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Abstract: The border effect is one of the problems, which can appear in the
application of self-organizing maps (SOM). Different solutions were presented in
the literature, but each of them has its drawbacks. In this paper we present a new
method for overcoming the border effect – optimized spiral spherical SOM. We
also show that standard measure of irregularity is not appropriate and present a
modified version – Gaussian measure of irregularity. Our simulations suggest that
the new variant of SOM achieves extremely low values of irregularity in comparison
to other methods. At the end of the paper we present a software solution for the
proposed method.
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1. Introduction

The self-organizing map was developed by Kohonen [10]. Original SOM uses unsu-
pervised learning and is mainly applied in the area of clustering, pattern recogni-
tion, brain theory, biological modeling mathematics, signal processing, data mining
[16]. The method clusters data and simultaneously preserves the topology of the
input space. In the learning phase the data is divided into groups and is from the
input space projected on the low-dimensional space. Neurons are positioned on a
grid, which can be one-, two-, or high-dimensional. Mapping is achieved by a pro-
cess of competition among neurons in the network [20]. Different types of SOM’s,
methods of learning, and possible application areas are described in Kohonen [10].

In applications researchers mostly use SOM which is based on a rectangular or
hexagonal network topology [10]. However, these types of topologies suffer from
the border effect, since at the border they have a restricted neighborhood [20]. As
further explained in Schmidt [21] lower number of neighbors reduces the capacity
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of bordering neurons to interact with other neurons during the learning process.
In order to avoid the border effect, one has to use a regular topology. This means
that every neuron has the same number of neighbors throughout the whole learning
process [21].

The border effect can be avoided by placing the grid of neurons on a three-
dimensional object. Two possible objects were proposed as perfect candidates in
the literature [21]: sphere and torus. Li et al. [12] showed a solution for the toroidal
SOM. The main problem in SOM’s which are built on torus is the visualization of
results. Maps generated from a torus are difficult to interpret [8, 29].

Due to the difficulties mentioned above, Ritter [16] suggests that a curved topol-
ogy may be better suited. A sphere can also be better visualized. One major
shortcoming of a spherical model is that options of perfectly regular placement of
neurons on the sphere are rather limited. These options are known as platonic
solids [16, 7]. Other arrangements of neurons on the sphere result in an irregular
topology [21].

First suggestion on generating spherical lattice was given by Ritter [16] and is
based on the idea of subdividing the sides of the icosahedron. Since in this way
there is no flexibility in the size of the network other methods were developed
[17, 7, 28, 13]. The main drawback of these methods is the irregularity of the
topology.

In this paper we address the problem of irregular topology in connection with
the flexible network size. We build on idea provided in Jagric [9] and propose a
method, which will guarantee a topology with highly regular topology and also
allows a totally exible network size. As far as we know, such type of solution
was not yet proposed in SOM literature. Additionally, we use a new variant of a
measure of irregularity as described in Jagric [9], which will be used to determine
the degree to which irregularity affects the SOM. Finally, we provide a software
implementation of the methods described in the paper.

The paper is organized as follows. First we explain the relation between the size
of the neural network and the border effect. In section three we show a new method
for measuring regularity of the network topology. In section four we propose a new
variant of the spherical SOM – optimized spiral spherical SOM. In section five we
provide a short description of the software implementation of the method. Finally,
we give concluding remarks in section six.

2. Size of the network and the border effect

The size of a network is essential in the process of model development. The selection
of an appropriate size of a network depends on: the size of the data used in the
learning phase, the structure of the data (number of variables) and application
area. Additionally, one has also to take into account the type of the neural network
which will be used in the application. Previous research has not provided any clear
guidance on this subject [3, 21].

The network size of a classical SOM is flexible and should depend on the size of
the input space [10]. Vesanto [24] suggests the network size to be as big as possible,
however, he also remarks on the computational intensity. In our experiments we
have clearly faced the trade-off between bigger size and the computational intensity.
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In his SOM toolbox Vesanto [24] suggests for the initial network size formula 5
√
n

where n is the number of observations. However, this rule cannot be applied
in all problems and does not refer to any SOM topology specifically neither do
other suggestions in the literature (e.g. Wendel and Buttenfield [26], Brereton [1])
therefore the eligibility of any guidance for the spherical SOM is to be examined.

