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In this contribution a new method for supervised training is presented. This method is based on 
a recently proposed root finding procedure for the numerical solution of systems of non-linear 
algebraic and/or transcendental equations in mn. This new method reduces the dimensionality of 
the problem in such a way that it can lead to an iterative approximate formula for the computation 
of n - 1 connection weights. The remaining connection weight is evaluated separately using the 
final approximations of the others. This reduced iterative formula generates a sequence of points in 
mn- 1 which converges quadratically to the proper n -1 connection weights. Moreover, it requires 
neither a good initial guess for one connection weight nor accurate error function evaluations. The 
new method is applied on some test cases in order to evaluate its performance. 
Subject classification: AMS(MOS) 65K10, 49D10, 68T05, 68G05. 
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1 Introduction 
Consider a feed forward neural network (FNN) with I layers, I E [1, L). The error 
is defined as ek(t) = dk(t) - yf(t), for k = 1,2, ... , K, where dk(t) is the desired 
response at the kth neuron of the output layer at the input pattern t, yf(t) is the 
output at the kth neuron of the output layer L. If there is a fixed, finite set of input­
output cases, the square error over the training set which contains T representative 
cases IS: 

T T K 

E = LE(t) = L Le~(t). (1) 
t=1 t=1 k=1 

The most common supervised training algorithm for FNNs with sigmoidal non­
linear neurons is the Back-Propagation (BP), (4). The BP minimizes the error 
function E using the Steepest Descent (SD) with fixed step size and computes the 
gradient using the chain rule on the layers ofthe network. BP converges too slow and 
often yields suboptimal solutions. The quasi-Newton method (BFGS) (2), converges 
much faster than the BP but the storage and computational requirements of the 
Hessian for very large FNNs make its use impractical for most current machines. 
In this paper, we derive and apply a new training method for FNNs named Dimen­
sion Reducing Training Method (DRTM). DRTM is based on the methods studied 
in (3) and it incorporates the advantages of Newton and SOR algorithms (see [4]). 

2 Description of the DRTM 
Throughout this paper IRn is the n-dimensional real space of column weight vectors 
w with components WI, W2, ... , W n ; (y; z) represents the column vector with com-
ponents YI, Y2, ... , Ym, ZI, Z2, ... , Zk; OJ E( w) denotes the partial derivative of E( w) 
with respect to the ith variable Wi; g( w) = (gl (w), ... , gn (w)) defines the gradi­
ent V' E( w) of the objective function E at w while H = [Hij] defines the Hessian 
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2 -V' E(w) of Eat w; A denotes the closure of the set A and E(Wl' ... , Wi-I, . ,Wi+l, 
... , wn) defines the error function obtained by holding WI, ... , Wi-I, Wi+I, ... , Wn 
fixed. 
The problem of training is treated as an optimization problem in the FNN's weight 
space (i.e., n-dimensional Euclidean space). In other words, we want to find the 
proper weights that satisfy the following system of equations : 

m(W) = 0, i = 1, ... , n. (2) 
In order to solve this system iteratively we want a sequence of weight vectors 
{wP},p = 0,1, ... which converges to the point w· = (wi, ... , w~) EVe mn 
of the function E. First, we consider the sets Bi , to be those connected com­
ponents of g;I(O) containing w· on which ongi # 0, for i = 1, ... , n respec­
tively. Next, applying the Implicit Function Theorem (see [4, 3]) for each one 
of the components gi we can find open neighborhoods Ai c mn - 1 and A; i C 
m of the points y. = (wi, ... , W~_I) and w~ respectively, such that for' any 
y = (WI, ... , Wn-l) E Ai there exist unique mappings <Pi defined and continu­
ous in Ai such that: Wn = <Pi(Y) E A;,;, and gi (y; <pi(Y» = 0, i = 1, ... , n. 
Moreover, the partial derivatives OJ <Pi, j = 1, ... , n - 1 exist in Ai for each <Pi, 
they are continuous in Ai and they are given by : 

