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ABSTRACT

Context. Neutron stars are currently studied with an rising number of electromagnetic and gravitational-wave observations, which
will ultimately allow us to constrain the dense matter equation of state and understand the physical processes at work within these
compact objects. Neutron star global parameters, such as the mass and radius, can be used to obtain the equation of state by directly
inverting the Tolman-Oppenheimer-Volkoff equations. Here, we investigate an alternative approach to this procedure.

Aims. The aim of this work is to study the application of the artificial neural networks guided by the autoencoder architecture
as a method for precisely reconstructing the neutron star equation of state, using their observable parameters: masses, radii, and
tidal deformabilities. In addition, we study how well the neutron star radius can be reconstructed using only the gravitational-wave
observations of tidal deformability, that is, using quantities that are not related in any straightforward way.

Methods. The application of an artificial neural network in the equation-of-state reconstruction exploits the non-linear potential of
this machine learning model. Since each neuron in the network is basically a non-linear function, it is possible to create a complex
mapping between the input sets of observations and the output equation-of-state table. Within the supervised training paradigm, we
construct a few hidden-layer deep neural networks on a generated data set, consisting of a realistic equation of state for the neutron
star crust connected with a piecewise relativistic polytropes dense core, with its parameters representative of state-of-the art realistic
equations of state.

Results. We demonstrate the performance of our machine-learning implementation with respect to the simulated cases with a varying
number of observations and measurement uncertainties. Furthermore, we study the impact of the neutron star mass distributions on
the results. Finally, we test the reconstruction of the equation of state trained on parametric polytropic training set using the simulated
mass—radius and mass—tidal-deformability sequences based on realistic equations of state. Neural networks trained with a limited data

set are capable of generalising the mapping between global parameters and equation-of-state input tables for realistic models.
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1. Introduction

Neutron stars (NS) are currently the best astrophysical sites for
studying the details of dense matter physics in conditions that are
inaccessible for terrestrial experiments (see e.g. Haensel et al.
2007 for a textbook introduction) Specifically, this refers to the
equation of state (EOS) of dense, cold, neutron-rich matter at
densities many times higher than the nuclear saturation density
ps ~ 2.7 x 10 gem™3, corresponding to the nuclear saturation
baryon density n,~0.16 fm=>.

Because the complete theory of many-body nuclear inter-
actions is not known in full, recent efforts have been focussed
on inferring the EOS from astrophysical observations of NSs.
Recent observations include the NICER simultaneous measure-
ments of the mass and radius of PSR J0030+0451 (Riley et al.
2019; Miller et al. 2019), the 170817 binary NS inspiral detec-
tion and parameter estimation done by the LIGO and Virgo
Collaborations (Abbott et al. 2017a, 2019, 2018), including the
measurement of the masses and tidal deformability of the system
components, accompanied by the observations of high-energy
photons by the Fermi and INTEGRAL satellites (Abbott et al.
2017b), as well as several observations of massive ~2 My NSs
(Demorest et al. 2010; Fonseca et al. 2016; Antoniadis et al. 2013;
Cromartie et al. 2020). These observations provide indirect but
nevertheless informative answers to the question of how compact
objects are structured and, hence, the nature of their internal com-
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position. The procedure is based on solving the equations of stel-
lar structure, typically the Tolman—Oppenheimer—Volkoft (TOV)
equations (Tolman 1939; Oppenheimer & Volkoft 1939) for an
assumed EOS (or class of EOSs) to subsequently compare the
global observable NS parameters, such as gravitational mass M,
radius R, and, recently, tidal deformability A as well (Flanagan
& Hinderer 2008; Van Oeveren & Friedman 2017) to observed
values; in the simplest case of the TOV equation, there is a strong
relation between the sequence of global NS parameters (EOS
functionals), such as M(R) or M(A), and the pressure-density p(p)
relation defining the EOS. Therefore, given a set of astrophysi-
cal measurements, it is possible, in principle, to recover the EOS
by inverting the TOV equations. In reality, however, astrophysi-
cal observations are affected by measurement errors and they are
not distributed optimally in the parameter space, meaning that
an observer doesn’t have any freedom in selecting the intrinsic
parameters, such as the mass, M, of the observed object, to opti-
mally cover the range of pressure and density so that the part of
the EOS relation that is of interest may be revealed.

