
ORIGINAL RESEARCH
published: 09 May 2022

doi: 10.3389/frai.2022.891624

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2022 | Volume 5 | Article 891624

Edited by:

Saban Öztürk,

Amasya University, Turkey

Reviewed by:

Mucahid Barstugan,

Konya Technical University, Turkey

Umut Özkaya,

Konya Technical University, Turkey

Bing Li,

Capital Normal University, China

*Correspondence:

Murat Onen

monen@mit.edu

Tayfun Gokmen

tgokmen@us.ibm.com

Seyoung Kim

kimseyoung@postech.ac.kr

†Present address:

Seyoung Kim,

Department of Materials Science and

Engineering, POSTECH, Pohang,

South Korea

‡These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 08 March 2022

Accepted: 01 April 2022

Published: 09 May 2022

Citation:

Onen M, Gokmen T, Todorov TK,

Nowicki T, del Alamo JA, Rozen J,

Haensch W and Kim S (2022) Neural

Network Training With Asymmetric

Crosspoint Elements.

Front. Artif. Intell. 5:891624.

doi: 10.3389/frai.2022.891624

Neural Network Training With
Asymmetric Crosspoint Elements
Murat Onen 1,2*‡, Tayfun Gokmen 1*‡, Teodor K. Todorov 1, Tomasz Nowicki 1,

Jesús A. del Alamo 2, John Rozen 1, Wilfried Haensch 1 and Seyoung Kim 1*†

1 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States, 2Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States

Analog crossbar arrays comprising programmable non-volatile resistors are under

intense investigation for acceleration of deep neural network training. However,

the ubiquitous asymmetric conductance modulation of practical resistive devices

critically degrades the classification performance of networks trained with conventional

algorithms. Here we first describe the fundamental reasons behind this incompatibility.

Then, we explain the theoretical underpinnings of a novel fully-parallel training algorithm

that is compatible with asymmetric crosspoint elements. By establishing a powerful

analogy with classical mechanics, we explain how device asymmetry can be exploited

as a useful feature for analog deep learning processors. Instead of conventionally

tuning weights in the direction of the error function gradient, network parameters

can be programmed to successfully minimize the total energy (Hamiltonian) of the

system that incorporates the effects of device asymmetry. Our technique enables

immediate realization of analog deep learning accelerators based on readily available

device technologies.

Keywords: analog computing, DNN training, hardware accelerator architecture, neuromorphic accelerator,

learning algorithm

INTRODUCTION

Deep learning has caused a paradigm shift in domains such as object recognition, natural language
processing, and bioinformatics which benefit from classifying and clustering representations of data
at multiple levels of abstraction (Lecun et al., 2015). However, the computational workloads to train
state-of-the-art deep neural networks (DNNs) demand enormous computation time and energy
costs for data centers (Strubell et al., 2020). Since larger neural networks trained with bigger data
sets generally provide better performance, this trend is expected to accelerate in the future. As a
result, the necessity to provide fast and energy-efficient solutions for deep learning has invoked a
massive collective research effort by industry and academia (Chen et al., 2016; Jouppi et al., 2017;
Rajbhandari et al., 2020).

Highly optimized digital application-specific integrated circuit (ASIC) implementations
have attempted to accelerate DNN workloads using reduced-precision arithmetic for the
computationally intensivematrix operations. Although acceleration of inference tasks was achieved
by using 2-bit resolution (Choi et al., 2019), learning tasks were found to require at least hybrid 8-
bit floating-point formats (Sun et al., 2019) which still imposes considerable energy consumption
and processing time for large networks. Therefore, beyond-digital approaches that can efficiently
handle training workloads are actively sought for.

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.891624
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.891624&domain=pdf&date_stamp=2022-05-09
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:monen@mit.edu
mailto:tgokmen@us.ibm.com
mailto:kimseyoung@postech.ac.kr
https://doi.org/10.3389/frai.2022.891624
https://www.frontiersin.org/articles/10.3389/frai.2022.891624/full

Onen et al. DNN Training With Asymmetric Devices

The concept of in-memory computation with analog
resistive crossbar arrays is under intense study as a promising
alternative. These frameworks were first designed to make use
of Ohm’s and Kirchhoff’s Laws to perform parallel vector–
matrix multiplications (see Supplementary Sections 2.1, 2.2 for
details), which constitute ≈ 2/3 of the overall computational
load (Steinbuch, 1961). However, unless the remaining ≈ 1/3
of computations during the update cycle is parallelized as well,
the acceleration factors provided by analog arrays will be a mere
3× at best with respect to conventional digital processors. It was
much later discovered that rank-one outer products can also be
achieved in parallel, using pulse-coincidence and incremental
changes in device conductance (Burr et al., 2015; Gokmen and
Vlasov, 2016). Using this method, an entire crossbar array can
be updated in parallel, without explicitly computing the outer
product1 or having to read the value of any individual crosspoint
element (Gokmen et al., 2017). As a result, all basic primitives
for DNN training using the Stochastic Gradient Descent
(SGD) algorithm can be performed in a fully-parallel fashion
using analog crossbar architectures. However, this parallel
update method imposes stringent device requirements since its
performance is critically affected by the conductance modulation
characteristics of the crosspoint elements. In particular,
asymmetric conductance modulation characteristics (i.e.,
having mismatch between positive and negative conductance
adjustments) are found to deteriorate classification accuracy
by causing inaccurate gradient accumulation (Yu et al., 2015;
Agarwal et al., 2016, 2017; Gokmen and Vlasov, 2016; Gokmen
et al., 2017, 2018; Ambrogio et al., 2018). Unfortunately, all
analog resistive devices to date have asymmetric characteristics,
which poses a major technical barrier before the realization of
analog deep learning processors.