Ojgi(Y;<Pi(Y» . 
OJ<Pi(Y) = Ongi (y; <pi(Y» , l = 1, ... , n, j = 1, ... , n - 1. (3) 

Working exactly as in [3], we utilize Taylor's formula to expand <Pi(Y), about yP. 
By straightforward calculations, utilizing approximate values for gi(·) and Ojgi(-) == 
orjE (see [5], where error estimates for these approximations can also be found) we 
obtain the following iterative scheme for the computation of the n - 1 components 
ofw· : 

(4) 

where yP = [wf], vp = [Vi] = [w~,i - w~,n] and the elements of the matrix Ap are: 

.. _ [g;(yP + hej; w~,;) - g;(yP; ~,i) gn(yP + hej; ~,n) - gn(yP; w~,n) 1 
[a.]] - g;(yP; ~,; + hen) _ g;(yP; w~,;) gn(YP; w~,n + hen) - gn(YP; w~,n) , 

(5) 
with w~,i = <Pi(yP), h a small quantity and ej the j-th unit vector. After a de­
sired number of iterations of (4), say p = m, the nth component of W* can be 
approximated by means of the following relation : 

m+l _ m,n _ nE-l{( m+l _ '!'). gn(ym + hej; w::"n) - gn(ym; w::"n)} (6) 
wn - wn w· w] ( m n ) ( m n) . 

j=l] gn ym;wn' +hen -gn ym;wn' 

Note that the iterative formula (4) uses the matrices Ap and vp. The matrix Ap 
constitutes the reduced-Hessian of our network and its components incorporate 
components of the Hessian but are evaluated at different points. The matrix vp 
uses only the points w~,; (i = 1, ... , n - 1) and w~,n instead of the gradient values 
employed in Newton's method. A proof for the convergence of (4) and (6) can be 
found in [6]. 
Relative procedures for obtaining w· can be constructed by replacing Wn with any 
one of the components WI, . .. , Wn-l, for example Wint. The above described method 
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FR PR BFGS DRTM 
W U IT FE IT FE IT FE IT FE ASG 
(0.3,0.4) F F F F F F 5 20 100 
(-1, -2) F F F F 14 274 7 28 140 
(-1,10) F F F F 14 285 7 28 140 
(0.2,0.2) F F F F F F 5 20 100 
(2,1) F F F F 13 298 5 20 100 
(0.3,0.3) F F F F F F 5 20 100 
(-1.2,1.2) F F F F F F 7 28 140 

Table 1 Comparative results for Example 1. 

does not require the expressions /Pi but only the values tot'; which are given by the 
solution of the one-dimensional equations gi(wi, ... , tJ.:-l'·) = O. So, by holding 
yP = (wi,···, tJ.:-l) fixed, we can solve the equations: gi(yP; rf) = 0, i = 1, ... , n, 
for an approximate solution rf in the interval (a, b) with an accuracy D. In order 
to solve the one-dimensional equations, we employ a modified bisection method 
described in [3, 12] and given by the following formula: 

wP+ 1 = wP + sgmp(wP) q / 2P+1 , p = 0,1, ... , (7) 

with wO = a, q = sgmp(a) (b-a) and where sgn defines the well known sign function. 
This method computes with certainty a root when sgn1/l( wO) sgmp( wP) = -1 (see 
[12]). It is evident from (7) that the only computable information required by this 
method is the algebraic signs of the function 1/1. 
A high-level description of the new algorithm can be found in [8]. 