In this paper we have no intention to discuss the appropriate size of the network.
The above description should only make clear that the size is a relevant factor when
using neural networks, and therefore the solutions to the border effect mentions in
the introduction, should allow flexible size of the network.

Classical flat SOM has no problem with flexibility in the size of the network
[11, 24]. In spherical SOM the flexibility in the size of the network depends on a
method, which was used to distribute the neurons on a sphere. In method proposed
by Ritter [16], neurons are arranged by subdividing an icosahedron recursively. This
means that one can only have specific number of neurons in a network. The size
by Ritter’s rule is defined as [21]:

N = 2 + 10 · 4n, n = 0, 1, 2, . . . (1)

Fig. 1 Different tessellation methods and possible network size (example for up to
7 iterations). Note: X-axis – number of divisions/iterations, Y-axis – number of

neurons. Source: Authors calculations.

Possible sizes of networks, which are constructed according to Ritter’s [16]
method are presented in Figure 1. Wu and Takatsuka [29] have modified the above
algorithm. They redivide the original icosahedron in each iteration. The size of
the network is therefore a bit more flexible and is defined as [21]:

N = 2 + 10 · n2, n = 0, 1, 2, . . . (2)

Other solutions are more flexible. Rakhmanov et al. [15] proposed another
method which is extremely flexible in neuron number but for which, Wu and Takat-
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suka [29] showed that fails to satisfy the irregularity conditions [21]. We will come
back to their idea of generalized spiral set, later extended by Saff and Kuijlaars
[17], and upgrade it further in our section 4. Nishio et al. [13] introduced a method
based on helix, which is divided in any number of parts. The method provides
quite good distribution of neurons, but the main problems remain in both poles of
the sphere where the starting and the ending points of the helix are placed. Other
solutions also exist as shown in Schmidt [21], but none of them provides a satisfying
results.

3. Measuring the border effect

In order to avoid any border effect a topology must satisfy two conditions [21]: first,
each neuron should cover the same quantity of space on the sphere, and second,
each neuron should have the same number of neurons in neighborhood.

The spherical SOM was developed by Ritter [16]. Even though it does not have
borders, as this is the case in plane topologies, there is still a problem of uniformly
arranging arbitrary number of neurons. Irregularity of the network is the equality
of the number of neighborhood neurons when observing all the neurons in the map
for different sizes of neighborhood area. Therefore, completely regular map has the
same number of neighborhood neurons for each of the neurons [14].

In Fig. 2 we give an example of the neighborhood on a spherical SOM, which
was generated according to generalized spiral set. We show the example for the
case where we select neuron η = 800 and neighborhood of a size r = 0.8.

Fig. 2 Neighborhood on a spherical SOM. Source: Authors calculations.
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Nishio et al. [14] introduced the concept of uniformity as the variance of the
number of neighborhood neurons at specific radius r over all neurons η on the
sphere. It is defined by Equation 3, where f(η, r) is the numbers of neurons within
radius r from neuron η [14]:

V (r) =
n
∑

η f(η, r)
2 −

(∑
η f(η, r)

)2
n2

. (3)

From the definition of variance V (r) it follows that it can only be a real pos-
itive number or zero, the latter is achieved in the ideal case when the number of
neighborhood neurons f(η, r) is the same for all neuron η. Since this definition
of uniformity depends on the neighborhood size parameter r, Nishio et al. [14]
proposed a general measure of irregularity (originally called UNTIDINESS by
Nishio et al. [14]), which take into account various neighborhood sizes r [14]:

IRREGULARITY =

∫ θ=π/2

θ=0

V

(
2 sin

(
θ

2

))
dθ. (4)

This measure integrates values of uniformity for all neighborhood sizes from
0 to

√
2, as follows from the observation that 2 sin(θ/2) is the length of a chord

for center angle θ, but authors did not specify an argument for the upper bound.
Since IRREGULARITY integrates non-negative numbers, its value can be a real
positive number or zero. Lower values are preferable. When the arrangement is
completely regular, IRREGULARITY is zero.

