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ABSTRACT Longitudinal dynamics control is the basis for autonomous driving of intelligent vehicles, which

have great significance to the development of intelligent transportation system (ITS). To solve the problems

of traditional sliding mode control method when applied to intelligent vehicle longitudinal dynamics, such

as large velocity tracking errors, strong chattering phenomenon and so on, a new sliding mode control

strategy based on RBF (Radical Basis Function) neural network is presented in this paper. Firstly, a nonlinear

mathematical model of the intelligent vehicle longitudinal motion is established by considering the dynamics

of the engine, the torque converter, the automatic transmission and the brake system. On the basis of the

system model, a variable structure control system with sliding mode is introduced to design a sliding mode

variable controller with RBF neural network. This controller can adaptively adjust the switching gain and

its stability is proved based on the Lyapunov theory. Finally, the effectiveness of the designed longitudinal

velocity control strategy is verified by simulation under typical driving conditions. The simulation results

show that the improved control algorithm can effectively suppress chattering, obtain the higher precision

and stronger robustness than the traditional sliding mode control. Thus, the longitudinal motion control

performance of intelligent vehicles is improved effectively.

INDEX TERMS Intelligent vehicles, intelligent transportation system, longitudinal dynamics control,

sliding mode control, RBF neural network.

I. INTRODUCTION

As the development direction of future vehicles and the cen-

tral part of intelligent transportation system (ITS), intelligent

vehicles have been widely concerned by scholars from differ-

ent countries in recent years [1], [2], [26]. Intelligent vehicles

usually can complete one or more driving tasks such as road

identification and tracking, obstacle recognition and collision

avoidance, vehicle detection and tracking, vehicle lateral and

longitudinal motion control, etc. It has great significance to

improving the utilization of road network, increasing road

capacity, reducing vehicle energy consumption and avoiding

accidents as much as possible [3]–[5]. Longitudinal control

is not only the basis of autonomous driving of intelligent

vehicle but also the main content to realize the active safety of

The associate editor coordinating the review of this manuscript and

approving it for publication was Yonghao Gui .

automobiles, and plays a very important role in the intelligent

vehicle driving control system [30].

In recent years, with the development of intelligent vehi-

cles and ITS, many scholars have also conducted in-depth

research on the vehicle longitudinal control system. For

example, a direct control structure was used by A. Fer-

rara et al. to design the second-order sliding mode lon-

gitudinal control strategy based on least sensors, with an

acceleration observer constructed to estimate the vehicle

acceleration [4]. Based on the output recursive cerebellum

model, Y. Peng designed a vertical adaptive inversion control

strategy for intelligent vehicles, which had strong robust-

ness to guarantee the stability of the closed-loop system [7].

Y. N. Li et al. proposed the parameters self-tuning fuzzy-PID

longitudinal controller to decrease the overshoot, enhance the

capacity of anti-dynamic disturbance and have certain robust-

ness. [8]. Palhares et al. used the system identificationmethod

to establish the longitudinal dynamicmodel and compensated
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the nonlinear characteristics of the system with the inverse

dynamic model [9].

According to these published literatures, most scholars

used fuzzy control [10], [29], model predictive con-

trol [11], [24], and robust control [12] to regulate the longi-

tudinal velocity of the vehicles and improve the accuracy of

speed tracking. However, the disadvantage of these control

methods is that they require specific models and complex

structures. The vehicle longitudinal dynamics control sys-

tem is a complex nonlinear system whose characteristics are

difficult to be accurately described by linear models. For

nonlinear systems with uncertainty and external disturbances,

sliding mode control (SMC) is one of the important meth-

ods to design longitudinal velocity controllers during these

years [13], [14], [25]. However, the gain in the sliding mode

control will cause high frequency chattering in the control

system. Thus, how to reduce the high frequency chattering

phenomenon has become an important quality factor of slid-

ing mode control method.