The most common strategy in the estimation of EOS utilises
Bayesian inference, which is based on the inversion of the TOV
equations and a limited number of observations. Examples of
this approach were recently presented in the following works:
Steiner et al. (2010, 2013), Raithel et al. (2016), Holt & Lim
(2019), Fasano et al. (2019), Hernandez Vivanco et al. (2019)
and Traversi et al. (2020). Here, instead of directly inverting
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the TOV equations, we study an alternative approach based
on a machine-learning (ML) artificial neural network (ANN),
inspired by the autoencoder (AE) architecture (Hinton & Zemel
1993; Goodfellow et al. 2016). Similar machine learning tech-
niques applied to results of numerical simulations and measure-
ments currently make up a field of active research; for example,
Haegel & Husa (2019) show that the final mass and spin of a Kerr
black hole can be predicted from the initial values of parameters
of black hole components. Specifically, this has been explored in
the field of the NS EOS, Fujimoto et al. (2018, 2020) presented
an application of a feed-forward neural network to infer the
EOS from NS mass-radius measurements, whereas Ferreira &
Providéncia (2019) compare machine-learning neural networks
and support vector machine regression methods in unveiling the
nuclear EOS parameters from NS observations.

Here, we study the application of ML to infer the dense-
matter EOS pressure-density p(p) relations from a simulated set
of NS observations, using a neural network trained on a pur-
posefully simple data set, based on piecewise relativistic poly-
trope EOS. We performed the analysis using simulated data
containing electromagnetic as well as gravitational-waves
observables: radii, masses, and tidal deformabilities, applying
the current knowledge of the NS mass distribution function, and
varying the number of simulated observations and measurement
uncertainties. While trained and tested on the piecewise relativis-
tic polytropic EOS data set, our ML model was also validated on
realistic EOS examples: it successfully recovers the SLy4 EOS
(Douchin & Haensel 2001) as well as the APR EOS (Akmal
et al. 1998) and the BSK20 EOS (Goriely et al. 2010). Addi-
tionally, we show the ANN network is flexible enough to gen-
eralise the mapping of the mass-radius M(R) relation from the
mass—tidal-deformability M(A) relation, effectively allowing for
the possibility of inference of the NS radius from several GW-
only measurements.

The outline of the article is as follows. In Sect. 2, we discuss
the choice of the machine learning algorithms used. Section 3 is
devoted to the description of the input and output data generation
procedures, with a particular emphasis on the EOS and the NS
structure. Section 4 contains results of the neural-networks esti-
mation of the dense-matter EOS from NS observables: M(R) and
M(A). We discuss the results in Sect. 5. We conclude in Sect. 6
with a summary of our study.

2. Machine learning

The machine learning field of computer science is based on
the premise that algorithms can learn from examples in order
to solve problems and make predictions without needing to be
explicitly programmed (Samuel 1959). Among the many ML
algorithms, the ANN currently belong to the most popular. Com-
plex ANN consisting of many neurons combined with various
training algorithms (such as the backpropagation and stochastic
gradient descent — for textbook review, see e.g. Goodfellow et al.
2016 and references therein) are able to capture complicated
non-linear relationships in the data by composing hierarchical
internal representations. The complex (in other words, deeper)
the algorithm is, the more abstract features it can, in principle,
learn from the data.

The main motivation for employing ANN in our project is
associated with non-linear potential of the this ML model. Since
each neuron in the network is basically a non-linear function, it
is possible to create a complex mapping between the input and
the output of the model. This characteristic is necessary for the
estimation of EOS based on observables, even when excluding
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uncertainties since the analytical relations between the input and
output parameters are non-linear.

The input to our model are astrophysical measurements of
NS parameters (presented to the ANN as two arrays of M, R or
M, A concatenated into one), whereas at the output we obtain
an array of similar shape (concatenated p, p values). Further in
text, we present additional project in which we reconstruct radius
based on gravitational observables (M and A concatenated into
one vector), the ANN output consists only of radius values. By
definition, the size of the output is half the size of the input.

3. Data preparation

In this section, we describe the design of parametric EOSs and
methods used to obtain the stellar parameters.

3.1. Equations of state and stellar structure

In order to cover a sufficiently-broad and representative space
of solutions corresponding to M(R) and M(A) sequences, we
employ the following simplified, parametric approach to the
EOS. We assume the measurement of the low-density part of the
EOS and adopt the SLy4 EOS description of Haensel & Pichon
(1994) and Douchin & Haensel (2001) up to some baryon den-
sity ng, comparable to and typically larger than the nuclear satu-
ration density (n, = 0.16 fm™>). At the g a relativistic polytrope
(Tooper 1965),

P(_n)l + nmbcz, (1)

pn) = kn’,  pc* =
replaces the SLy4 EOS. For each polytrope, the pressure p and
the mass-energy density pc? are defined using the pressure coef-
ficient «, the polytropic index y responsible for the stiffness of
the matter, and the mass of the baryon m;,. We select the y index
as a parameter of choice; consequently, x and m;, are determined
by demanding the chemical and mechanical equilibrium at 7.
The first polytrope with y; ends at some density, n; > ng, where
a second relativistic polytrope with vy, is attached, and contin-
ues until np, where a polytrope with s starts. The bottom-left
panel of Fig. 1 shows a schematic plot of the EOS. The parame-
ter ranges are collected in Table 1.