In addition to widespread efforts to engineer ideal resistive
devices (Woo and Yu, 2018; Fuller et al., 2019; Grollier
et al., 2020; Yao et al., 2020), many high-level mitigation
techniques have been proposed to remedy device asymmetry.
Despite numerous published simulated and experimental
demonstrations, none of these studies so far provides a solution
for which the analog processor still achieves its original purpose:
energy-efficient acceleration of deep learning. The critical
issue with the existing techniques is the requirement of serial
accessing to crosspoint elements one-by-one or row-by-row
(Prezioso et al., 2015; Yu et al., 2015; Agarwal et al., 2017; Burr
et al., 2017; Ambrogio et al., 2018; Li et al., 2018, 2019; Cai
et al., 2019; Sebastian et al., 2020). Methods involving serial
operations include reading conductance values individually,
engineering update pulses to artificially force symmetric
modulation, and carrying or resetting weights periodically.
Furthermore, some approaches offload the gradient computation
to digital processors, which not only requires consequent
serial programming of the analog matrix, but also bears the
cost of outer product calculation (Prezioso et al., 2015; Yu
et al., 2015; Li et al., 2018, 2019; Cai et al., 2019; Sebastian
et al., 2020). Updating an N × N crossbar array with these

1The result of the outer product is not returned to the user, but implicitly applied

to the network.

serial routines would require at least N or even N2 operations.
For practical array sizes, the update cycle would simply take
too much computational time and energy. In conclusion, for
implementations that compromise parallelism, whether or not
the asymmetry issue is resolved becomes beside the point since
computational throughput and energy efficiency benefits over
conventional digital processors are lost for practical applications.
It is therefore urgent to devise a method that deals with device
asymmetry while employing only fully-parallel operations.

Recently, our group proposed a novel fully-parallel training
method, Tiki-Taka, that can successfully train DNNs based
on asymmetric resistive devices with asymmetric modulation
characteristics (Gokmen and Haensch, 2020). This algorithm
was empirically shown in simulation to deliver ideal-device-
equivalent classification accuracy for a variety of network types
and sizes emulated with asymmetric device models (Gokmen and
Haensch, 2020). However, the missing theoretical underpinnings
of the proposed algorithmic solution as well as the cost
of doubling analog hardware previously limited the method
described in Gokmen and Haensch (2020).

In this paper, we first theoretically explain why device
asymmetry has been a fundamental problem for SGD-based
training. By establishing a powerful analogy with classical
mechanics., we further establish that the Tiki-Taka algorithm
minimizes the total energy (Hamiltonian) of the system,
incorporating the effects of device asymmetry. The present work
formalizes this new method as Stochastic Hamiltonian Descent
(SHD) and describes how device asymmetry can be exploited as
a useful feature in a fully-parallel training. The advanced physical
intuition allows us to enhance the original algorithm and achieve
a reduction in hardware cost of 50%, improving its practical
relevance. Using simulated training results for different device
families, we conclude that SHD provides better classification
accuracy and faster convergence with respect to SGD-based
training in all applicable scenarios. The contents of this paper
provide a guideline for the next generation of crosspoint elements
as well as specialized algorithms for analog computing.

THEORY

Neural networks can be construed as many layers of matrices
(i.e., weights, W) performing affine transformations followed by
non-linear activation functions. Training (i.e., learning) process
refers to the adjustment of W such that the network response to
a given input produces the target output for a labeled dataset.
The discrepancy between the network and target outputs is
represented with a scalar error function, E, which the training
algorithm seeks to minimize. In the case of the conventional
SGD algorithm (Cauchy, 1847), values of W are incrementally
modified by taking small steps (scaled by the learning rate, η)
in the direction of the gradient of the error function sampled
for each input. Computation of the gradients is performed
by the backpropagation algorithm consisting of forward pass,
backward pass, and update subroutines (Rumelhart et al., 1986)
(Figure 1A). When the discrete nature of DNN training is
analyzed in the continuum limit, the time evolution of W can

Frontiers in Artificial Intelligence | www.frontiersin.org 2 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

FIGURE 1 | Effect of asymmetric conductance modulation for SGD-based training. (A) Schematic and pseudocode of processes for conventional SGD algorithm

(Cauchy, 1847). Vectors x, y, represent the input and output vectors in the forward pass whereas δ, z contain the backpropagated error information. The analog

architecture schematic is only shown for a single layer, where all vectors are propagated between upper and lower network layers in general. The pseudocode only

describes operations computed in the analog domain, whereas digital computations such as activation functions are not shown for simplicity. (B) Sketch of

conductance modulation behavior of a symmetric crosspoint device. (C) Simulated single-parameter optimization result for the symmetric device shown in (B).

conductance successfully converges to the optimal value for the problem at hand, G0. (D) Simulated residual distance between the final converged value, Gfinal , and

G0 for training the device with characteristics shown in (B) for datasets with different optimal values. (E) Sketch of conductance modulation behavior of an asymmetric

crosspoint device. The point at which 1G+ = 1G− is defined as the symmetry point of the device (Gsymmetry) (F) Simulated training result for the same

single-parameter optimization with the asymmetric device shown in (E). Device conductance fails to converge to G0, but instead settles at a level between G0 and

Gsymmetry . (G) Simulated residual distance (in semilog scale) between the final value, Gfinal , and G0 for training the device with characteristics shown in (E) for datasets

with different optimal values.

be written as a Langevin equation:

Ẇ = −η
[

∂E
∂W + ǫ (t)

]

(1)

where η is the learning rate and ǫ(t) is a fluctuating term
with zero-mean, accounting for the inherent stochasticity of the
training procedure (Feng and Tu, 2023). As a result of this
training process, W converges to the vicinity of an optimum
W0, at which

∂E
∂W = 0 but Ẇ is only on average 0 due to the

presence of ǫ(t). For visualization, if the training dataset is a
cluster of points in space, W0 is the center of that cluster, where
each individual point still exerts a force (ǫ(t)) that averages out to
0 over the whole dataset.

In the case of analog crossbar-based architectures, the linear
matrix operations are performed on arrays of physical devices,
whereas all non-linear computations (e.g., activation and error
functions) are handled at peripheral circuitry. The strictly
positive nature of device conductance requires representation

of each weight by means of the differential conductance of
a pair of crosspoint elements (i.e., W ∝ Gmain − Gref).
Consequently, vector-matrix multiplications for the forward
and backward passes are computed by using both the main
and the reference arrays (Figure 1A). On the other hand, the
gradient accumulation and updates are only performed on the
main array using bidirectional conductance changes while the
values of the reference array are kept constant2. In this section,
to illustrate the basic dynamics of DNN training with analog
architectures, we study a single-parameter optimization problem
(linear regression) which can be considered as the simplest
“neural network”.

2For implementations using devices showing unidirectional conductance

modulation characteristics, both the main and the reference array are updated.

When SGD is used as the training algorithm, values of Gref are not critical as long

as they fall in the midrange of Gmain’s conductance span (Gokmen and Vlasov,

2016).