Compared with the traditional sliding mode control,

the non-singular terminal sliding mode control has the

advantages of fast dynamic response speed, limited time

convergence, elimination of chattering and high steady-state

tracking accuracy, which is suitable for longitudinal velocity

control [15]–[18]. Since neural network has strong adaptive-

ness, fault tolerant performance, and approximation charac-

teristics [19], [20], the unknown parameters of the controlled

object model can be approximated by this method. An adap-

tive neural network sliding mode control (ANN-SMC) law

designed by J. Guo et al. to enhance control effect of Speed

tracking control [21]. In different neural network control

strategies, RBF neural network has a simple structure and

can approximate any nonlinear function. It converges quickly

and has the ability to implement real-time control in complex

environments [22]. P. Hang et al. designed an improved adap-

tive sliding mode control (ASMC) algorithm using Radial

Basis Function (RBF) neural network, which has smaller

tracking error and better disturbance rejection performance

than SMC [22]. Based on these advantages, a non-singular

terminal sliding mode control strategy based on RBF (Rad-

ical Basis Function) neural network is proposed to regulate

longitudinal velocity in this paper.

The major purpose of this paper is to provide an accurate

and consistent acceleration tracking control of vehicle lon-

gitudinal speed. Based on the non-singular terminal sliding

mode control (NTSMC) and RBF neural network, the control

algorithm is designed to get approximately homogeneous

and linear node dynamics, which can not only make the

system have the characteristics of strong robustness and

fault tolerance, but also reduce system chattering problem

effectively.

The main contributions of this paper are as follows:

1) The non-singular terminal sliding mode control algo-

rithm is designed to get the higher tracking accuracy and

the faster dynamic response than the traditional sliding mode

control.

FIGURE 1. Sketch of vehicle longitudinal dynamics.

2) An adaptive algorithm combining neural network and

terminal sliding mode control is designed, which can elim-

inate the system chattering and achieve stable sliding mode

control without the accurate model of the object.

The rest of this paper is organized as follows: Section II

describes the vehicle model for control. Section III

designs the RBF-NTSMC controller and proves its stability.

Section IV shows the simulation results and compares them

with traditional sliding mode controllers. Finally, Section V

gets the conclusions of this paper.

II. SYSTEM MODEL

In this paper, the assumptions for vehicle longitudinal dynam-

ics models are made as follows [5].

1) The dynamics in intake manifold and chamber combus-

tion are neglected, and the overall powertrain dynamics are

lumped into a first-order inertial transfer function.

2) The vehicle runs on dry alphabet roads with high road–

tire friction, and the tire longitudinal slip is neglected.

3) The vehicle body is considered to be rigid and sym-

metric, without vertical motion, yaw motion, and pitching

motion.

4) The hydraulic braking system is simplified to be

a first-order inertial transfer function without pure time

delay.

Under the condition of these assumptions, the power train

system of the intelligent vehicle adopts the design of front

engine and rear wheel drive [36], [37]. The vehicle for control

is a passenger car with a gasoline engine, a torque converter,

a four-speed automatic transmission and a braking system.

Fig. 1 shows the powertrain dynamics. The inputs of the sys-

tem are the throttle angle αth and the brake pressure Pb. The

outputs include longitudinal acceleration a, vehicle velocity

v and other measurable variables.

A. THE ENGINE MODEL

Ignoring the influence of the throttle lag time and the tor-

sional stiffness of the drive shaft on the engine performance,

the engine steady-state output torque Te can be determined

by the engine speed ωe and the throttle opening αth by the

following formula.

Te = Eng (αth, ωe) (1)
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FIGURE 2. Engine torque map.

From the data of the engine, the engine torque character-

istic function can be obtained by Look-up Table model in

the MATLAB simulation system. The model can be used to

represent the relationship among output torque Te, the engine

speed ωe and the throttle opening αth. The characteristics are

shown in Fig. 2.

According to the relationship between the engine and the

torque converter, it is obtained that:

Jeω̇e = Te − Tp (2)

where Tp is the pump torque of the torque converter(TC), Je
is the inertia of fly wheel.

According to the above assumptions, the engine torque

characteristic function is combined with a first-order inert

phase to represent the dynamic characteristics of the engine

output torque:

fe (αth, ωe) = Te + τe · Ṫe (3)

where τe represents the first-order inertia link

constant.