For a given EOS, we solve the equations of hydrostatic equi-
librium for a spherically symmetric distribution of mass. The
space-time metric is:

dr?
1 -2GM(r)/rc?
with the gravitational mass M(r) inside the radius r

dM(r)
dr

ds? = " V242 — - r*(d6* +sin? 0d¢?),  (2)

= dnp(r)r’. (3)

Then the resulting Tolman-Oppenheimer-Volkoff equations
(Tolman 1939; Oppenheimer & Volkoff 1939),

drP(r) G P(r) 4nr P(r)

o - R (p(r) + =2 )(M(r) + 2

-1
(1 _ 2G1;/I(r)) ’ @
c’r

supplied with the equation for the metric function v(r),
dv(r) _ 2 dP(r) 5)

dr— \P()+p(r)cz) dr
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Fig. 1. Top panels: left — sample M(R) relations; right — corresponding
M(R) relations. Red curve and corresponding observations: example of
a training datum, consisting on 20 points from the M(R) and M(R),
selected assuming random normal distribution with the mean value
equal to true values and standard deviations oy = 0.1 Mg, o = 1.0km
and o3 = 1.0km. The configurations with the same M and R have, in
general, different R. Bottom panels: left — schematic of a model EOS,
composed in the low-density part from the realistic crust of the SLy4
EOS (Haensel & Pichon 1994; Douchin & Haensel 2001) and piecewise
relativistic polytropes (Tooper 1965), right — mass-radius M(R) rela-
tions generated using the piecewise relativistic polytrope model (thin
solid grey curves) and astrophysical models of NS sequences, based on
the following EOSs: the SLy4 EOS (solid blue curve), the APR EOS
(dashed red curve) and the BSK20 EOS (dash-dotted green curve).

are integrated from the center towards the surface (where the
pressure, P, vanishes, which defines the radius of the star, R)
using a Runge-Kutta 4th order numerical scheme with a variable
integration step (Press et al. 1992) for a range of central param-
eters of the EOS (e.g. the central pressures P.) resulting in the
M(R) sequence.

In addition to gravitational mass, M, and radius, R, we also
calculate the static lowest-order tidal deformability of the star,
defined as
A= %RSIQ. ©)
The parameter A represents the star’s reaction on the external
tidal field (e.g. exerted by a companion in a tight binary system,
as observed in Abbott et al. 2017a). It is obtained in the lowest-
order approximation, by calculating the second (quadrupole)
tidal Love number k, (Love 1911), a function of stellar parame-
ters and hence the EOS:

ky = gxs(l - 2x)2(2 —y+2x(y — 1))(2x(6 —3y+3x(5y - 8))
+ 4x° (13 — 11y + x3y — 2) + 2x*(1 +y))

+3(1 =202 -y + 2x(y — 1)) In(1 -2x))", ©)

Table 1. Ranges of piecewise polytrope EOS parameters used in the
study.

no [fm™>] v m [fm™>] 3y m[fm™>] 1y
min 0.1 2.5 no 2.0 n 3.0
max 0.2 3.5 0.3 2.5 0.4 4.0

Notes. ny, ny, and n, are the baryon densities at which the relativis-
tic polytropes (Eq. (1), see also Fig. 1) with indices v, y», and y; are
attached, respectively (ny < n; < n,). The step sizes used in the data
generation were: ¢,, = 9,, = 0.25,,, = 0.1, 6,, = 0.025. In case of 9,
and ¢, the step varied during computation since the minimum values
dependent on ny and n,, respectively, but were not larger than J,,.

where x = GM/Rc? denotes the star’s compactness, and y the
solution of

1 +47Gr?/c2(P/c - p)
(r—=2GM(r)/c?)
2G/A(M(r) + 4nr3 P[c?)\ 6
Vr(r = 2GM(r)/c?) ) r=2GM(r)/c?

dy _ ¥
dr r

(p + P/ 02)2 c?
pdP/dp

47Gr?/c?

2
—TW 5p+9P/C +

. (®

evaluated at the stellar surface (Flanagan & Hinderer 2008; Van
Oeveren & Friedman 2017). In the following we use the mass-
normalised value of the A parameter,
A=a(Gm)” . )
In order to relate the A parameter with the stellar radius R, we
produce a following radius-like parameter R(M, A), which we
call the tidal radius (proposed in Wade et al. 2014):
R=2MA">. (10)
This function of A and M is henceforth used in the study. Sam-
ple M(R) and M(R) relations are presented in the top panels of
Fig. 1, along with simulated measurement points (the procedure
of obtaining them is presented in Sect. 3.2). Moreover, in the bot-
tom right panel of Fig. 1, we present a bundle of M(R) relations
used in the training, generated for piecewise relativistic poly-
tropes to compare the training set with the astrophysical models
based on the SLy4, APR and BSK20 EOSs. The training data
cover the space of parameters similar to astrophysical models;
therefore, we expect that the algorithm will generalise the EOS
reconstruction toward previously unseen types of curves (types
of curves on which it wasn’t trained on).