When thinking about regularity of neuron arrangement on the sphere, two
things should be considered [9]. First is that if we use Euclidean distances at
spherical topology, we ignore the true three-dimensional placing of neurons on a
curved surface. We constrain neurons to the surface of the sphere but if are using
Euclidean distances we are measuring distances of the shortest line segments that
are going through the sphere’s interior. For instance the distance between antipodal
points is the length of the line that goes through the center, the diameter. But
the actual distance between these points according to constrained neurons is the
distance we would cover if we would travel from one point to the other on the surface
of the sphere. Instead of straight lines of Euclidean geometry it is preferable to use
geodesics and therefore geodesic distances or great-circle distances. The simplest
approach to calculate distances on a unit sphere is by the definition of the dot
product for vectors xi and xj [2]:

d = arccos (xi · xj) . (5)

This formula can have rounding error if the distance between points is small
compared to circumference. In this case we can use the haversine formula [22] or the
Vincenty’s formulae [25]. For reasonable size of the network, the rounding error is
rather small and can be ignored. If for example the optimized spiral spherical SOM
network has a size of 2562 neurons (equivalent to 4th level of recursive subdivision
of the icosahedron), maximal difference between method based on Equation 5 and
Vincenty’s formulae is 3.11 · 10−12. Nevertheless, we will use Equation 5.

The second issue we should consider when thinking about regularity of neurons
on the sphere is to take into account the learning algorithm of the spherical SOM
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[9]. During learning, the neurons which are close to each other will be activated.
This will lead to adoption process, which moves selected neurons closer to the
input y. This will have a smoothing effect on the weight vectors of neighboring
neurons. The continued learning results in global ordering. A very central role in
the relaxation process has so-called neighborhood function, which is a smoothing
kernel defined over the neurons [10].

The measure of uniformity by Nishio et al. [14] as variance of the number of
neighborhood neurons is appropriate only if all the neurons in the neighborhood
of the best matching unit would be updated with the same weight, which is true
if we use the box neighborhood. Another widely applied and on our opinion more
suitable is the use of the Gaussian function as the neighborhood function

ft (xi) = exp
− d(xBMU, xi)

2

2σ2(t) , (6)

where σ(t) is the learning rate parameter at time t and xBMU is the best
matching unit. This function provides smoother local relaxation as it operates
with fade-out effect, as described by [10].

For this neighborhood function the irregularity measure written above could not
be appropriate any more. The neurons are updated according to the distance from
the best matching unit and so the irregularity measure should take this distance
into account. As proposed in [9] we will next examine the idea of the measure that
uses the Gaussian function at learning process. Let the total learning update be
the sum of the neighborhood function for neuron η at learning parameter r

g (η, r) =

N∑
i=1

exp−
d(xη, xi)

2

2r2 . (7)

It does not present the actual total learning update as during learning process
this amount is then multiplied with learning rate function at time t before applied
to current weights. But these multiplications only scale total learning update
according to the current step in the learning process so for the research of the
regularity of the neuron arrangement, we can neglect them.

After computing the total learning update g(η, r) at learning parameter r for
all neurons, we can define uniformity as the variance of them

V (r)Gaussian =
N∑
i=1

(
g(i, r)− g(i, r)

)2
N

. (8)

When the neurons are ideally uniformly arranged the total learning update is the
same for all neurons and consequently the variance is zero. When the arrangement
of neurons is not uniform the total learning update differs from neuron to neuron
and the variance is positive.