According to (2) and (3), the first-order inertial engine

simplified model dynamics is obtained:

fe (αth, ωe) −
(

Tp + τe · Ṫp
)

Je
= ω̇e + τe · ω̈e (4)

B. TORQUE CONVERTER AND AUTOMATIC

TRANSMISSION MODEL

The torque converter characteristics include two parts: torque

characteristics and capacity characteristics, whose charac-

teristics are shown in Fig. 3(a) and Fig. 3(b). The torque

characteristics and capacity characteristics are expressed as

follows:

Tt

Tp
= τ

(

ωt

ωp

)

(5)

Tp

ω2
p

= Ktc

(

ωt

ωp

)

(6)

The torque converter pump torque expression can be

obtained from (6):

Tp = Ktc

(

ωt

ωp

)

· ω2
p

(7)

FIGURE 3. Characteristics of TC. (a) Torque ratio. (b) Capacity coefficient.

Bring (7) into (5) to obtain the torque converter turbine

torque expression:

Tt = Ktc

(

ωt

ωp

)

· ω2
p

· τ

(

ωt

ωp

)

(8)

where τ is the torque ratio factor, Ktc is the torque ratio of

torque converter, Tp is the pump wheel torque, and Tt is the

turbine torque.

In the simulation, the finite state machine theory is used to

describe the gear shifting behavior of the automatic transmis-

sion, and the gear shifting model is established by Stateflow

module inMATLAB. Automatic transmission gear shift rules

are related to the throttle percentage α and the automatic

transmission output speed ωt.

In this paper, the intelligent vehicle adopts the four-speed

automatic transmission. The switching logic of automated

transmission is shown in Fig. 4.

C. BRAKE MODEL

The front and rear brake systems use disc brakes. Using

response lag time τb to describe the time lag phenomenon dur-

ing braking, the mathematical model of the brake is described

as follows:

Tb =
2

τbs+ 1
µbrAbrRbrpbr (9)

where Tb is the vehicle braking torque, µbr is the

brake friction factor, Abr is the brake disc friction area,

Rbr is the braking force radius, and Pbr is the brake

pressure.

D. LONGITUDINAL DYNAMICS ANALYSIS OF VEHICLES

Suppose that the vehicle is driving on a sloped road and the

vehicle itself is regarded as a rigid body. The forces on the

vehicle are shown in Fig. 5. The tire stress point on each axle

is subject to the longitudinal direction force and the normal

VOLUME 7, 2019 162335
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FIGURE 4. Switching logic of automated transmission. (a)Shift-up rule.
(b)Shift-down rule.

direction force. Other external forces acting on the body

include air resistance, rolling resistance and gravity [33].

According to Newton’s second law, the equilibrium equa-

tion along the x-axis of the vehicle’s longitudinal direction

can be calculated by:

Ft = Ff + Fw + Fj + Fb (10)

The mathematical model of vehicle longitudinal dynamics

is:

Ft =
Td

r
=
T0i0ηt

r
Fb = kbpb

Fj = δmv̇

Fw =
1

2
CDAρu2

Ff = mgf sin(θ )

δmv̇ =
T0i0ηt

r
− kbpb − mgf sin(θ ) −

1

2
CDAρu2 (11)

where Ft is driving force, Fb is brake force, Fj is acceleration

resistance, Fw is the air resistance, Ff is the rolling resistance,

δ is the vehicle’s rotational mass conversion coefficient, m is

the total mass of the vehicle; v is the absolute speed, i0 is

the final drive ratio, kb is the brake pressure proportionality

factor, pb is the brake pressure, f is the rolling resistance

coefficient, θ is the ramp angle, CD is the air resistance, A

is the windward area, ρ is the air density and u represents

relative speed.

III. CONTROL STRATEGY

The intelligent vehicle longitudinal velocity control system is

an integrated control system consisting of acceleration target

control and servo switching control. The structure of the

control system is shown in Fig. 6.

FIGURE 5. Longitudinal dynamic schematic of vehicles.

FIGURE 6. Control configuration for vehicle acceleration tracking.

The controller includes throttle controller and brake con-

troller. According to different characteristics of throttle/brake

control, the throttle/brake RBF neural network non-singular

terminal sliding mode control system is separately designed.