3.2. Neutron-star mass function and simulated measurement
errors

In order to investigate the influence of the amount and precision
of data — the number of observations N and their measurement
errors — we restrict the sample of M(R) and M (I?) for masses
from the astrophysically-realistic range above 1 M,, which cor-
responds to observed NS masses in Galactic binary NS systems
(Alsingetal. 2018), and in the GW 170817 and GW 190425 events
(Abbott et al. 2017a, 2020). We exclude from further analysis
all piecewise polytropic solutions that are not compatible with
current state of observations, giving the NS maximum masses
above 1.9 M, (conservative choice motivated by the observations
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of massive NSs, see Demorest et al. 2010; Fonseca et al. 2016;
Antoniadis et al. 2013; Cromartie et al. 2020).

To realistically recreate astrophysical observations, we select
the measurement points from a realistic NS mass function (mass
probability distribution) out of which the mass values are to
be randomly selected. Consistently with current observations
of NSs in the Galaxy, the mass function is represented by a
double-Gaussian distribution (Alsing et al. 2018) with the main
peak around the Chandrasekhar mass and the second, smaller
peak corresponding to the NS masses close to 2 My, namely
Ny, o) + N(uz,03), where u; = 1.34, o; = 0.07, up = 1.80,
0, = 0.21 (see Fig. 1 in Alsing et al. 2018 for details). This NS
mass function is consistent with a recent GW observation of a
heavy NS binary system (Abbott et al. 2020).

The training data set is prepared by assuming that the mea-
surements are witness to a measurement error. After randomly
choosing N values of the gravitational mass M from the above-
mentioned mass distribution, we construct the training samples
corresponding to a given M(R) or M(R) point by drawing val-
ues from normal distributions N(M(R), o;) or N(M(R), o), with
i = M,RR respectively. For the o; parameters, we chose the
values in the range of 0.01-0.1 My for o), and 0.01—-1km for
or. Uncertainties for tidal deformabilities are defined in terms
of R and were in range o = 0.01 — 1 km, which corresponds
to op = 10> — 10°. An example of the training sequence,
obtained assuming the double-Gaussian mass distribution and
ou = 0.1 Mg, op = 0 = 1.0km is shown in Fig. 1 (marked
red in top panels). Gray curves (and the red curve) correspond
to M(R) and M(R) relations computed with the TOV equations
for some examples of the piecewise polytropic EOS described
in Sect. 3.1. The scattered points correspond to the actual input
data fed to our model; they are based on the red curve values
according to the procedure describe above.

In total the training dataset contains 13982 piecewise poly-
trope EOSs (see Table 1 for the details), out of which the M(R)
and M(R) sequences were produced by solving the TOV equa-
tions. For each of these sequences, we then randomly selected N
values of M (N equal to 10, 15, 20, 30, 40, or 50 observations)
using the above-mentioned NS mass distribution, and recover
the corresponding values of R and R. For each input EOS, this
procedure is repeated a fixed number of Ny = 30 times. As a
result, each input EOS is represented in the training stage by Nj
different realisations of N observations of M(R) or M(R), sub-
ject to “observational errors” by drawing the values from normal
distributions parametrised by o;. This step allows us to effec-
tively estimate the errors that ANN makes in the prediction of
output sequences, that is, the error of reconstructing pressures
and densities. To compute these errors, we then calculate the
differences between the estimated output and the ideal expected
result (the “ground truth” values). The errors are averaged for
each measurement in a given collection of realisations. This step
is repeated for all the EOSs in the training dataset, returning the
set of error distributions: in the case of 20 measurements, we
recover 20 distributions. The error bars presented for the output
values in Sect. 4 are the mean values of these distributions.

We contrast the reconstruction errors with the ANN loss
function as they represent different features. Loss function is
a metric defining overall performance of the ANN in terms of
how well the predicted values are to original ground truth val-
ues in general. Reconstruction errors give detailed information
about differences between predicted pressures and densities and
their corresponding ground truth values. Furthermore, the recon-
struction error changes with respect to the values of pressure and
density.
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At the last step of data preparation, pressures and densi-
ties were converted to the decimal logarithm values and scaled
together with masses, radii, and tidal radii to the range (0, 1).
Rescaling is required by the ANN non-linear functions since
their domain is in the range (0, 1).

The data sets were then split into two separate subsets: a
training set (70% of all instances from the total dataset) and the
testing set (30% of the total dataset). In cases when the ANN
was tested against the measurements corresponding to realistic
tabulated EOS, the simulated measurement data was generated
in the same way as for the piecewise polytropic EOS.