Frontiers in Artificial Intelligence | www.frontiersin.org 3 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

The weight updates in analog implementations are carried
out through modulation of the conductance values of the
crosspoint elements, which are often applied by means of pulses.
These pulses cause incremental changes in device conductance
(1G+,−). In an ideal device, these modulation increments are
of equal magnitude in both directions and independent of
the device conductance, as shown in Figure 1B. It should be
noted that the series of modulations in the training process
is inherently non-monotonic as different input samples in the
training set create gradients with different magnitudes and signs
in general. Furthermore, as stated above, even when an optimum
conductance, G0, is reached (W0 ∝ G0 − Gref), continuing the
training operation would continue modifying the conductance in
the vicinity of G0, as shown in Figure 1C. Consequently, G0 can
be considered as a dynamic equilibrium point of the device
conductance from the training algorithm point of view.

Despite considerable technological efforts in the last decade,
analog resistive devices with the ideal characteristics illustrated
in Figure 1B have yet to be realized. Instead, practical analog
resistive devices display asymmetric conductance modulation
characteristics such that unitary (i.e., single-pulse) modulations
in opposite directions do not cancel each other in general, i.e.,
1G+ (G) 6= −1G−(G). However, with the exception of some
device technologies such as Phase ChangeMemory (PCM) which
reset abruptly (Burr et al., 2017; Sebastian et al., 2017; Ambrogio
et al., 2018), many crosspoint elements can be modeled by a
smooth, monotonic, non-linear function that shows saturating
behavior at its extrema as shown in Figure 1E (Kim et al., 2019b,
2020; Yao et al., 2020). For such devices, there exists a unique
conductance point, Gsymmetry, at which the magnitude of an
incremental conductance change is equal to that of a decremental
one. As a result, the time evolution of G during training can be
rewritten as:

Ġ = −η
[

∂E
∂G + ǫ (t)

]

− ηκ
∣

∣

∂E
∂G + ǫ (t)

∣

∣ .f hardware (2)

where κ is the asymmetry factor and fhardware is the functional
form of the device asymmetry (see Supplementary Section 1.1

for derivation). In this expression, the term −η
∣

∣

∂E
∂G + ǫ(t)

∣

∣

signifies that the direction of the change related to asymmetric
behavior is solely determined by fhardware, irrespective of the
direction of the intended modulation. For the exponentially
saturating device model shown in Figure 1E, fhardware = G −
Gsymmetry, which indicates that each and every update event
has a component that drifts the device conductance toward its
symmetry point. A simple observation of this effect is when
enough equal number of incremental and decremental changes
are applied to these devices in a random order, the conductance
value converges to the vicinity of Gsymmetry (Kim et al., 2020).
Therefore, this point can be viewed as the physical equilibrium
point for the device, as it is the only conductance value that is
dynamically stable.

It is essential to realize that there is in general no relation
between Gsymmetry and G0, as the former is entirely device-
dependent while the latter is problem-dependent. As a result,
for an asymmetric device, two equilibria of hardware and
software create a competing system, such that the conductance

value converges to a particular conductance somewhere between
Gsymmetry and G0, for which the driving forces of the training
algorithm and device asymmetry are balanced out (Figure 1F).
In examples shown in Figures 1C,F, G0 of the problem is
purposefully designed to be far away from Gsymmetry, so as to
depict a case for which the effect of asymmetry is pronounced.
Indeed, it can be seen that the discrepancy between the final
converged value, Gfinal, and G0 strongly depends on the relative
position of G0 with respect to the Gsymmetry (Figure 1G), unlike
that of ideal devices (Figure 1D). Detailed derivation of these
dynamics can be found in Supplementary Section 1.2.

In contrast to SGD, our new training algorithm, illustrated
in Figure 2A, separates both the forward path and error
backpropagation from the update function. For this
purpose, two array pairs (instead of a single pair), namely
Amain, Aref , Cmain, Cref are utilized to represent each
layer (Gokmen and Haensch, 2020). In this representation,
A = Amain − Aref stands for the auxiliary array and
C = Cmain − Cref stands for the core array.

The new training algorithm operates as follows. At the
beginning of the training process, Aref and Cref are initialized
to Amain,symmetry and Cmain,symmetry, respectively [reasons will be
clarified later, see SectionM1. Array Initialization (Zero-Shifting)
for details] following the method described in Kim et al. (2020).
As illustrated in Figure 2A, first, forward and backward pass
cycles are performed on the array-pair C (Steps I and II), and
corresponding updates are performed on Amain (scaled by the
learning rate ηA) using the parallel update scheme discussed in
Gokmen andVlasov (2016) (Step III). In other words, the updates
that would have been applied to C in a conventional SGD scheme
are directed to A instead.

Then, every τ cycles, another forward pass is performed on
A, with a vector u, which produces v = Au (Step IV). In its
simplest form, u can be a vector of all “0”s but one “1”, which
then makes v equal to the row of A corresponding to the location
of “1” in u. Finally, the vectors u and v are used to update Cmain

with the same parallel update scheme (scaled by the learning
rate ηc) (Step V). These steps (IV and V shown in Figure 2A)
essentially partially add the information stored in A to Cmain. The
complete pseudocode for the algorithm can be found in Section
M2. Pseudocode for SHD Algorithm.

At the end of the training procedure C alone contains the
optimized network, to be later used in inference operations
(hence the name core). Since A receives updates computed
over ∂E

∂C , which have zero-mean once C is optimized, its
active component, Amain, will be driven toward Amain,symmetry.
The choice to initialize the stationary reference array, Aref , at
Amain,symmetry ensures that A = 0 at this point (i.e., when C is
optimized), thus generating no updates to C in return.

With the choice of u vectors made above, every time steps IV
and V are performed, the location of the “1” for the u vector
would change in a cyclic fashion, whereas in general any set of
orthogonal u vectors can be used for this purpose (Gokmen and
Haensch, 2020). We emphasize that these steps should not be
confused with weight carrying (Agarwal et al., 2017; Ambrogio
et al., 2018), as C is updated by only a fractional amount in the
direction of A as ηC << 1 and at no point information stored

Frontiers in Artificial Intelligence | www.frontiersin.org 4 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

FIGURE 2 | DNN training with Stochastic Hamiltonian Descent (SHD) algorithm and dynamics of a dissipative harmonic oscillator. (A) Schematic and pseudocode of

training process using the SHD algorithm. The pseudocode only describes operations computed in the analog domain, whereas digital computations such as

non-linear error functions are not shown for simplicity. (B) Illustration of a damped harmonic oscillator system. (C) Differential equations describing the evolution of the

parameters with the SHD training algorithm in the continuum limit. (D) Equations of motion describing the dynamics of a harmonic oscillator. (E) Simulated results for a

single-parameter optimization task using the SHD algorithm with symmetric devices described in Figure 1B. (F) Simulated results for a single-parameter optimization

task using the SHD algorithm with asymmetric devices described in Figure 1E.

in A is externally erased (i.e., A is never reset). Instead, A and C
create a coupled-dynamical-system, as the changes performed on
both are determined by the values of one another.