A. DESIGN OF NON-SINGULAR TERMINAL SLIDING

MODE CONTROLLER

In this paper, the relative speed error of vehicles is an impor-

tant index for evaluating the longitudinal velocity control

system [27]. In order to improve the control accuracy of

the model, the relative acceleration error of the workshop is

used as another indicator of the control system. Under these

circumstances, define the variable parameters of the upper

non-singular terminal sliding mode controller as:

e = v0 − vref (12)

ė = a0 − aref (13)

where e and ė respectively represent speed error and acceler-

ation error, v0 is the tracking vehicle speed, a0 is the tracking

vehicle acceleration, vref is the reference speed, and aref is

the reference acceleration.

From (11), according to the vehicle driving dynamics equa-

tion, the desired acceleration ades can be defined as:

ades= v̇des=
Tedesi0ηt

δmr
−
kbpbdes

δm
−
mgfsin(θ )

δm
−
CDAρv2ref

2δm
(14)

The derivation is defined as:

v̈des = A1Ṫedes − B1ṗbdes − B2vref (15)

where Tedes is the engine desired torque, and pbdes is the

desired brake pressure.

The engine desired torque is selected as the control vari-

able. The purpose of the control is to make the desired speed

follow the change of the vehicle speed. According to the
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theory of sliding mode control, the sliding mode switching

surface of adaptive cruise control is designed as:

s = e+ ρ · ėp/q, ρ > 0, 1 < p/q < 2 (16)

Derivation of the sliding surface can be obtained:

ṡ = ė+ ρ · (p/q)ėp/q−1ë (17)

From formula (17), it can be found that when the state

variable of the system is closer to the sliding surface, at this

point, the convergence speed of the state variable is not

different from the linear sliding mode surface. They all decay

exponentially. However, when the system is far away from the

sliding surface, the advantages of non-singular fast terminal

sliding mode will be reflected, the state variable of the system

will be determined by ė. During this time, the convergence

speed of the system will be greatly improved compared with

the traditional linear sliding surface.

Bringing (15) to (17) leads to the conclusion:

ṡ= ė+ρ · (p/q)ėp/q−1
[

v̈0−(A1Ṫedes−B1ṗbdes−B2vref )
]

(18)

Define Ln as:

Ln = A1Ṫedes − B1ṗbdes (19)

Bringing Ln into (18):

ṡ = ė+ ρ × (p/q)ėp/q−1
(

v̈0 − Ln + B2vref
)

(20)

In order to make the movement point of the control system

return to the nonlinear sliding surface quickly and correctly,

the switching control rate is defined as follows:

Qu = ksgn(s) + µs k > 0, µ > 0 (21)

In the formula, k and µ are switching gains, and the value

should be large enough. Qu=[Q11,Q12]
T , Qu ∈ R2×1, sgn(s)

is the singum function, defined as follows:

sgn(s) =

{

+1 si1 (i = 1, 2) > 0

−1 si1 (i = 1, 2) < 0
(22)

Non-singular terminal sliding mode control law Lu can be

defined as:

Lu = v̈0 + B2vdes + ρ · (p/q)ė2−p/q + Qu (23)

The Lyapunov function Vu(s) and the first derivative of

Vu(s) versus time are separately shown in the following two

equations:

Vu(s) =
1

2
sT s (24)

V̇u(s) = sT ṡ (25)

Bring the design control law (23) into (20) to simplify as:

V̇u(s) = sT · ρ · (p/q)ėp/q−1 (−Qu) (26)

From (26), it is known that V̇u < 0, p, q are odd number,

1 < p/q < 2. Therefore, sT · ρ · (p/q)ėp/q−1 > 0.

FIGURE 7. The structure of RBF neural network.

Because V̇u < 0, the Lyapunov stability judgment is satisfied.

By designing a suitable control law, the linear sliding mode

arrives and remains zero in a limited time, V̇u = 0. At this

time, the linear sliding mode variable s enters the sliding

mode motion state. The error state variables e and ė enter the

sliding mode state to achieve system state convergence.

Based on the sliding mode control algorithm, the input

value u of the control system is obtained from the

designed control law, which is the desired acceleration ades
of demand. These above meet the design requirements,

and prove that the proposed NTSMC control approach is

feasible.

