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A B S T R A C T

We implement an independent component analysis (ICA) algorithm to separate signals of

different origin in sky maps at several frequencies. Owing to its self-organizing capability, it

works without prior assumptions on either the frequency dependence or the angular power

spectrum of the various signals; rather, it learns directly from the input data how to identify

the statistically independent components, on the assumption that all but, at most, one of the

components have non-Gaussian distributions.

We have applied the ICA algorithm to simulated patches of the sky at the four frequencies

(30, 44, 70 and 100 GHz) used by the Low Frequency Instrument of the European Space

Agency's Planck satellite. Simulations include the cosmic microwave background (CMB),

the synchrotron and thermal dust emissions, and extragalactic radio sources. The effects of

the angular response functions of the detectors and of instrumental noise have been ignored

in this first exploratory study. The ICA algorithm reconstructs the spatial distribution of each

component with rms errors of about 1 per cent for the CMB, and 10 per cent for the much

weaker Galactic components. Radio sources are almost completely recovered down to a flux

limit corresponding to .0.7sCMB, where sCMB is the rms level of the CMB fluctuations.

The signal recovered has equal quality on all scales larger than the pixel size. In addition, we

show that for the strongest components (CMB and radio sources) the frequency scaling is

recovered with per cent precision. Thus, algorithms of the type presented here appear to be

very promising tools for component separation. On the other hand, we have been dealing

here with a highly idealized situation. Work to include instrumental noise, the effect of

different resolving powers at different frequencies and a more complete and realistic

characterization of astrophysical foregrounds is in progress.

Key words: methods: numerical ± techniques: image processing ± cosmic microwave

background ± radio continuum: general.

1 I N T R O D U C T I O N

Maps produced by large-area surveys, aimed at imaging

primordial fluctuations of the cosmic microwave background

(CMB), contain a linear mixture of signals from several

astrophysical and cosmological sources (Galactic synchrotron;

free±free and dust emissions, both from compact and diffuse

sources; extragalactic sources; the Sunyaev±Zeldovich effect in

clusters of galaxies; or by inhomogeneous re-ionization, in

addition to primary and secondary CMB anisotropies) convolved

with the spatial and spectral responses of the antenna and the

detectors. In order to exploit the unique cosmological informa-

tion encoded in the CMB anisotropy patterns, as well as the

extremely interesting astrophysical information carried by the

foreground signals, we need to accurately separate the different

components.
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A great deal of work has been carried out in recent years in this

area (see de Oliveira-Costa & Tegmark 1999, and references

therein; Tegmark et al. 2000). The problem of map denoising has

been tackled with wavelets analysis on both the whole sphere

(Tenorio et al. 1999) and on sky patches (Sanz et al. 1999b).

Algorithms to single out the CMB and the various foregrounds

have been developed (Tegmark & Efstathiou 1996; Hobson et al.

1998; Bouchet, Prunet & Sethi 1999). In these works, Wiener

filtering (WF) and the maximum entropy method (MEM) have

been applied to simulated data from the Planck satellite, taking

into account the expected performances of the instruments.

Assuming a perfect knowledge of the frequency dependence of

all the components, as well as priors for the statistical properties of

their spatial pattern, these algorithms are able to recover the the

strongest components at the best Planck resolution.

We adopt a rather different approach. We consider the denoising

and deconvolution of the signals on one side, and the component

separation on the other, as separate steps in the data analysis

process and focus here on the latter step only, presenting a `blind

separation' method based on `independent component analysis'

(ICA) techniques. The method does not require any a priori

assumption of the spectral properties or the spatial distribution of

the various components, but requires only that they are statistically

independent and that all but, at most, one have a non-Gaussian

distribution. It is important to note that this is in fact the physical

system that we have to deal with: surely all the foregrounds are

non-Gaussian, whereas the CMB is expected to be a nearly

Gaussian fluctuation field for most of the candidate theories of the

early universe.

The paper is organized as follows. In Section 2 we introduce the

relevant formalism and briefly review methods applied in previous

works. In Section 3 we outline the ICA algorithm in a rather

general framework as it may be useful for a variety of astro-

physical applications. In Section 4 we describe our simulated

maps. In Section 5 we give some details on our analysis and

present the results. In Section 6 we draw our conclusions and list

some future developments.