This irregularity measure is subject to learning parameter r so we propose an
independent measure of irregularity, in the same manner as Nishio et al. [14], that
is as the integral of uniformity from minimum learning parameter r = 0, to the
largest sensible learning parameter r = maxi,j d(i, j) (r = π at unit sphere). At
this learning parameter, the fade-out effect at the antipodal points is rather small
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so most of the neurons on the sphere are updated with the same weight and the
spherical SOM would hardly order according to the data. The actual minimum and
maximum learning parameter r in the learning process should be chosen carefully
and are subject to number of neurons and the data, and there is not a uniform
recipe for them (as with Kohonen’s [10] SOM). But they should not go outside the
sensible borders written above and that is the reason we choose them

IRREGULARITYGaussian =

∫ π

r=0

V (r)Gaussiandr. (9)

4. Optimized spiral spherical SOM – a new model
of spherical SOM

Starting point of the idea presented in Jagric [9] is to use generalized spiral set
introduced by Rakhmanov et al. [15] as initial distribution of neurons on a sphere.
There are two main reasons for this decision:

- Generalized spiral set algorithm is a fast and efficient way of distributing any
number of neurons on a sphere.

- The distribution gives a satisfying regularity of the topology, especially at
lower number of neurons.

The method of generalized spiral set was motivated by hexagonal tilings and
numerical experimentation [17]. Rakhmanov et al. [15] have developed an algo-
rithm, which uses spherical coordinates (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. The
coordinates are defined as [17]:

θk = arccos(hk), hk = −1 +
2(k − 1)

N − 1
, 1 ≤ k ≤ N, (10)

ϕk =

(
ϕk−1 +

3.6√
N

1√
1− h2

k

)
(mod 2π), 2 ≤ k ≤ N − 1, ϕ1 = ϕN = 0. (11)

The coordinates are then used to define a set of points ω̂N = {θk, ϕk}Nk=1, which
author name a generalized spiral set on S2 [17, 15]). The process of calculating the
positions of points on a sphere can be easily geometrically interpreted. In the first
step, we divide the sphere with N horizontal planes. The planes have predefined
distance between each other. The distance is set to 2/(N − 1) units. In this way
we generate N circles on the sphere. Due to the properties of the sphere are the
first and the last circles of a size of a point. Using geographical terms one could
name them north and south poles. The algorithm places on each circle only one
point. After the point is placed on the selected circle, we move up to next circle.
The points (θk, ϕk) are positioned counterclockwise on circles with fixed distance,
which is independent of k [17]. The process is graphically demonstrated in Figure
3 where an example for N = 6 is given.
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Fig. 3 Construction process of generalized spiral points for n = 6. Source:
E. B. Saff and A. B. J. Kuijlaars [17], pp. 5–11.

The distance between points is a fixed value. In the algorithm above, the dis-
tance is defined as (ϕk−ϕk−1)

√
1− h2

k. The value is calculated based on the result
of Habicht and van der Waerden [6]. They suggest that it should be approximately
[17]:

δN =

(
8π√
3

)1/2
1√
N

≈ 3.809
1√
N

, (12)

that is

(ϕk − ϕk−1)
√
1− h2

k = 3.809
1√
N

. (13)

As we can see, the definition of the distance includes a constant. The value
of the constant was defined on numerical simulation. No analytical solution has
yet been provided for defining the value of the constant [17]. In Figure 4 we give
numerical experimentation in order to show the relationship between the selected
value of the constant, size of the sphere, and different types of irregularity measures.
Our results confirm that the value cannot be set fix for different sizes, however there
exists an interval for best solutions (see Figure 4).

In order to have more general definition Saff and Kuijlaars [17] introduced a pa-
rameter C in place of the constant. The parameter C can be adjusted appropriately
for the application at hand:

θk = arccos(hk), hk = −1 +
2(k − 1)

N − 1
, 1 ≤ k ≤ N, (14)

ϕk =

(
ϕk−1 +

C√
N

1√
1− h2

k

)
(mod 2π), 2 ≤ k ≤ N − 1, ϕ1 = ϕN = 0. (15)
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Fig. 4 Relationship between C, N and different measures of irregularity – numer-
ical simulation. Note: A) Irregularity defined by Nishio et. al [14], B) Gaussian
measure of irregularity, C) Irregularity as maximum variance; N – size of the net-

work, C – selected value of the constant. Source: Authors calculations.