Furthermore, it is critical to realize that the algorithm shown
in Figure 2 consists of only fully-parallel operations. Similar to
steps I and II (forward and backward pass on C), steps IV
is yet another matrix-vector multiplication that is performed
by means of Ohm’s and Kirchhoff’s Laws. On the other hand,
the update steps III and V are performed by the stochastic
update scheme (Gokmen and Vlasov, 2016). This update method
does not explicitly compute the outer products (x × δ and
u × v), but instead uses a statistical method to modify all
weights in parallel proportional to those outer products. As a

result, no serial operations are required at any point throughout
the training operation, enabling high throughput and energy
efficiency benefits in deep learning computations.

For the same linear regression problem studied above, the
discrete-time update rules given in Figure 2A can be rewritten
as a pair of differential equations in the continuum limit
that describe the time evolution of subsystems A and C
(Figure 2C) as:

Ȧ = −ηA
[

∂E
∂C + ǫ (t)

]

− ηAκA

∣

∣

∂E
∂C + ǫ (t)

∣

∣×

(Amain − Amain, symmetry)
(3)

Ċ = ηCA + ηCκC|A|×
(Cmain − Cmain,symmetry)

(4)

Frontiers in Artificial Intelligence | www.frontiersin.org 5 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

It can be noticed that this description of the coupled system
has the same arrangement as the equations governing the
motion of a damped harmonic oscillator (Figures 2B,D). In this
analogy, subsystemA corresponds to velocity, ν, while subsystem
C maps to position, x, allowing the scalar error function of
the optimization problem3, (C − C0)

2, to map onto the scalar
potential energy of the physical framework, 1

2kspring (x− x0)
2.

Moreover, for implementations with asymmetric devices, an
additional force term, Fhardware, needs to be included in the
differential equations to reflect the hardware-induced effects
on the conductance modulation. As discussed earlier, for the
device model shown in Figure 1E this term is proportional to
Amain − Amain,symmetry. If we assume Aref = Amain,symmetry (this
assumption will be explained later), we can rewrite Fhardware as a
function ofAmain−Aref , which then resembles a drag force, Fdrag ,
that is linearly proportional to velocity (ν ∝ A = Amain − Aref)
with a variable (but strictly non-negative) drag coefficient kdrag .
In general, the Fhardware term can have various functional forms
for devices with different conductancemodulation characteristics
but is completely absent for ideal devices. Note that, only to
simplify the physical analogy, we ignore the effect of asymmetry
in subsystem C, which yields the equation shown in Figure 2C

(instead of Equation 4). This decision will be justified in the
Section Discussions.

Analogous to the motion of a lossless harmonic oscillator, the
steady-state solution for thismodified optimization problemwith
ideal devices (i.e., Fhardware = 0) has an oscillatory behavior
(Figure 2E). This result is expected, as in the absence of any
dissipation mechanism, the total energy of the system cannot
be minimized (it is constant) but can only be continuously
transformed between its potential and kinetic components. On
the other hand, for asymmetric devices, the dissipative force
term Fhardware gradually annihilates all energy in the system,
allowing A ∝ ν to converge to 0 (Ekinetic → 0) while C ∝
x converges to C0 ∝ x0 (Epotential → 0). Based on these
observations, we rename the new training algorithm as Stochastic
Hamiltonian Descent (SHD) to highlight the evolution of the
system parameters in the direction of reducing the system’s
total energy (Hamiltonian). These dynamics can be visualized
by plotting the time evolution of A vs. that of C, which
yields a spiraling path representing decaying oscillations for
the optimization process with asymmetric devices (Figure 2F),
in contrast to elliptical trajectories observed for ideal lossless
systems (Figure 2E).

Following the establishment of the necessity to have
dissipative characteristics, here we analyze conditions at which
device asymmetry provides this behavior. It is well-understood
in mechanics that for a force to be considered dissipative,
its product with velocity (i.e., power) should be negative
(otherwise it would imply energy injection into the system).
In other words, the hardware-induced force term Fhardware =
−κAηA

∣

∣

∂E
∂C + ǫ(t)

∣

∣ (Amain −Amain,symmetry) and the velocity, ν =

3Conventionally error functions are written in terms of the difference between the

network response and the target output and gradients are computed accordingly.

However, in the absence of any stochasticity, ǫ, it can instead be written in terms

of the network weights and their optimal values as well for notational purposes.

Amain − Aref , should always have opposite signs. Furthermore,
from the steady-state analysis, for the system to be stationary
(ν = 0) at the point with minimum potential energy (x = x0),
there should be no net force (F = 0). Both of these arguments
indicate that, for the SHD algorithm to function properly, Aref

must be set to Amain, symmetry. Note that as long as the crosspoint
elements are realized with asymmetric devices (opposite to SGD
requirement) and a symmetry point exists for each device,
the shape of their modulation characteristics is not critical for
successful DNN training with the SHD algorithm. Importantly,
while a technologically viable solution for symmetric devices has
not yet been found over decades of investigation, asymmetric
devices that satisfy the aforementioned properties are abundant.