2 F O R M A L I S M A N D P R E V I O U S

A P P R OAC H E S

We assume that the frequency spectrum of radiation components

(referred to as sources) is independent of the position in the sky.

As we deal here with relatively small patches of the sky, we adopt

Cartesian coordinates (j ,h ). The function describing the ith

source is then written

~si�j;h; n� � si�j;h� ´ F i�n� i � 1;¼;N; �1�
where N is the number of independent sources and Fi(n ) is the

emission spectrum.

The signal received from the point (j ,h ) in the sky is

~x�j;h; n� �
XN

i�1

si�j;h� ´ F i�n�: �2�

Suppose that the instrument has M channels with spectral response

functions tj(n ) � j � 1;¼M� centred at different frequencies, and

that the beam patterns are independent of frequency within each

passband. Let beam patterns be described by the hj(j ,h ) of the

space-invariant point spread function, so that the maps are pro-

duced by a linear convolutional mechanism. (Note that this is an

additional simplifying assumption because in real experiments a

position dependent defocussing, related to the chosen scanning

strategy, may occur.) Then the map yielded by the jth channel is

xj�j;h� �
�

hj�j 2 x;h 2 y�tj�n�

�
XN

i�1

si�x; y�F i�n� dx dy dn� ej�j;h�

� ~xj�j;h�*hj�j;h� � ej�j;h�; j � 1;¼;M; �3�
where

~xj�j;h� �
XN

i�1

aji ´ si�j;h�; j � 1;¼;M; �4�

aji �
�
F i�n�tj�n� dn; j � 1;¼;M; i � 1;¼;N; �5�

* denotes linear convolution and e j(j ,h ) represents the instru-

mental noise. Equation (4) can also be written in matrix form:

~x�j;h� � As�j;h� �6�
where the entries of the M � N matrix A are given by equation (5).

The unknowns of our problem are the N functions si(j ,h ), and

the data set is made of the M maps xj(j ,h ) of equation (3).

Besides the measured data, we also know the instrument beam

patterns hj(j ,h ) and, more or less approximately (depending on

the specific source), the coefficients aji of equation (4).

Equation (3) can be easily rewritten in Fourier space:

Xj�vj;vh� �
XN

i�1

Rji�vj;vh�Si�vj;vh� � E j�vj;vh�; �7�

where the capital letters denote the Fourier transforms of the

corresponding lowercase functions, and

Rji�vj;vh� � H j�vj;vh�aji; �8�
where Hj is the Fourier transform of the beam profile hj. Equation

(7) can thus be rewritten in matrix form:

X � RS� E : �9�
The above equation must be satisfied by each Fourier mode

(vj ,vh ) independently. The aim is to recover the true signals

Si(vj ,vh) that constitute the column vector S. If the matrix A in

equation (6) is known exactly then, in the absence of noise, the

problem reduces to a linear inversion of equation (9) for each

Fourier mode.

In practice, however, Hj vanishes for some Fourier modes. For

these modes the entire jth row of the matrix R also vanishes, and R

may become a non-full-rank matrix. An inversion based on

statistical approaches built on a priori knowledge is thus needed.

In the following two subsections we briefly describe two such

approaches, and in the third subsection we briefly recall a

technique so far mostly exploited for the denoising problem and

for the extraction of extragalactic sources.

2.1 The MEM approach

The MEM for the reconstruction of images is based on a Bayesian

approach to the problem (Gull 1988; Skilling 1988, 1989). Let X
be a vector of M observations, the probability distribution P(X|S)

of which depends on the values of N quantities S � S1;¼; SN :
Let P(S) be the prior probability distribution of S, which tells us
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what is known about S without knowledge of the data. Given the

data X, Bayes' theorem states that the conditional distribution of S
(the posterior distribution of S) is given by the product of the

likelihood of the data, P(X|S), with the prior:

P�SjX� � zP�XjS�P�S�; �10�
where z is a normalization constant.