3 Simulation Results 
Here we present and compare the behavior of the DRTM with other popular meth­
ods on some artificially created but characteristic situations. For example, it is 
common in FNN training to take minimization steps that increase some weights by 
large amounts pushing the output of the neuron into saturation. Moreover, in vari­
ous small and large scale neural network applications the error surface has flat and 
steep regions. It is well known that the BP is highly inefficient in locating minima 
in such surfaces. In the following examples, the gradient is evaluated using finite 
differences for the DRTM and analytically for all the other methods. 
Example 1 The objective function's surface has flat and steep regions 

10 

E(w) = Egr, (8) 
i=1 

System (8), which is a well-known test case, (Jennrich and Sampson Function) (see 
[9]), has a global minimum at WI = W2 = 0.2578 .... In Table 1 we present results 
obtained by applying the nonlinear conjugate gradient methods Fletcher-Reeves 
(FR) and Polak-Ribiere (PR) and the quasi-Newton Broyden-Fletcher-Goldfarb­
Shanno (BFGS) method with the corresponding numerical results ofDRTM. In this 
Table IT indicates the total number of iterations required to obtain w* (iterations 
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Table 2 Comparison of Back-propagation with DRTM for Example 2. 

limit= 500); FE the total number of function evaluations (and derivatives) and 
ASG the total number of algebraic signs of the components of the gradient that 
are required for applying the iterative scheme (7). Because of the difficulty of the 
problem FR and PR failed to converge in all the cases (marked with an F in the 
table). The results are mixed with the BFGS method. Especially, when we are close 
to the minimum BFGS leaves the appropriate region moving to wrong direction in 
order to minimize the objective function. 
Example 2 The objective function's surface is oval shaped and bent. 
We can artificially create such a surface by training a single neuron with sig­
moid non-linearity using the patterns {-6, I}, {-6.1, I}, {-4.1, I}, {-4, I}, {4, I}, 
{4.1, I}, {6, I}, {6.1, I} for input and {O}, {O}, {0.97}, {0.99}, {0.01}, {0.03}, {I}, 
{I} for output. The weights WI, Wz take values in the interval [-3,3] x [-7.5,7.5]. 
The global minimum is located at the center of the surface and there are two valleys 
that lead to local minima. The step size for the BP was 0.05. The initial weights were 
formed by spanning the interval [-3,3] in steps of 0.05 and the interval [-7.5,7.5] 
in steps of 0.125. 
The behavior of the methods is exhibited in Table 2, where MN indicates the mean 
number of iterations for simulations that reached the global minimum; STD the 
standard deviation of iterations; sue the percentage of success in locating the 
global minimum and MAS the mean number of algebraic signs that are required 
for applying the iterative scheme (7). Note that for DRTM, since finite differences 
are used, two error function evaluations are required in each iteration. BP succeeds 
to locate the global minimum when initial weights take values in the intervals 
WI E [-0.8,1.5] and Wz E [-2.5,2.5]. On the other hand, DRTM is less affected 
by the initial weights. In this case we exploit the fact that we are able to isolate 
the weight vector component most responsible for unstable behavior by reducing 
the dimension of the problem. Therefore, DRTM is very fast and possesses high 
percentage of success. 

4 Conclusion and Further Improvements 
This paper describes a new training method for FNNs. Although the proposed 
method uses reduction to simpler one-dimensional equations, it converges quad­
ratically to n - 1 components of an optimal weight vector, while the remaining 
weight is evaluated separately using the final approximations of the others. Thus, 
it does not require a good initial estimate for one component of an optimal weight 
vector. Moreover, it is at the user's disposal to choose which will be the remaining 
weight, according to the problem. Since it uses the modified one-dimensional bisec­
tion method, it requires only that the algebraic signs of the function and gradient 
values be correct. It is also possible to use this method in training with block of 
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weights using different remaining weights. In this case, the method can lead to a 
network training and construction algorithm. This issue is currently under devel­
opment and we hope to address it in a future communication. 
Note that in general the matrix of our reduced system is not symmetric. It is 
possible to transform it to a symmetric one by using proper perturbations [6]. If 
the matrix is symmetric and positive definite the optimal weight vector minimizes 
the objective function. Furthermore, DRTM appears particularly useful when it is 
difficult to evaluate the gradient values accurately, as well as when the Hessian at 
the optimum is singular or ill-conditioned [8]. 
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