A critical aspect to note is that the SGD and the SHD
algorithms are fundamentally disjunct methods governed by
completely different dynamics. The SGD algorithm attempts to
optimize the system parameters while disregarding the effect
of device asymmetry and thus converges to the minimum of a
wrong energy function. On the other, the system variables in an
SHD-based training do not conventionally evolve in directions
of the error function gradient, but instead, are tuned to minimize
the total energy incorporating the hardware-induced terms. The
most obvious manifestation of these properties can be observed
when the training is initialized from the optimal point (i.e.,
the very lucky guess scenario) since any “training” algorithm
should at least be able to maintain this optimal state. For the
conventional SGD, when W = W0, the zero-mean updates
applied to the network were shown above to drift W away from
W0 toward Wsymmetry. On the other hand, for the SHD method,
when A = 0 and C = C0, the zero-mean updates applied
on A do not have any adverse effect since Amain is already
at Amain, symmetry for A = 0. Consequently, no updates are
applied to C either as Ċ = A = 0. Therefore, it is clear that
SGD is fundamentally incompatible with asymmetric devices,
even when the solution is guessed correctly from the beginning,
whereas the SHD does not suffer from this problem. Note that
the propositions made for SGD can be further generalized to
other crossbar-compatible training methods such as equilibrium
propagation (Scellier and Bengio, 2017) and deep Boltzmann
machines (Salakhutdinov and Hinton, 2009), which can also
be adapted to be used with asymmetric devices following the
approach discussed in this paper.

Finally, we appreciate that large-scale neural networks are
much more complicated systems with respect to the problem
analyzed here. Similarly, different analog devices show a
wide range of conductance modulation behaviors, as well as
bearing other non-idealities such as analog noise, imperfect
retention, and limited endurance. However, the theory we
provide here finally provides an intuitive explanation for:
(1) why device asymmetry is fundamentally incompatible
with SGD-based training and (2) how to ensure accurate
optimization while only using fully-parallel operations. We
conclude that asymmetry-related issues within SGD should be
analyzed in the context of competing equilibria, where the
optimum for the classification problem is not even a stable
solution at steady-state. In addition to this simple stability
analysis, the insight to modify the optimization landscape

Frontiers in Artificial Intelligence | www.frontiersin.org 6 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

to include non-ideal hardware effects allows other fully-
parallel solutions to be designed in the future using advanced
concepts from optimal control theory. As a result, these parallel
methods enable analog processors to provide high computational
throughput and energy efficiency benefits over their conventional
digital counterparts.

EXPERIMENTAL DEMONSTRATION

In order to validate the SHD dynamics theorized above,
we carried out an experimental demonstration of the SHD
algorithm using metal-oxide based electrochemical devices
reported in Sebastian et al. (2017) (Figure 3A). These
devices are three-terminal4, voltage-controlled crosspoint
elements, absent of any compliance circuits or serial-
access devices. The modulation characteristics obtained
for one of the devices is shown in Figure 3B, where
“crossed-swords” behavior is observed with a well-defined
symmetry point.

To capture the essence of SHD-based training, we have
chosen a 2-parameter optimization problem with a synthetic
dataset x1,2 and y generated of form y = G01x1 + G02x2 +
γ , where G01,2 are the unknowns searched for and γ is
the Gaussian noise. During the forward and backward pass
cycles, input values (from the training set) were represented
with different voltage levels and output results were obtained
via measuring the line currents. We note that in an actual
implementation representing input values with different pulse
widths rather than amplitudes might be beneficial, avoiding
the impact of the non-linear conductance of the crosspoint
elements for accurate vector-matrix multiplication. Following
the generation of the update vectors, x and δ, the array is
programmed in parallel using stochastic updating with half-
bias voltage scheme, as explained in Gokmen and Vlasov
(2016). Therefore, we neither computed the outer product
explicitly nor accessed the devices serially at any point
(Figure 3C).

The array training results using the SHD algorithm are
shown in Figure 3D. It can be seen that both A1 and A2

converges to 0, while C1 and C2 successfully converge to the
optimal values. Moreover, the distinctive spiraling behavior
(i.e., decaying oscillations) was observed for both variables,
displaying analogous dynamics to dissipative mechanical
systems. We found that the success of the training operation
strongly depends on the stability of the devices’ symmetry
points. As discussed earlier, any discrepancy between the
symmetry point and the reference point (initialized to the
symmetry point at the beginning of training) of a device
indicates a non-zero steady-state velocity. Therefore, future
crosspoint device technologies should exhibit a well-defined
symmetry point that is at least quasi-static throughout the
training operation.

4SHD algorithm is compatible with various configurations of resistive device, such

as 2-terminal devices, as well as 3-terminal devices we show here.

DISCUSSION AND SIMULATED TRAINING
RESULTS

In this section, we first discuss how to implement the SHD
algorithmwith 3 arrays (instead of 4) using the intuition obtained
from the theoretical analysis of the coupled-system. Then we
provide simulated results for a large-scale neural network for
different asymmetry characteristics to benchmark our method
against SGD-based training.

Considering a sequence of m + n incremental and n
decremental changes at random order, the net modulation
obtained for a symmetric device is on average m. On the
other hand, we have shown above that for asymmetric devices
the conductance value eventually converges to the symmetry
point for increasing n (irrespective of m or the initial
conductance). It can be seen by inspection that for increasing
statistical variation present in the training data (causing more
directional changes for updates), the effect of device asymmetry
gets further pronounced, leading to heavier degradation of
classification accuracy for networks trained with conventional
SGD (see Supplementary Figure S1). However, this behavior can
alternatively be viewed as non-linear filtering, where only signals
with persistent sign information, m

m+2n , are passed. Indeed,
the SHD algorithm exploits this property within the auxiliary
array, A, which filters the gradient information that is used
to train the core array, C. As a result, C is updated with
less frequency and only in directions with a high confidence
level of minimizing the error function of the problem at hand.
A direct implication of this statement is that the asymmetric
modulation behavior of C is much less critical than that of A
(see Supplementary Figure S2) for successful optimization as
its update signal contains less amount of statistical variation.
Therefore, symmetry point information of Cmain is not relevant
either. Using these results and intuition, we modified the original
algorithm by discardingCref and usingAref (set toAmain, symmetry)
as a common reference array for differential readout. This
modification reduces the hardware cost of SHD implementations
by 50% to significantly improve their practicality.

Our description of asymmetry as the mechanism of
dissipation indicates that it is a necessary and useful device
property for convergence within the SHD framework
(Figure 2E). However, this argument does not imply that
the convergence speed would be determined by the magnitude
of device asymmetry for practical-sized applications. Unlike
the single-parameter regression problem considered above, the
exploration space for DNN training is immensely large, causing
optimization to take place over many iterations of the dataset. In
return, the level of asymmetry required to balance (i.e., damp)
the system evolution is very small and can be readily achieved by
any practical level of asymmetry.