B. DESIGN OF RBF NEURAL NETWORK CONTROLLER

It is obvious that the sliding mode control algorithm has

better robust performance than other traditional control algo-

rithms [31]. This is mainly because the sliding mode control

system can design the sliding mode surface according to

the requirements of the controlled object. But the sliding

mode control also has the disadvantage of chattering problem

caused by its own characteristics, which would severely limit

its development prospects.

The RBF neural network control has the characteristics of

universal function approximation and the ability of adaptive

adjustment. If it is combined with terminal sliding mode

control, the joint control can greatly simplify the parameter

selection process while ensuring the robustness of the sys-

tem. Therefore, the controller is further designed by means

of RBF neural network structure and the switching gain

k of the sliding mode controller is adaptively adjusted to

reduce the chattering of the system and save the adjustment

time of the sliding mode variable controller. The RBF neural

network designed in this paper has two inputs, four hidden

layer nodes, and one output. The structure of the RBF neural

network is shown in Fig. 7.

The input of the RBF neural network is x = [x1x2]
T =

[sṡ]T and the output of the RBF neural network is:

u(t) = w · h =

∣

∣

∣

∣

∣

∣

4
∑

j=1

wj · hj

∣

∣

∣

∣

∣

∣

= k (27)

where w = [w1,w2,w3,w4]
T is the weight vector of RBF

neural network, h = [h1, h2, h3, h4]
T is the radial basis vector

of RBF neural network.
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The radial basis vector hj is the Gaussian function:

hj = exp(−

∥

∥x − cj
∥

∥

2

2b2j
) (28)

In the formula, cj = [c1, c2, c3, c4] is the central vector of

the network node and bj = [b1, b2, b3, b4] is the base width

vector of the network.

According to the sliding mode control principle, when the

control target is sṡ → 0, the weight adjustment index of the

RBF neural sliding mode is: E = s (t) ṡ (t).

Therefore, the weight parameter change can be defined as:

dwj = −η
∂E

∂wj(t)
= −η

∂s (t) ṡ (t)

∂wj(t)

= −η
∂s (t) ṡ (t)

∂k

∂k

∂wj(t)
η > 0 (29)

Because of

∂s (t) ṡ (t)

∂k
= s (t)

∂ ṡ (t)

∂k
= −bs (t) (30)

it can be got that:

∂k

∂wj(t)
= exp(−

∥

∥x − cj
∥

∥

2

2b2j
) (31)

where b and x are the system input parameters.

Based on (29) and (30), it can be obtained that:

dwj = η · b · s (t) · exp(−

∥

∥x − cj
∥

∥

2

2b2j
)

= η · b · s (t) hj (32)

The width parameter variation of the Gaussian function

obtained by (32) is:

dbj = −η
∂E

∂bj
= η · b · s (t)wjhj

∥

∥x − cj
∥

∥

2

b3j
(33)

The parameter of the hidden node neuron center node is:

dcji = −η
∂E

∂cj
= η · b · s (t)wjhj

x − cji

b2j
(34)

The RBF neural network weight adjustment algorithm

established in this paper can be expressed as follows:

wj (t) =wj (t − 1)+dwj (t)+η(wj (t − 1)−wj (t−2)) (35)

bj (t) = bj (t − 1)+dbj (t)+η(bj (t − 1) − bj (t−2)) (36)

cj (t) = cj (t − 1)+dcj (t)+η(cj (t − 1) − cj (t−2)) (37)

C. INVERSE VEHICLE LONGITUDINAL DYNAMIC

When the vehicle is in steady driving state, there is a cor-

responding relationship among longitudinal driving speed,

the engine’s torque and speed. According to the expected

acceleration ades obtained by the upper controller, the inverse

longitudinal dynamics model converts the expected acceler-

ation input by the inferior control system into throttle per-

centage and braking pressure to control vehicle motion [28].

FIGURE 8. Inverse model for vehicle longitudinal dynamics.

The structural diagram of inverse longitudinal dynamic

model is shown in Fig. 8.

The system is switched between the engine torque output

control and the brake torque control. If the system is switched

to engine torque output control, it is necessary to calculate the

desired throttle percentage according to the desired acceler-

ation. Besides, the calculation of desired engine torque and

the inverse engine model are required during this period.

