26-11 1.997 

 

Best option for the strategy of using one network is use of two hidden layers with 26 and 
11 neurons respectively, with lowest mse value of test experiments of 1.997. 

 

3.3 Three neural network model 

For three neural networks and for one hidden layer, different number of neurons was tested 
between 4 and 100, for each one of the considered roughness parameters. As an example, mse 
values for validation data are presented for Rk in Figure 8. 
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Figure 8.     Mse of validation experiments vs. number of neurons, for Rk (three 
networks) and one hidden layer. 

For parameter Rk, very high mse values were reported for 15 and 70 neurons. For 
example, for 15 neurons mse value was higher than 9. Such values are much higher than 
those found for one network models, which were below 6 in all cases (Figure 3). On the 
contrary, extremely low mse values for 75 and 95 neurons suggest that the network 
memorized data during training step. For this reason, models having lowest mse value for 
validation data were compared. Model having 25 neurons was selected, since it showed 
lowest mse value for test experiments. A similar procedure was followed for parameters 
Rpk and Rvk, and selected number of neurons was 9 and 5 respectively. For Rpk and 
Rvk, when one layer was considered, mse values for validation data did not exceed 6. 
When two layers were considered, quite lower mse values for validation data were 
reported, below 3 in all cases. Thus, highest mse values are higher for one than for two 
layers when three different networks are considered. 

Regarding two layer networks, as an example, for parameter Rk different configurations 
were tested with 25 neurons as a start point, having 20-17, 21-16, 22-15, 23-14, 24-13, 
25-12, 26-11, 27-10, 28-9, 29-8 and 30-7 neurons respectively. Results are shown in 
Figure 9. 
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Figure 9.     Mse of validation experiments vs. number of neurons, for Rk (three 
networks) and two hidden layers. 

For three networks and two hidden layers, relatively high mse values close to 5 were 
found for combinations 25-12 and 26-11. Such values are higher than those reported for 
one network (Figure 4), below 2 in all cases. A model with 23 and 14 neurons in the first 
and second layer respectively was selected for Rk, since it showed lowest mse value for 
test experiments. A similar procedure was employed for determining number of neurons 
to be used for modelling parameters Rpk and Rvk. Models having 10-4 and 3-5 neurons 
respectively were selected. In order to compare models with one layer with models with 
two layers, for each one of the roughness parameters studied, mse values of test data were 
employed. Summary of results is presented in Table 3. 
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Table 3      Comparison between models for three networks. 
 

Number of 
layers 

Number of 
neurons 

mse 

One layer-Rk 25 2.870 

Two layers-
Rk 

23-14 3.577 

One layer-
Rpk 

9 1.042 

Two layers-
Rpk 

10-4 0.767 

One layer-
Rvk 

5 0.911 

Two layers-
Rvk 

5-3 1.234 

 

Overall results for the strategy of using three different networks are presented in Table 4, 
with average mse values for the three parameters, for one layer and for two layer 
networks respectively. 

 

Table 4      Overall results for three networks 

Number of layers 
Number of  

neurons 
mse 

One layer (average 
Rk, Rpk and Rvk) 

25, 9 and 5 1.608 

Two layers 
(average Rk, Rpk 

and Rvk) 

23-14, 10-4 and  

3-5 
1.859 

 

Best option corresponds to one hidden layer, with lowest average mse value of 1.608 for 
test experiments. Hidden layer will contain 25 neurons for parameter Rk, 9 neurons for 
parameter Rpk and 5 neurons for parameter Rvk. 
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3.4 Comparison between one and three neural network models 

 

In order to compare and select the best final configuration between one network and three 

networks models, mean squared error of test data was calculated according to Equation 1 

in Section 2.3. Table 5 contains comparison between one network and three networks, 

with mse values of test data for each model considered. 
 

 

Table 5      Comparison between one network model and three network model 
 
 

Number of 
networks 

Number of  

layers 

Number of  

neurons 
mse 

One network 

(average Rk, Rpk 
and Rvk) 

2 
23-14, 10-4 and  

3-5 
1.859 

Three networks 

(average Rk, Rpk 
and Rvk) 

1 25, 9 and 5 1.608 

 

All selected networks have less than 30 neurons in the hidden layers. Within the range of 
variables studied, one hidden layer is recommended when three different networks, one 
for each roughness parameter, are considered. On the contrary, two hidden layers are 
recommended when the three roughness parameters are modelled with the same network. 

According to Table 6, it can be concluded that best overall result corresponds to three 

networks with one hidden layer having 25, 9 and 5 neurons respectively.  

However, if an indirect model is to be obtained, i.e. a model in which process parameters 

are determined to obtain a certain roughness value, it is not possible to employ three 

different networks. For this reason, in this case one network would be recommended. 

Simulated results for experiments 1 to 33 are presented in Table 6 for one neural network 
models having 26 and 11 neurons in the first and second layer respectively. 