3.3. ANN

In the design of the ANN, we used parts of the AE architecture.
The AE (Kramer 1991) is a specific type of network capable of
learning how to efficiently compress and encode the data into
the so-called latent space representation and, later, to decom-
press and reconstruct the initial data as closely as possible. The
core functionality of the AE is data dimensionality reduction.
During training, AE learns how to ignore the noise and extract
only crucial features of the data. Dimensionality reduction is
in particular useful in the application of AEs aiming for data
clustering. Specifically, the features of latent representation of
an AE may be used to characterise the data, for example, by
employing the conditional training of the variational AE using
the training data with parameter labels to subsequently study
the distribution of parameters in the latent space of variables. In
the present exploratory work, we employ the simplest encoder-
decoder structure of AE and we do not use the properties of the
latent space, leaving that aspect to a future work.

The final architecture of our ANN was chosen based on
empirical tests based on the data. As an output criterion for the
loss function we use the mean squared error (MSE). We tested
architectures ranging from one to eight hidden layers. The opti-
mal network, reaching the minimum value for MSE, was the one
containing four hidden layers with the following number of neu-
rons: 512, 256, 256, 512.

The final set of hyper-parameters used for the training was
the following (parameters defined as in e.g. Goodfellow et al.
2016):

— ReLU as the activation function for hidden layers,
sigmoid activation function for the output layer,
— ADAM optimiser (Kingma & Ba 2014),
batch size of 128,

— 0.001 learning rate.
The ANN architecture was implemented using the Python Keras
library (Chollet 2015) on top of the TensorFlow library (Abadi
et al. 2015), with support for the GPU. We developed the model
on the NVidia Quadro P6000' and performed the production
runs on the Cyfronet Prometheus cluster’ equipped with Tesla
K40 GPUs, running CUDA 10.0 (Nickolls et al. 2008) and the
cuDNN 7.3.0 (Chetlur et al. 2014).

4. Results

The results presented below are split into subsections. The
first present the results of EOS reconstruction from M(R) and
M(R) simulated measurements with errors using ANN trained
on piecewise polytropic EOS results. The second subsection

! Benefiting from the donation via the NVidia GPU seeding grant.
2 Prometheus, Academic Computer Centre CYFRONET AGH,
Krakéw, Poland.
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Fig. 2. Dependence of the MSE (ANN loss function described in
Sect. 3.2) as a function of number of observations N and measurement
uncertainties in the case of EOS estimation based on M(R) (left figure)
and M(R) (right figure) observations.

shows the application of ANN on the realistic EOS resulting
from microscopic calculations (SLy4 EOS, Douchin & Haensel
2001), that is, a reconstruction of the EOS which is not a piece-
wise polytropic model. We also study an application of the ANN
to a direct reconstruction of the NS radius with the GW-only
observations of the tidal deformability.

4.1. Translating the NS observations, M(R) or M(A), to EOS

Here, we present the results of the ANN application to the
reconstruction of the EOS based on the gravitational mass, M,
and radius, R, observations, which may be a result of elec-
tromagnetic observations of, for example, the NICER mission,
as well as the EOS reconstruction based on the gravitational-
wave observations of mass, M, and tidal deformability, A (which
we reparametrise as R; see Eq. (10)). The ANN described in
Sect. 3.3 is trained on data sets with varying number of obser-
vations and measurement uncertainties. The resulting figures of
merit — the ANN loss function MSE — are shown in Fig. 2 with
the left plot corresponding to the EOS reconstruction using M(R)
data and the right using M(R) data.

The accuracy of EOS estimation is mostly influenced by
the assumed measurement uncertainties in both presented cases.
The value of MSE is proportional to the measurement errors; it
reaches the highest value for the largest of considered uncertain-
ties: oy = 0.1 My for mass, M, og = 1km for the radius, R,
and o = 1km for the tidal radius, R. Furthermore, the number
of observations N had little effect on the MSE; the increase in N
slightly decreased the MSE in all studied cases.

The top panels of Fig. 3 present two examples of the EOS
reconstruction for the small and large measurement uncertainties
in the case of N = 20 M(R) observations. Both EOSs are recov-
ered correctly within reconstruction errors computed as specified
in the Sect. 3.2 with respect to the ground-truth values of related
input EOSs (marked with dashed lines on the right panel). The
error ranges in case of EOS estimation using M(R) data for dif-
ferent measurement uncertainties are presented in the upper part
of Table 2. The resulting o, and o, spans increase proportion-
ally, with increasing o, and og. Furthermore, in all presented
cases, the ranges for pressure errors were wider than density
errors, indicating that ANN was more uncertain in the recon-
struction of pressure values. The increase in the reconstruction
errors is expected because the overall performance of the ANN
was worse during the training (see the blue and violet curves in
Fig. 2 for comparison). Another effect related to the worse per-
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Fig. 3. Top panels: example of the input data (M(R) measurements with
errors, left plot), and corresponding output data from ANN (p(p) rela-
tion, right plot) for the estimation of EOS from M(R). Both input sam-
ples consist of 20 observations with masses randomly selected from a
mass distribution (Sect. 3.2) and measurement uncertainties equal to
oy = 0.1 Mg, og =1 km (blue sample), oy, = 0.01 My, og = 0.01 km
(red sample). For the description of the uncertainties on the output, see
the text. Bottom panels: example of the input data (M (R) measurements
with errors, left plot), and corresponding output data from ANN (p(p)
relation, right plot) for the estimation of EOS from M(R). Both input
samples consist of 20 observations with masses randomly selected from
a mass distribution (Sect. 3.2) and measurement uncertainties equal to
oy = 0.1 My, og = 1km (blue sample), o)y = 0.01 My, o = 0.01 km
(red sample). Dashed curves correspond to original (ground-truth, error-
free) sequences of input and output of the TOV equations. Presented
examples correspond to different EOSs.