To prove these assertations, we show simulated results in
Figure 4 for a Long Short-Term Memory (LSTM) network,
using device models with increasing levels of asymmetry, trained
with both the SGD and SHD algorithms. The network was
trained on Leo Tolstoy’s War and Peace novel, to predict the
next character for a given text string (Karpathy et al., 2015).

Frontiers in Artificial Intelligence | www.frontiersin.org 7 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

FIGURE 3 | Experimental demonstration of SHD training algorithm. (A) Optical micrograph of metal-oxide based electrochemical devices (Sebastian et al., 2017).

Note that the image shows an integrated array whereas experiments were conducted with individual devices connected externally. (B) Conductance modulation

characteristics obtained for one of the devices, showing “crossed-swords” behavior with a well-defined symmetry point. (C) Schematic for array configuration used in

2-parameter optimization with SHD algorithm. All steps are shown using the same notation used in Figure 2 except for the backward pass (Step II) which is not

required for a single layer network. For training, sum of squared errors is used to calculate the scalar error and vector δ, Cmain is updated once every 10 samples (i.e.,

τ = 10) whereas [1, 0] and [0, 1] were used in Step IV (as u vectors). The reference arrays containing symmetry point information are stored in digital (as they remain

unchanged throughout the training) for simplicity. (D) Evolution of device conductances for the first (A1, C1) and the second (A2, C2) parameters. Plotting the values of

A vs. C produces the distinctive spiraling image, as expected from the theoretical analysis.

FIGURE 4 | Simulated training results for different resistive device technologies. (A) Simulated learning curves of a Long Short-Term Memory (LSTM) network trained

on Leo Tolstoy’s War and Peace novel, using different crosspoint device models under the SGD algorithm. Details of the network can be found in Karpathy et al. (2015).

(B) Simulated learning curves for the same network using the SHD algorithm. All simulation details can be found in Section M3. Training Simulator and LSTM Network.

See Supplementary Figure S4 for device-to-device variation included in the simulations and Supplementary Figure S6 for floating-point baseline comparison.

Frontiers in Artificial Intelligence | www.frontiersin.org 8 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

For reference, training the same network with a 32-bit digital
floating-point architecture yields a cross-entropy level of 1.33
(complete learning curve shown in Supplementary Figure S6).
We have particularly chosen this network as LSTM’s are known
for being particularly vulnerable to device asymmetry (Gokmen
et al., 2018).

The insets in Figure 4 show the average conductance
modulation characteristics representative for each asymmetry
level. The simulations further included device-to-device
variation, cycle-to-cycle variation, analog read noise, and
stochastic updating similar to the work conducted in Gokmen
and Vlasov (2016). The learning curves show the evolution of
the cross-entropy error, which measures the performance of a
classification model, with respect to the epochs of training. First,
Figure 4A shows that even for minimally asymmetric devices
(blue trace) trained with SGD, the penalty in classification
performance is already severe. This result also demonstrates once
more the difficulty of engineering a device that is symmetric-
enough to be trained accurately with SGD. On the other hand, for
SHD (Figure 4B), all depicted devices are trained successfully,
with the sole exception being the perfectly symmetric devices
(black trace), as expected (see Supplementary Figure S3 for
devices with abrupt modulation characteristics). Furthermore,
Figure 4B demonstrates that SHD can even provide training
results with higher accuracy and faster convergence than those
for perfectly symmetric devices trained with SGD. As a result,
we conclude that SHD is generically superior to SGD for analog
deep learning architectures.

Finally, although we present SHD in the context of analog
computing specifically, it can also be potentially useful on
conventional processors (with simulated asymmetry). The
filtering dynamics described above allows SHD to guide its
core component selectively in directions with high statistical
persistence. Therefore, at the expense of increasing the
overall memory and number of operations, SHD might
outperform conventional training algorithms by providing faster
convergence, better classification accuracy, and/or superior
generalization performance.

CONCLUSION

In this paper, we described a fully-parallel neural network
training algorithm for analog crossbar-based architectures,
Stochastic Hamiltonian Descent (SHD), based on resistive
devices with asymmetric conductance modulation
characteristics, as is the case for all practical technologies.
In contrast to previous work that resorted to serial operations
to mitigate asymmetry, SHD is a fully-parallel and scalable
method that can enable high throughput and energy-efficiency
deep learning computations with analog hardware. Our new
method uses an auxiliary array to successfully tune the system
variables in order to minimize the total energy (Hamiltonian)
of the system that includes the effect of device asymmetry.
Standard techniques, such as Stochastic Gradient Descent,
perform optimization without accounting for the effect of device
asymmetry and thus converge to the minimum of a wrong

energy function. Therefore, our theoretical framework describes
the inherent fundamental incompatibility of asymmetric devices
with conventional training algorithms. The SHD framework
further enables the exploitation of device asymmetry as a
useful feature to selectively filter and apply the updates only
in directions with high confidence. The new insights shown
here have allowed a 50% reduction in the hardware cost of
the algorithm. This method is immediately applicable to a
variety of existing device technologies, and complex neural
network architectures, enabling the realization of analog training
accelerators to tackle the ever-growing computational demand
of deep learning applications.

METHODS

M1. Array Initialization (Zero-Shifting)
Initialization of the reference array requires identification of
the conductance values of each and every element in Amain,
and programming the reference array conductances (Aref) to
those values. Given that under those conditions A = Amain −

Aref becomes 0, the method is also referred to as zero-shifting
(Kim et al., 2019a). To identify Amain, symmetry, a sufficiently long
sequence of increment-decrement pulses is applied to Amain.
Given the asymmetric nature of the devices, each pair results
in a residual conductance modulation toward each device’s
respective symmetry point. Following this step, the resultant
Amain = Amain, symmetry is then copied to the reference array.
Since these steps only occur once per training, the time and
energy costs are negligible with respect to the rest of the operation
(even for serial copying).

M2. Pseudocode for SHD Algorithm
Initialize

k : iteration step← 1, l : layer index
Set τ , η
For each layer
Al
main

[

k
]

= Al
main,symmetry

(

m× n matrix, dynamic
)

Al
ref
= Al

main,symmetry (m× n matrix, static)

Cl
main

[

k
]

= Cl
main,symmetry

(

m× n matrix, dynamic
)

For each labeled data pair [xi, ti]
Convert input xi to time encoded voltage pulse for the first

layer (x1i)
MAC O1[k] = x1i

[

k
]

.[C1
main

[

k
]

− A1
ref
]

Convert analog output to digital to store and apply non-
linear functions (activations, pooling etc.)