As we can see, the proposed algorithm has some drawbacks:

- Different treatment of points on a sphere. First and the last point (the poles)
are fixed.

- No analytical solution to the definition of the distance between points on the
sphere.

- It also turns out that the algorithm does not distribute points on the sphere
optimally according to the measure of irregularity. The distribution can be
improved.

The idea in Jagric [9] is to optimize the generalized spiral points with a method
based on Fekete points. Fekete points on the sphere are the points that minimize
(dimensionless) Coulomb’s energy if we treat points as equal charged particles [17]:

E =
∑

1≤i<j≤N

|xi − xj |−1
. (16)

This is also known as the Thomson problem and there are several algorithms
for solving it for an arbitrary N (Monte Carlo, genetic algorithms, relaxation, lo-
cal relaxation). Claxton and Benson [4] proposed an approach that is based on
the mechanical interpretation of the behavior of a system of particles that interact
according to forces derived from Coulomb’s law. They described an iterative pro-
cedure, based on the method of steepest descent, to displace the particles towards a
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minimum energy configuration [4]. The Coulomb’s force acting on the i-th particle
is [5]:

→
Fi=

N∑
j=1

→
xi −

→
xj∣∣∣→xi −
→
xj

∣∣∣3 (i ̸= j). (17)

Iteratively, each particle is allowed to move in the direction of the resultant
force (17) acting on it. As this will generally take the particle off the sphere, it
must be re-normalized by the distance from the center [4]:

→
xi (new) =

→
xi +γ

→
Fi∣∣∣∣→xi +γ
→
Fi

∣∣∣∣ , (18)

where γ is a scale factor which determines the extent of the displacement.
Assignment of an optimum value for it is difficult as it depends on the size of
the sphere and the number of particles. Claxton and Benson [4] stated that a
reasonable compromise can be obtained by setting

γ =
K

maxi=1,...,N

→
Fi

, (19)

where K is a constant equal to 0.1 or 0.2.
This force relaxation algorithm seeks to balance forces rather than attempting

to minimize the energy directly and leads univocally to a solution that in general
is only a local minimum [4]. In our opinion, it is reasonable to start with ana-
lytically derived points distribution that is known as a uniform distribution (such
as generalized spiral points) and then optimizing that distribution with force re-
laxation algorithm. If we start with generalized spiral points then this algorithm
will on general move only points around the poles as there appear inconsistencies
due to the spiral turns. The points around the equator will in general maintain
their positions. This is good for visualization of the spherical SOM as spiral points
distribution is nice to visualize with Delaunay triangulation.

Since Thomson problem and spherical neuron distribution with the lowest ir-
regularity are only related problems and not the same, we performed some exper-
iments to check whether any modifications in force relaxation algorithm better fit
our goal. We tried several modifications in the definition of the force and different
constants K while monitoring Coulomb’s energy of particles and the irregularity of
so arranged neurons. Our empirical results showed that although it leads to higher
Coulomb’s energy, better results on irregularity is given by the force relaxation
algorithm with the force:

→
Fi=

N∑
j=1

→
xi −

→
xj∣∣∣→xi −
→
xj

∣∣∣1 (i ̸= j). (20)
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Instead of raising the length of the resultant between two particles in normal-
ization to the third power we normalize with the length only. It turns out to be the
best to keep the constant K equal 0.2 for all iterations in the algorithm. This ap-
proach lowers Coulomb’s energy at every iteration but it does not necessarily lower
irregularity at every iteration. For instance at N = 42, we got results presented at
Fig. 5.

Fig. 5 Optimizing general spiral set (N = 42). Note: Left graph – Coulomb’s
energy. Right graph – IRREGULARITY. X-axis – number of iterations. Source:

Authors calculations.