formance of the EOS reconstruction is the significant increase of
errors and decrease in the accuracy of reconstruction for higher
p(p) values. Several effects may be responsible for this result, for
example, the impact of adopted NS mass distribution. Naturally,
if the dataset contains a smaller number of high (close to 2 M)
M samples, the high p(p) values of the EOS are less efficiently
probed. As a result, the EOS reconstruction is less certain overall
in this range. We discuss alternative explanations in Sect. 5.

The examples shown in the bottom panels of Fig. 3 cor-
responded to the EOS reconstruction using M(R) data for two
cases of small and large measurement uncertainties and N = 20
observations. Both EOSs are estimated correctly within recon-
struction errors with respect to the ground-truth values of cor-
responding EOSs (marked with dashed lines) and the errors are
proportional to the values of the density and pressure, similarly
to the M(R) case.

4.2. Application on realistic EOS

We test the ANN trained on piecewise polytropic EOS (and the
TOV solutions obtained with them) on a realistic microscopic
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Table 2. Reconstruction error ranges for o, and o, of the ANN for
studied measurement uncertainties in case of EOS reconstruction for

the M(R) data (upper table) and M(R) data (lower table).

M(R) input data

o [dyne cm™2]

oplg cm™3]

oy =0.01 Mg, og =0.01 km
oy =0.01 Mg, og =0.1km
oM = 0.1 M@, OR = 0.1 km
oy =0.1 Mg, or =0.5km
oM = 0.1 M@, OR = 1.0km

5x1012-10"3
9% 102 -4x 1013

1013 —5x 1013

2x1013-10
4%103 —2x 10

10%3-7x 10%3
2x10%¥-2 x 103
5% 1083-4x10%*
5x103-8x 103

8 x 103-10%

MR) input data

op [dyne cm‘z]

o, lg cm™3]

om =0.01Ms, o =0.01km
oy =0.01 Mg, op =0.1km
opm = 0.1 M@, Op= 0.1km
oy =0.1 Mg, 0 =0.5km
opm = 0.1 M@, Op= 1.0km

5% 1012 -8 x 10'2
9% 102 -3x%x 1013
1013 —4x 1013
2x1013-10
4%103 —2x 10

10%3-4 x 10%3
2x10%¥-2 x 103
4%x1083-2x10%*
5x103-7x%x10%*
8 x 1033-9 x 103

Notes. The reconstruction errors are computed as specified in Sect. 3.2.

EOSs: the SLy4 EOS (Douchin & Haensel 2001), the APR EOS
(Akmal et al. 1998) and the BSK20 EOS (Goriely et al. 2010).
To generate data for this test, we followed the approach detailed
in Sect. 3 as in the case of the polytropic EOSs. Figure 4 con-
tain the results of EOS reconstruction using the M(R) data (top
panels) and M (I?) (bottom panels) for N = 20, oy = 0.1 M and
og = lkm. Among the realistic microphysical EOS we have
considered, the EOS relation reconstructed for the APR EOS
and BSK20 EOS agree with original (ground truth) input values
almost perfectly, whereas the SLy4 EOS model is reconstructed
less precisely; however, the reconstructed EOS relation agrees
with the ground truth values (dashed line) within reconstruction
errors from Table 2.

These results show that the ANN trained on a relatively sim-
ple dataset of relativistic piecewise polytropes is able to gener-
alise the task of EOS reconstruction towards an unknown during
its training of realistic EOS.

4.3. Radius reconstruction using A measurements

We also present the results of an additional analysis which aims
to directly reconstruct the NS radius R from GW-only observa-
tions of masses and tidal deformabilities. As Eq. (9) shows, the
tidal deformability is related to M and R and to the second Love
number kj, all of which are functionals on the EOS. In the gen-
eral case, the A — R relation cannot be simply obtained (see e.g.
Zhang et al. 2020; De et al. 2018 and references therein). From
the point of view of the M(R) diagram, the relation between A
and R depends on the slope of M(R), which is indirectly a func-
tion of the NS susceptibility to deformations (see Sieniawska
et al. 2019 for examples of configurations with the same M and
R, but different A values; their Sect. 3.2, Figs. 9 and 10).