An estimator SÃ of the true signal vector can be constructed by

maximizing the posterior probability P�SjX� / P�XjS�P�S�:
However, although the likelihood in equation (10) is easily

determined once the noise and signal covariance matrices are

known, the appropriate choice of the prior distribution for the

model considered is a major problem in the Bayesian approach: as

Bayes' theorem is simply a rule for manipulating probabilities, it

cannot by itself help us to assign them in the first place, so one has

to look elsewhere. The MEM is a consistent variational method for

the assignment of probabilities under certain types of constraints

that must refer to the probability distribution directly.

The maximum entropy principle states that if one has some

information I on which the probability distribution is based, one

can assign a probability distribution to a proposition i such that

P(i|I) contains only the information I that one actually possesses.

This assignment is performed by maximizing the entropy:

H ; 2
XN

i�1

P�ijI� log P�ijI�: �11�

It can be seen that when nothing is known except that the

probability distribution should be normalized, the maximum

entropy principle yields the uniform prior. In our case the

proposition i represents S, and the information I is the assumption

of signal statistical independence. The standard application of the

method considered strictly positive signals (Gull 1988; Skilling

1988, 1989); the extension to the case of CMB temperature

fluctuations, which can be both positive and negative, was worked

out by Hobson et al. (1998).

The construction of the entropic prior requires, in general, the

knowledge of the frequency dependence of the components to be

recovered as well as that of the signal covariance matrix C�k� �
kS�k�S²�k�l; with the average taken on all the possible realizations.

2.2 The multifrequency WF

If a Gaussian prior is adopted, the Bayesian approach gives the

multifrequency WF solution (Bouchet et al. 1999). In this case

also, an estimator of the signal vector is obtained by maximizing

the posterior probability in equation (10) given the signal

covariance matrix C(k).

The Gaussian prior probability distribution for the signal has the

form

P�S� / exp�2S²C21S�: �12�
The estimator SÃ is linearly related to the data vector XÃ through the

Wiener matrix W ; �C21 � R²N21R�21; where R corresponds to

the matrix in equation (9) and N�k� � ke�k�e²�k�l is the noise

covariance matrix,

Ŝ �WX: �13�
The W matrix has the role of a linear filter; again, its construction

requires an a priori knowledge of the spectral behaviour of the

signals.

This method is endangered by the clear non-Gaussianity of the

foregrounds.

2.3 Wavelet methods

The development of wavelet techniques for signal processing has

been very rapid in the last ten years (see e.g. Jawerth & Sweldens

1994). The wavelet approach is conceptually very simple: whereas

the Fourier transform is highly inefficient in dealing with the local

behaviour, the wavelet transform is able to introduce a good

space±frequency localization, thus providing information on the

contributions coming from different positions and scales.

In one dimension, we can define the analysing wavelet as

C�x;R; b� ; R21=2c��x 2 b�=R�; which is dependent on two

parameters: the dilation (R) and translation (b). c (x) is a one-

dimensional function satisfying the following conditions: (i)�1
21 dxc�x� � 0; (ii)

�1
21 dxc2�x� � 1; and (iii)

�1
21 dkjkj21

c2�k� , 1; where c (k) is the Fourier transform of c (x). The

wavelet C operates as a mathematical microscope of magnifica-

tion R21 at the space point b. The wavelet coefficients associated

to a one-dimensional function f(x) are

w�R; b� �
�

dxf �x�C�x;R; b�: �14�

The computationally faster algorithms for the wavelet analysis

of two-dimensional images are the algorithms based on multi-

resolution analysis (Mallat 1989), or on 2D wavelet analysis

(LemarieÂ & Meyer 1986) using tensor products of one-

dimensional wavelets. The discrete Multiresolution analysis

entails the definition of a one-dimensional scaling function f ,

normalized as
�1

21 dxf�x� � 1 (Ogden 1997). Scaling functions

act as low-pass filters whereas wavelet functions single out one

scale. The 2D wavelet method (Sanz et al. 1999b) is based on two

scales, and therefore provides more information on different

resolutions (defined by the product of the two scales) than is

provided by the multiresolution method.

Recently, wavelet techniques have been introduced in the

analysis of CMB data. Denoising of CMB maps has been

performed on patches of the sky of 128: 8 � 128: 8; using either

multiresolution techniques (Sanz et al. 1999a) or 2D wavelets

(Sanz et al. 1999b), as well as on the whole celestial sphere

(Tenorio et al. 1999). As a first step, maps with the cosmological

signal plus Gaussian instrumental noise have been considered.