Ignoring the mass conversion of the rotating parts of the

vehicle, the motion equation of the vehicle is manifested as

follows:

mv̇des = Ft − Fb − Ff (v) (38)

where Ft is the driving force of the engine acting on the

vehicle, Fb is the braking force of the braking action, and

Ff (v) is the sum of other resistances such as rolling resis-

tance, wind resistance and engine drag resistance.

According to the assumptions of vehicle longitudinal

dynamics system model established above, without consid-

ering the elastic deformation of the tire and the drive train,

the driving force can be expressed as:

Ft =

Te · τ

(

ωt
ωe

)

· i0Rgηt

r
(39)

Set

kt =

τ

(

ωt
ωe

)

· i0Rgηt

r
=

τ

(

vi0Rg
rωe

)

· i0Rgηt

r
(40)

In the process of vehicle motion and vehicle longitudinal

dynamics model simulation, kt is a real-time observation.

Substitute equation (40) into equation (39), and get:

Ft = Tdes · kt (41)

Based on (38) ∼ (40), the desired engine torque Tdes can

be calculated by

Tdes =
mv̇des + Ff (v)

kt
(42)

According to the desired engine torque and engine speed,

the desired throttle percentage can be obtained by means

of the inverse engine model. The inverse engine model is

showed as follows:

αdes = Eng−1 (Te, ωe) (43)
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FIGURE 9. Throttle opening characteristics of engine.

Using the data shown in Fig. 3, the inverse engine torque

characteristic function, which can be obtained from the output

torque of the engine and the engine speed to find the throttle

percentage, is shown in Fig. 9.

After the switching between engine torque output and

brake control, if the system is switched to the brake con-

trol, the desired braking pressure needs to be calculated

according to the desired acceleration [38], [39]. During

this period, the inverse braking system model needs to be

established. Based on the relationship between the braking

force and the braking pressure, the desired braking force

and the inverse braking system model can be determined

by:

Pdes =

∣

∣mv̇des + Ff (v)
∣

∣

kKd
(44)

where Pdes is the desired braking pressure, and kKd is the

braking pressure ratio coefficient.

D. ACCELERATION/BRAKE SWITCHING

In terms of ride comfort and reliability of the corresponding

components of the vehicle [32], frequent switches between

engine torque control and braking torque control should be

avoided during the running of vehicles, because frequent

control the throttle and brake at the same time may cause

system oscillations and performance conflicts. Therefore,

the switching line of the throttle/brake control should be

determined according to the desired acceleration [34], [35].

The line is defined as the longitudinal acceleration a0 of

the vehicle when the throttle percentage is minimum and is

determined by the engine reverse torque, the gear ratio of each

gear, the rolling resistance and the windward resistance. The

specific formula is as follows:

a0(v) =

Ft0
r

− mgf − 1
2
CDAρu2

δ · m
(45)

where Ft0 is the driving force for the full throttle closing. The

switching logic is defined as follows:

ades > a0(v) Engine control

ades ≤ a0(v) Brake control (46)

Therefore, the switching line is actually equal to the decel-

eration when coasting, as shown in Fig. 10.

FIGURE 10. Switching line between throttle and brake controls.

TABLE 1. Nominal parameters of vehicle model.

To avoid frequent switching between engine control and

brake control, a hysteresis layer is introduced near the switch-

ing surface, and the switching logic is redefined as follows:

ades − a0(v) > h Engine control

ades − a0(v) ≤ −h Brake control (47)

In this system, the hysteresis layer h = 0.05 m/s2.

IV. SIMULATION RESULTS AND ANALYSES

In this section, the simulation results of the vehicle lon-

gitudinal tracking control are analyzed to demonstrate the

validity of the proposed RBF-NTSMC control system. The

model uncertainties and external disturbances are considered

as the random numbers, and the vehicle parameters are listed

in Table 1.

To reflect the control effect, a sliding mode controller

(SMC) controller is designed at the same time to compare

with the RBF-NTSMC controller.