In order to study the ability of reconstructing the R based on
M and A observations, we modified the ANN described in the
Sect. 3.3 since, for this case, the size of the output was twice
smaller (M and R concatenated at the input and R and at the
output). We considered the same measurement uncertainties oy,
and o as in the EOS reconstruction. The results of the ANN
training are shown in Fig. 5 in terms of MSE.

Similarly as in the estimation of EOS, the strongest influ-
ence on the radius computation had the measurement uncertain-
ties. The MSE changed in range between 5 x 107> and 1072
for the data varying in uncertainties from o, = 0.01 My and
op =0.0lkmtooy = 0.1 M, and oy = 1 km. Moreover, the
impact of observations number was insignificant.
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Fig. 4. Top panels: ANN-reconstructed EOS from the M(R) data for
the SLy4 EOS model (left plot), the APR EOS model (middle plot)
and the BSK20 EOS model (right plot). Results are computed for the
input M(R) data consisting of 20 observations with measurement uncer-
tainties equal to me, = 0.1 My, 7oy = 1km. Bottom panels: ANN-
reconstructed EOS from the M(R) data for the same EOS as in the top
panels. Results for the input M(R) data consisting of 20 observations
with measurement uncertainties equal to me, = 0.1 My, ey = 1km.
Dashed lines correspond to the exact EOS relations.
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Fig. 5. Evolution of MSE (ANN loss) in the function of number of
observations and measurement uncertainties in case of R computation
based on M(R).

The examples of the radius estimation are presented in Fig. 6.
Top panels show the radius computed by ANN using piece-
wise polytropic data for two cases of measurement uncertainties:
om =0.01 My and o3 = 0.01 km (red sample) and oy = 0.1 Mg
and o = 1.0km (blue sample). Bottom panels present the esti-
mated radius for the data corresponding to the realistic cases: the
SLy4 EOS, APR EOS, and BSK20 EOS for oy = 0.1 M and
o = 1.0 km. Within the reconstruction errors, oy, all cases were
correctly reconstructed, in comparison to the dash line represent-
ing the exact values of radii computed from the TOV equations.
However, the ok increase proportionally to o and op. Fur-
thermore, the errors varied randomly with respect to the value
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Fig. 6. Top panels: example of the input data (/eft plot) and correspond-
ing output data from ANN (right plof) in the case of R computation
based on M(R) for the piecewise relativistic polytropes. Bottom pan-
els: radius reconstructed from the M (ﬁ’) data for the SLy4 EOS model
(left plot), the APR EOS model (middle plot), and the BSK20 EOS
model (right plot). All results were computed for the input M(R) data
consisting of 20 observations with measurement uncertainties equal to
oy = 0.1 Ms, 0 = 1km. Dashed lines correspond to exact values
obtained by solving the TOV equations.

of radius. In contrast to pressure and density errors, no trend in
radius errors was present.

In general, the radius reconstruction from tidal deformability
using ANN is possible, which demonstrates an additional abil-
ity on the part of ANN to build a non-linear mapping between
astrophysical parameters of interest.

5. Discussion

The above results point us to a conclusion that the application
of ANN in EOS reconstruction from astrophysical observations
works for the majority of our data, with decreasing reliability for
data with the largest measurement errors.

In comparison with similar approaches to the same problem
(Fujimoto et al. 2018, 2020), our work extends the study of appli-
cations of the NN to NS multi-messenger astrophysics in several
ways: we directly output the p(p) EOS table, not limiting the
output to selected EOS parameters, meaning that our implemen-
tation is, in principle, not bound to specific prescription of the
EOS. In addition, we study the application of the AE architec-
ture to the problem of EOS reconstruction, investigate as input
the tidal deformability parameters as a function of mass, not only
M(R), that is, we try to simulate a situation in which the data
comes exclusively from GW measurements, and we also investi-
gate varying number of measurements, measurement errors, and
realistic mass functions; for an additional investigation related to
the last point, see the text below.

Motivated by the issue behind the significant increase of the
reconstruction EOS errors for higher densities and pressures in
cases of large measurement uncertainties (me, = 0.1 My and
rerr = 1 km) we performed an additional analysis. We understand
this as a feature of the non-linearity of the mapping between the
observed values of M, R and R and the EOS. As shown in Fig. 3,
for example, the measurements at high masses probe a signifi-
cantly larger range of pressure and densities than those at lower
masses. In addition, the values of radii R and tidal deformabil-
ities A (and hence R) are typically smaller for larger masses:
stars are more compact and also less prone to deformation.
Sampling the measurements from the high-mass range, where
the differences between measurements are small but the errors
are comparable to the low-mass measurements, should result in
worse reconstruction in the high pressure and density range of
the EOS.