Forward propagateO1[k] as the input for next layer (always
using Cl

main arrays) for all layers

Compute error (cost) using network output Ofinal[k] and
target output t[k]

Backward propagate using the same dynamics (again using
Cl
main arrays) to compute all error matrices δl[k]

Update Al
main

[

k+ 1
]

← Al
main

[

k
]

− η.xl[k]
⊗

δl[k] using
stochastic update scheme

If mod (k,τ)= 0
ul[k] = [0, 0, 0 . . . 1, . . . 0, 0], where “1” is at kth location
MAC vl[k] = ul

[

k
]

.[Al
[

k
]

− Al
ref
]

Frontiers in Artificial Intelligence | www.frontiersin.org 9 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

Update Cl
main

[

k+ 1
]

← Cl
main

[

k
]

− η.ul[k]
⊗

vl[k]

M3. Training Simulator and LSTM Network
The simulation framework used here is the same that was used
in Gokmen and Vlasov (2016), Gokmen et al. (2017, 2018),
and Gokmen and Haensch (2020). The simulations start with
instantiating 3 devices per weight. Each device parameter (e.g.,
number of states, asymmetry factor, and symmetry point) is
generated with a given mean and standard variation, such
that no two devices are the same. Moreover, these device
parameters also bear cycle-to-cycle variation, defined by another
parameter, to make the operation more realistic. An open access
version of the simulator we used in this work can be found in
github.com/ibm/aihwkit for reproduction of the results.

The incremental changes are set such that devices have on
average 1,200 programmable states within their dynamic range.
Through setting the gain factors at the integrator terminals
appropriately, the average full conductance range of devices are
adjusted to be equivalent± 2 arbitrary units. Consistent with this
notation, the integrators are set to saturate at± 40 arbitrary units.
We have used 9-bit resolution for the ADCs and 7-bit resolution
for the DACs where the output-referred noise level was set at
0.02 arbitrary units. This selection was made in order not to
be limited by noise-related performance degradation, as studied
by Gokmen et al. (2017). In the update cycle, the maximum
allowed number of pulses (i.e., bit length, BL) was set to be
100. However, as update management determines this number
on-the-go depending on certain characteristics of the update
vectors and device parameters, real BL was <10 for the most of
the training.

The War and Peace dataset consists of 3, 258, 246 characters,
which we split into training and test sets as 2, 933, 246 and
325, 000 characters, respectively. The network is trained to have
a vocabulary of 87 distinct characters. We have selected to
use hidden vectors of 64-cell size, which corresponds to ∼77K

weights for the complete network. Full details of the network
architecture can be found in Karpathy et al. (2015).

The selection of the LSTM problem studied here in detail
is found to be optimal, which is complex enough to validate
the training algorithm, while it still is trainable with limited
number of conductance states, analog noise, variations, and
limited resolution. Given that SHD only resolves asymmetry
related issues, whereas other imperfections related with analog
processors such as device-to-device variability, cycle-to-cycle
variability, noise, and resolution can still deteriorate the training
performance significantly, we recommend future studies to
explore larger problems, once there are additional solutions for
these other non-idealities related to analog crossbar architectures.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

MO and TG conceived the original idea and performed
software experiments. TT fabricated devices. MO and SK
performed hardware experiments. All authors contributed to the
theory development and contributed to the preparation of the
manuscript. All authors contributed to the article and approved
the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2022.
891624/full#supplementary-material

REFERENCES

Agarwal, S., Gedrim, R. B. J., Hsia, A. H., Hughart, D. R., Fuller, E.

J., Talin, A. A., et al. (2017). Achieving ideal accuracies in analog

neuromorphic computing using periodic carry. Symp. VLSI Technol. 174–175.

doi: 10.23919/VLSIT.2017.7998164

Agarwal, S., Plimpton, S. J., Hughart, D. R., Hsia, A. H., Richter, I.,

Cox, J. A., et al. (2016). Resistive memory device requirements for a

neural algorithm accelerator. Proc. Int. Jt. Conf. Neural Networks. 929–938.

doi: 10.1109/IJCNN.2016.7727298

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Nolfo, C.,

et al. (2018). Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature. 558, 60–67. doi: 10.1038/s41586-018-0180-5

Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Sidler, S., Virwani, K., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Burr, G. W., Shelby, R. M., Sidler, S., Di Nolfo, C., Jang, J., Boybat, I., et al. (2015).

Experimental demonstration and tolerancing of a large-scale neural network

(165 000 Synapses) using phase-changememory as the synaptic weight element.

IEEE Trans. Electron Devices. 62, 3498–3507. doi: 10.1109/TED.2015.2439635

Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., et al. (2019). A fully

integrated reprogrammable memristor– CMOS system for efficient multiply–

accumulate operations. Nat. Electron. 2, 1. doi: 10.1038/s41928-019-0270-x

Cauchy, A. (1847). Méthode générale pour la résolution des

systemes d’équations simultanées. Comp. Rend. Sci. Paris.

25, 536–538.

Chen, Y., Member, S., Krishna, T., Emer, J. S., and Sze, V. (2016).

Eyeriss: an energy-efficient reconfigurable accelerator for deep

convolutional neural networks. IEEE J. Solid-State Circuits. 52, 127–138.

doi: 10.1109/JSSC.2016.2616357

Choi, J., Venkataramani, S., Srinivasan, V., Gopalakrishnan, K., Wang, Z., and

Chuang, P. (2019). Accurate and efficient 2-bit quantized neural networks. Proc.

2nd SysML Conf. 348–359.

Feng, Y., and Tu, Y. (2023). How Neural Networks Find Generalizable Solutions:

Self-Tuned Annealing in Deep Learning. Available online at: https://arxiv.org/

abs/2001.01678 (accessed March 01, 2022).

Fuller, E. J., Keene, S. T., Melianas, A., Wang, Z., Agarwal, S., Li, Y., et al.