According to (17) and (18), the sliding mode switching

surface of longitudinal velocity control is:

s = e+ λ

∫ t

0

edt (48)

When λ >0, the control law is designed as follows:

ṡ = vdes − v̇ref + λ(vref − v0) (49)

ṡ = −εsgn(s) − ks ε > 0, k > 0 (50)
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FIGURE 11. Simulation results under NEDC. (a) Vehicle speed. (b) Speed
error. (c) Throttle percentage. (d) Brake pressure. (e) Gear position.

According to (49) and (50), the sliding mode controller is

described as:

vdes = v̇ref − λe− εsgn(s) − ks (51)

FIGURE 12. Simulation results under SFTP. (a) Vehicle speed. (b) Speed
error. (c) Throttle percentage. (d) Brake pressure. (e) Gear position.

The simulation is performed with two reference vehicle

speeds respectively. The simulation time is set to 200s, and

the simulation results are shown in Fig.11-12.
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First, neglecting the grade of ground, based on MATLAB

platform, the New European Driving Cycle (NEDC) simula-

tion results of RBF-NTSMC controller and SMC controller

are contrastively showed in Fig. 11.

The responses of longitudinal velocity, the speed and speed

error, are respectively shown in Fig. 11(a) and Fig. 11(b).

It is obviously that the velocity controlled by the proposed

RBF-NTSMC approach is in better consistent with the

desired tracking speed than SMC. The most steady-state

speed error of these two controllers is 1.67 m/s. Compared

with SMC control, the proposed RBF-NTSMC control not

only obtains the better tracking precision, but also has the

smaller oscillation and less overshoot.

Second, the simulation is carried out under the SFTP

(Supplement Federal Test Procedures) condition with rel-

atively rapid speed changing. Similarly, the vehicle per-

forms three rapid accelerations and three rapid decelerations

within 200s. The corresponding simulation results are shown

in Fig. 12.

As shown in Fig.11(b) and Fig.12(b), compared with

SMC control, the performance in average speed error can be

reduced by 77.1%, and 95.3% respectively.

Fig. 11(c) shows that the proposed RBF-NTSMC control

can effectively reduce the system oscillation caused by the

SMC control and make the throttle output smoother under

throttle control than SMC control.

Fig. 11(e) shows the performances of gear position change

under the two different controllers. Compared with the SMC

control, the gear switching is more stable under the proposed

RBF-NTSMC control. Especially in the range of 130-140

seconds, gear switching under the SMC control is too fre-

quent to affect driving safety and driving stability seriously.

It can be seen from Fig.11 and Fig.12 that under the pro-

posed RBF-NTSMC control the speed tracking can always

be consistent with the desired tracking speed. But, under

the traditional SMC control, the speed doesn’t track well,

especially at the relative high and steady-speed state, its speed

error is larger than that of the low-speed condition, and the

maximum is up to 4.38m/s. As shown in Fig.11 (b) and Fig.12

(b), under NEDC and SFTP conditions, the performance in

average speed error of the proposed RBF-NTSMC control

can be reduced 77.1% and 95.3% respectively.

For brake control, Fig. 11(d) and Fig. 12(d) show that the

effect of the proposed RBF-NTSMC control is basically the

same as that of SMC. It is concluded that the optimization of

RBF-NTSMC control mainly focuses on throttle control.

From Fig.12 (e), the gear switching performance of the

proposed RBF-NTSMC control is also better than that of the

SMC control.

V. CONCLUSION

In this paper, a new method of longitudinal dynamics control

of intelligent vehicle is proposed. Bases on the traditional

vehicle dynamics model, the RBF-NTSMC control approach

is designed to realize the speed tracking of the vehicle under

different working conditions. In order to realize this control,

the model which can truly reflect the nonlinear time-varying

characteristics of the vehicle longitudinal dynamics is built

and the control algorithm is applied to control throttle per-

centage and brake pressure. The simulation results prove

the effectiveness and the potential of the proposed control

strategy. Compared with traditional SMC, the RBF-NTSMC

can not only effectively reduce relative speed errors and

throttle response during longitudinal speed control, but also

reduce the chattering of the system. In a word, the proposed

RBF-NTSMC algorithm improves the tracking ability and

adaptability of intelligent vehicles under various driving con-

ditions.
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