In order to study this further also from the point of view of
the choice of mass function, we performed additional simula-
tions. Since the double-Gaussian function we initially adopted
has its main distribution peak in the low-mass range (around
the Chandrasekhar mass), the majority of generated observa-
tion points correspond to lower pressures and densities, which
are precisely reconstructed by the algorithm. However, the high
mass, and therefore the high pressure and density range, is cov-
ered sparsely; hence the corresponding high pressures and den-
sities may be reconstructed less precisely. To test this explana-
tion, a new training data using alternative NS mass distribution
were prepared. We considered a uniform mass distribution in
the range between 1 and 2.2 M. During the training on the uni-
form mass distribution data set, the ANN reached lower values of
MSE with respect to the results presented in Sect. 4 with differ-
ences of around one order of magnitude in all considered cases.
As a result the EOS reconstruction was characterised by smaller
reconstruction errors for pressure and density; see examples of
reconstruction in Fig. 7 for 20 observations with o = 0.1 M,
and og = 1km. Moreover, predicted values probed range of
higher values with respect to results from Sect. 4.2. The uniform
mass distribution allow to generate observations close to max-
imum value of 2.2 M, (including measurement uncertainties),
whereas the previously used double-Gaussian function returned
masses rarely higher than 2 M.

Our results suggest that to efficiently probe the high-mass
end of the NS distribution, either measurement uncertainties
should be significantly decreased with respect to the low-mass
range or coverage of masses should be more uniform. The first
possibility may be feasible with the 3rd generation GW detec-
tors, such as the Einstein Telescope (Maggiore et al. 2020). On
the other hand, the EOS is accurately reconstructed for the low-
mass range (low pressure and density regime), which offers the
possibility of comparing nuclear parameters with the data from
terrestrial experiments.

It is also worth mentioning that a precise reconstruction of
EOS using ANN requires training data that is representative of
the problem. In order to reconstruct astrophysical EOS mod-
els (SLy4, APR, and BSK20), we have selected an appropri-
ate training set. However, ANN tested on different EOS cov-
ering different ranges for M, R, A, p, and p would result in
a worse reconstruction. To avoid this problem, it’s necessary
to optimise the parameter space of the training set and choose
astrophysical models accordingly. It would be straightforward to
expand the training dataset with a specific parametric descrip-
tion of dense matter, such as the MIT bag, to describe the de-
confined quark matter (Chodos et al. 1974, see Sieniawska et al.
2019 for an example of piecewise relativistic polytrope EOS
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Fig. 7. ANN reconstructed EOS using the M(R) data for the SLy4
EOS model (left plot), the APR EOS model (middle plot) and the
BSK20 EOS model (right plot) for the uniform NS mass distribution.
The presented results were computed for input data consisting of 20
observations with measurement uncertainties equal to oy, = 0.1 M,
og = 1km. Dashed lines correspond to exact values obtained by solv-
ing the TOV equations.

supplemented by quark EOS approximation of Zdunik 2000).
In such a case, the ANN would potentially serve as a tool to dis-
cover the presence of exotic phases or signatures of dense-matter
phase transitions.

6. Conclusions

We show that the ANN can be successfully applied in the
reconstruction of the dense matter EOS from NS observa-
tions, either electromagnetic (masses and radii) or based on
gravitational-wave measurements (masses and tidal deformabil-
ities). We study the influence of the number of observations
and the measurement uncertainties on the EOS reconstruction.
The latter factor turned out to have a more significant effect
on ANN performance, quantified in terms of the loss function
(MSE). Furthermore, we show that the ANN trained on piece-
wise relativistic polytropes is capable of generalising the EOS
reconstruction toward samples it wasn’t previously exposed to:
realistic EOSs resulting from microscopic calculations: the
SLy4, APR, and BSK20 EOS models.

We also introduce reconstruction errors for ANN: o, and o ),.
The presented values vary proportionally to either the uncer-
tainties of measurement with regard to the observables or to
the values of pressures and densities. To decrease reconstruction
errors, we suggest that either measurement uncertainties should
be reduced, which is possible with the new generation of tele-
scopes and detectors (i.e. Einstein Telescope for gravitational
observations), or masses should be generated more uniformly.
Moreover, we show that ANN can be successfully used in the
reconstruction of radius based on the gravitational observables,
which can be particularly useful for gravitational astronomy.

Among the many possibilities for further development in
studies of NS parameters using ML methods, we plan to focus on
the promising direction of variational auto-encoders. The latent
space of these algorithms contain features that allow for an in-
depth understanding of the distribution of parameters of the input
data. Studies of the latent space could be used, for example,
to infer information on the nuclear parameters of the EOS or
assess the plausibility of the existence of a dense-matter phase
transition.
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