(2019). Parallel programming of an ionic floating-gate memory array for

scalable neuromorphic computing. Science 364, 570–574. doi: 10.1126/science.

aaw5581

Gokmen, T., and Haensch, W. (2020). Algorithm for training neural

networks on resistive device arrays. Front. Neurosci. 14, e00103.

doi: 10.3389/fnins.2020.00103

Gokmen, T., Onen, M., and Haensch, W. (2017). Training deep convolutional

neural networks with resistive cross-point devices. Front. Neurosci. 11, 538.

doi: 10.3389/fnins.2017.00538

Frontiers in Artificial Intelligence | www.frontiersin.org 10 May 2022 | Volume 5 | Article 891624

https://www.frontiersin.org/articles/10.3389/frai.2022.891624/full#supplementary-material
https://doi.org/10.23919/VLSIT.2017.7998164
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1109/JSSC.2016.2616357
https://arxiv.org/abs/2001.01678
https://arxiv.org/abs/2001.01678
https://doi.org/10.1126/science.aaw5581
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/fnins.2017.00538
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Onen et al. DNN Training With Asymmetric Devices

Gokmen, T., Rasch, M. J., and Haensch, W. (2018). Training LSTM networks with

resistive cross-point devices. Front. Neurosci. 12, 745. doi: 10.3389/fnins.2018.

00745

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network training

with resistive cross-point devices: design considerations. Front. Neurosci. 10,

333. doi: 10.3389/fnins.2016.00333

Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., and

Stiles, M. D. (2020). Neuromorphic spintronics. Nat. Electron. 3, 360–370.

doi: 10.1038/s41928-019-0360-9

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). In - datacenter performance analysis of a tensor processing unit. Proc.

44th Annu. Int. Symp. Comput. Archit. 1–12. doi: 10.1145/3079856.3080246

Karpathy, A., Johnson, J., and Fei-Fei, L. (2015). “Visualizing and understanding

recurrent networks”, in ICLR 2016 (San Juan), 1–12.

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J.-J., et al. (2020).

Zero-Shifting Technique for Deep Neural Network Training on Resistive Cross-

point Arrays. Available online at: https://arxiv.org/abs/1907.10228 (accessed

March 01, 2022).

Kim, H., Rasch, M., Gokmen, T., Ando, T., Miyazoe, H., Kim, J. J., et al. (2019a).

Zero-shifting Technique for deep neural network training on resistive cross-

point arrays. arXiv 2019–2022.

Kim, S., Todorov, T., Onen,M., Gokmen, T., Bishop, D., Solomon, P., et al. (2019b).

Oxide based, CMOS-compatible ECRAM for deep learning accelerator. IEEE

Int. Electron Devices Meet. 847–850. doi: 10.1109/IEDM19573.2019.8993463

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature. 521, 436–444.

doi: 10.1038/nature14539

Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., et al. (2018). Analogue

signal and image processing with large memristor crossbars. Nat. Electron. 1,

52–59. doi: 10.1038/s41928-017-0002-z

Li, C., Wang, Z., Rao, M., Belkin, D., Song, W., Jiang, H., et al. (2019). Long

short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell.

1, 49–57. doi: 10.1038/s42256-018-0001-4

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature. 521, 61–64.

doi: 10.1038/nature14441

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020). Zero: Memory

Optimizations Toward Training Trillion Parameter Models. Atlanta, GA: IEEE

Press.

Rumelhart, D. E., Hinton, G. E., and Willams, R. J. (1986). Learning

representations by back-propagating errors. Nature. 323, 533–536.

doi: 10.1038/323533a0

Salakhutdinov, R., and Hinton, G. (2009). Deep Boltzmann machines. J. Mach.

Learn. Res. 5, 448–455.

Scellier, B., and Bengio, Y. (2017). Equilibrium propagation: bridging the gap

between energy-based models and backpropagation. Front. Comput. Neurosci.

11, e00024. doi: 10.3389/fncom.2017.00024

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020).

Memory devices and applications for in-memory computing.Nat. Nanotechnol.

15, 246–253. doi: 10.1038/s41565-020-0655-z

Sebastian, A., Tuma, T., Papandreou, N., Le Gallo, M., Kull, L., Parnell,

T., et al. (2017). Temporal correlation detection using computational

phase-change memory. Nat. Commun. 8. 1–10. doi: 10.1038/s41467-017-

01481-9

Steinbuch, K. (1961). Die lernmatrix. Kybernetik. 1, 36–45.

doi: 10.1007/BF00293853

Strubell, E., Ganesh, A., and McCallum, A. (2020). Energy and policy

considerations for deep learning in NLP. ACL 2019 - 57th Annu. Meet. Assoc.

Comput. Linguist. Proc. Conf. 3645–3650. doi: 10.18653/v1/P19-1355

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., et al.

(2019). Hybrid 8-bit floating point (HFP8) training and inference for deep

neural networks. Adv. Neural Inf. Process. Syst.

Woo, J., and Yu, S. (2018). Resistive memory-based analog synapse: the pursuit

for linear and symmetric weight update. IEEE Nanotechnol. Mag. 12, 36–44.

doi: 10.1109/MNANO.2018.2844902

Yao, X., Klyukin, K., Lu, W., Onen, M., Ryu, S., Kim, D., et al. (2020).

Protonic solid-state electrochemical synapse for physical neural networks. Nat.

Commun. 11, 1–10. doi: 10.1038/s41467-020-16866-6

Yu, S., Chen, P. Y., Cao, Y., Xia, L., Wang, Y., and Wu, H. (2015).

Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges

and prospect. Tech. Dig. - Int. Electron Devices Meet. IEDM. 17–3.

doi: 10.1109/IEDM.2015.7409718

Conflict of Interest: MO, TG, TT, TN, JR, WH, and SK were employed by IBM

Thomas J. Watson Research Center.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Onen, Gokmen, Todorov, Nowicki, del Alamo, Rozen, Haensch

and Kim. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 May 2022 | Volume 5 | Article 891624

https://doi.org/10.3389/fnins.2018.00745
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1145/3079856.3080246
https://arxiv.org/abs/1907.10228
https://doi.org/10.1109/IEDM19573.2019.8993463
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1038/s42256-018-0001-4
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/323533a0
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41467-017-01481-9
https://doi.org/10.1007/BF00293853
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1109/MNANO.2018.2844902
https://doi.org/10.1038/s41467-020-16866-6
https://doi.org/10.1109/IEDM.2015.7409718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Neural Network Training With Asymmetric Crosspoint Elements
	Introduction
	Theory
	Experimental Demonstration
	Discussion and Simulated Training Results
	Conclusion
	Methods
	M1. Array Initialization (Zero-Shifting)
	M2. Pseudocode for SHD Algorithm
	M3. Training Simulator and LSTM Network

	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