 
Table 6.  Simulated values for Rk, Rpk and Rvk for one network having 26 and 11 

neurons 
 

Experiment 
Rk  

(μm) – 
26-11 

Rpk  
(μm) – 
26-11 

Rvk  
(μm) – 
26-11 

1 
10,60 2,82 1,44 

2 
11,46 2,71 1,69 

3 
7,80 2,66 1,79 
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4 
12,57 3,18 2,64 

5 12.39 5.99 5.02 

6 
6,78 2,08 1,79 

7 
4,04 2,40 2,24 

8 
15,83 5,42 4,06 

9 
6,71 2,40 1,49 

10 
6,54 3,09 1,64 

11 
10,32 2,49 0,54 

12 11.88 4.05 1.89 

13 8.07 2.36 1.06 

14 
9,56 2,60 1,17 

15 
9,09 4,53 3,18 

16 
11,82 4,51 3,26 

17 
10,05 2,44 2,01 

18 
14,85 4,77 1,75 

19 
6,18 2,73 2,44 

20 
9,46 3,62 3,60 

21 
7,81 2,51 2,14 

22 
9,18 2,85 2,49 

23 
17,86 6,46 4,70 

24 
14,26 3,67 1,70 

25 7.37 2.72 0.97 

26 
10,32 2,71 1,86 

27 
16,44 5,44 5,04 

28 8.37 2.65 3.21 

29 17.85 6.48 3.19 

30 5.31 2.14 1.83 

31 7.92 3.59 2.58 
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32 12.65 5.26 4.20 

33 6.90 3.51 2.64 

 

For one neural network having 26 and 11 neurons in the first and second layer 

respectively, mse vs. epoch plot is presented in Figure 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10.     Mse vs. Epochs plot for one network having 26 and 11 neurons 

Figure 9 depicts mean squared error (mse) of train and validation data after each training 

(epoch). It can be seen that with train data mean squared error decreases when training is 

repeated. On the contrary, for validation data (which are not used for training the 

network), mean squared error reaches lowest value after the third training. For this 

reason, training was stopped after the third epoch. Subsequent epoch would make the 

neural network to memorize results of training data, but performance would not improve 

when simulating new data.  

Figure 11 shows regression fit for training, validation and overall data. 
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Figure 11 Regression plots for one network having 26 and 11 neurons 

 

Fit values were higher than 84 % for both training and validation data, with overall fit of 
96.9 %.  

For this reason, a one network model having 26 and 11 neurons in the first and second 
layer respectively is considered to be appropriate for modelling roughness parameters Rk, 
Rpk and Rvk as a function of main honing process parameters. 

4  Conclusions 

Main conclusions of the paper are presented next: 

 

- Neural networks models are appropriate for predicting roughness parameters Rk, 
Rpk and Rvk, corresponding to the Abbott-Firestone curve, as a function of 
process parameters in rough honing. Several configurations were tested for 
either one or three different networks, with different number of layers and 
different number of neurons. 
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- Results demonstrated that low number of neurons below 30 is recommended in 
all cases, because it leads to lower mean squared error values. Number of layers 
depends on number of networks considered. Best overall result corresponds to 
use of three neural networks having one layer each, with 25, 9 and 5 neurons for 
Rk, Rpk and Rvk respectively. However, use of three different networks does 
not allow addressing the indirect model, in which process parameters are 
predicted to obtain a certain roughness value. If one network is considered, best 
option corresponds to two layers having 26 and 11 neurons respectively. 

- Models will be very helpful in industry to to predict roughness to be obtained 
from process parameters selected. They will also help studying the effect of each 
process variable separately on surface roughness, without need of experimental 
trial and error tests that would waste material and energy. This will improve 
quality of workpieces and will reduce costs.  

In future research, an adaptive model will be defined to address the indirect problem, in 
which process parameters are selected to obtain a certain roughness value. It will 
combine conventional direct and indirect neural network models. 
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Figure captions 

 
Figure 1. Schematic drawing of the honing process 
 
 
Figure 2. Honing test machine. 

 

Figure 3. Flow chart for the two different strategies: a) one network, b) three networks. 

 
Figure 4. Schematic drawing of one network with one hidden layer. 
 
 

Figure 5. Roughness profiles for: a) Experiment 23, b) Experiment 9. 

 
Figure 6. Average mse of validation experiments vs. number of neurons, for one network 
and one hidden layer. 

 
Figure 7. Average mse of validation experiments vs. number of neurons, for one network 
and two hidden layers 

 
Figure 8. Mse of validation experiments vs. number of neurons, for Rk (three networks) 
and one hidden layer. 

 
Figure 9. Mse of validation experiments vs. number of neurons, for Rk (three networks) 
and two hidden layers. 

 

Figure 10. Mse vs. Epochs plot for one network having 26 and 11 neurons 

 

Figure 11. Mse vs. Epochs plot for one network having 26 and 11 neurons 
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Table captions 

Table 1. Experiments performed and roughness values obtained 

 

Table 2. Comparison between models for one network. 

 

Table 3. Comparison between models for three networks. 

 

Table 4. Overall results for three networks. 
 

 
Table 5. Comparison between one network model and three network model 
 

 
Table 6.  Simulated values for Rk, Rpk and Rvk for one network having 26 and 11 

neurons 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