It is clear that although modified force relaxation algorithm moves particles to
better and better energy distribution, we do not have a control about optimality of
irregularity during iterations. In the first few hundred iterations it lowers in large
amount but we are not able to know at which iteration it will reach its minimum.
Because of that we added to the algorithm a function of monitoring the irregularity
at every iteration, executed it for chosen number of iterations and then taking as
the best neuron distribution the one where the minimum was reached.

For example at N = 42 it can be seen on Figure 5 that we iterate 100000 times
and then took as the best the arrangement at around 30000-th step. At N = 2562
we iterated 11000 times (which lasted for around 60 hours) and still did not reach
any local minimum of irregularity (see Figure 6).

For practical purposes it is enough to iterate only for around 1000 times as in
this first iterations the irregularity lowers at most and the algorithm does not last
for long. Further iterations are for reaching high precisions only.

Figure 7 presents the results we achieve with our algorithm. We iterate for
1000 times starting from generalized spiral points arrangement and then took the
one with the lowest irregularity. The difference is obvious. Based on these results
we can be fairly confident that we have excluded the border effect from SOM
completely.
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Fig. 6 Optimizing general spiral set (N = 2562). Note: X-axis – number of itera-
tions. Y-axis – Gaussian measure of irregularity. Source: Authors calculations.

Fig. 7 Difference in Gaussian measure of irregularity between SOM based on gen-
eralized spiral set and optimized spiral spherical SOM. Note: X-axis – number of
iterations. Y-axis – Gaussian measure of irregularity. Source: Authors calcula-

tions.

5. Software implementation

After we have eliminated the border effect for an arbitrary size of the network with
optimized spiral spherical SOM we now have a powerful tool for applied research.
We have implemented it into an application with user friendly graphical interface.
Application is conducted in Matlab and enables a variety of SOM characteristics.
The user can choose among several starting neuron arrangements and different
training settings (screenshot on Figure 8).

In the first GUI, which is used for setting model parameters, user can choose
the size of the network, type of the neighborhood function and model of BMU.
Special section is devoted to the selection of method for generating the spherical
SOM. User can select between random distribution, helix, generalized spiral set
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Fig. 8 Software implementation of the optimized spiral spherical SOM – GUI for
model parameters.

and optimized spiral based on different initial distributions. The GUI is also used
to train the network. Spherical SOM plotting is based on Delaunay triangulation
and the triangles are colored according to the scale of surfaces of all triangles. All
results are graphically presented and can be saved also in video file.

Training results can be investigated thoroughly (screenshot on Fig. 9). We have
developed a separate GUI for analyzing the training result. This allows the user
to plot the irregularity measure, glyph (sphere is scaled into mountains and valleys
and colored accordingly so the clusters are more evident – method was introduced
by Sangole [18]), neurons arrangement, sample hits, weight for each input variable,
and subgroups of samples. For better visualization, the sphere is displayed from
both sides: front and back.

6. Conclusion

Self-Organizing Map (SOM) was introduced by Kohonen [10]. Due to its ability to
handle high dimensional data, SOM is mostly applied in the area of clustering, clas-
sification, and data mining. In most application a SOM based on a two-dimensional
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Fig. 9 Software implementation of the optimized spiral spherical SOM – GUI for
analyzing training results.

rectangular or hexagonal grid is applied. But, as it was already noticed by Kohonen
[10], such networks may suffer from the border effect.

When the network is learning, the information is passed from the winning neu-
ron to its neighbors. In a two-dimensional rectangular or hexagonal grid the neu-
rons on the edge or close to the edge of the grid have fewer neighbors as neurons
in the center. Therefore, the learning process has different impact on individual
neurons in the grid, which is called the border effect. To overcome this problem,
different solutions were developed in the past. Some of them are based on spherical
SOMs.

In this paper we further tested the idea, which was introduced in Jagric [9],
and propose a new version of a spherical SOM – optimized spiral spherical SOM.
Such SOM has a flexible network size and also guarantees the best possible level
of irregularity. Additionally, we also propose a modified version of the irregularity
measure, Gaussian measure of irregularity. We have developed a software solution,
which integrates the proposed method and gives the possibility to compare the
modifications with some other known types of spherical SOM.
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