Denoising of CMB maps has been carried out by using a signal-

independent prescription: the SURE thresholding method

(Donoho & Johnstone 1995). The results are model independent

and only a good knowledge of the noise affecting the observed

CMB maps is required, whereas nothing has to be assumed about

the nature of the underlying field(s). Moreover, wavelet tech-

niques are highly efficient in localizing noise variations and

features in the maps.

The wavelet method is able to improve the signal-to-noise ratio

by a factor of 3±5; correspondingly, the error on the C` values

derived from denoised maps is about two times lower than that

obtained with the WF method.

Wavelets were also successfully applied to the detection of

point sources in CMB maps in the presence of the cosmological

signal and instrumental noise (Tenorio et al. 1999); more recently,

successful results on source detection have also been obtained in

the presence of diffuse galactic foregrounds (CayoÂn et al. 2000).

The results are comparable to the results obtained with the

filtering method presented by (Tegmark & de Oliveira-Costa
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1998), which, however, rely on the assumption that all the

underlying fields are Gaussian.

3 T H E I C A A P P R OAC H

We present here a rather different approach, which is character-

ized by the capability of working `blindly' i.e. by working without

prior knowledge of the spectral and spatial properties of the

signals to be separated. The method is of interest for a broad

variety of signal and image processing applications: whenever a

number of source signals are detected by multiple transducers and

the transmission channels for the sources are unknown, so that

each transducer receives a mixture of the source signals with

unknown scaling coefficients and channel distortion.

In this exploratory study we confine ourselves to the case of

simple linear combinations of unconvolved source signals (Bell &

Sejnowski 1995; Amari & Chichocki 1998). The problem can be

stated as follows: a set of N signals is inputted to an unknown

frequency dependent multiple-input-multiple-output linear instan-

taneous system, the M outputs of which are our observed signals.

We use the term instantaneous to denote a system the output of

which at a given point only depends on the input signals at the

same point. Our objective is to find a stable reconstruction system

to estimate the original input signals with no prior assumptions

either about the signal distributions or about their frequency

scalings. The problem in its general form is normally unsolvable,

and a `working hypothesis' must be made. The hypothesis we

make is that our source signals are mutually statistically inde-

pendent, whatever their actual distributions are. Several solutions

have been proposed for this problem, each based on more or less

sound principles, not all of which are typical of classical signal

processing. Indeed, information theory, neural networks, statistics

and probability have played an important part in the development

of these techniques.

We do not consider here specific instrumental features like

beam convolution and noise contamination, leaving the specializ-

ation of the ICA method to specific experiments for future work;

this allows us to highlight the capabilities of this approach, which

is able to work in conditions where other algorithms would not be

viable. Therefore, we adopt equation (6) as our data model by just

dropping the tilde accent on vector x. Also, the instrumental noise

term in equation (7) will be neglected.

It can be proved that, to solve the problem described above, the

following hypotheses should be verified (Comon 1994; Amari &

Chichocki 1998):

(i) all source signals are statistically independent;

(ii) at most one of the signals has a Gaussian distribution;

(iii) that M > N;

(iv) low noise.

The last two assumptions can be somewhat relaxed by choosing

suitable separation strategies. As far as independence is concerned,

roughly speaking, we may say that the search for an ICA model

from non-ICA data (i.e. data not coming from independent sources)

should give the most `interesting' (namely, the most structured)

projections of the data (Friedman 1987; HyvaÈrinen & Oja 1999).

This is not equivalent to saying that separation is achieved;

however, we have seen from our experiments that a good separation

can be obtained even for sources that are not totally independent.

The second assumption above tells us that Gaussian sources cannot

be separated. More specifically, they can only be separated up to an

orthogonal transformation. In fact, it can be shown that the joint

probability of a mixture of Gaussian signals is invariant to ortho-

gonal transformations. This means that if independent components

are found from Gaussian mixtures, then any orthogonal transfor-

mation of them gives mutually independent components.

Many strategies have been adopted to solve the separation

problem on the basis of the above hypotheses, all of which were

based on looking for a set of independent signals that can be

shown to be the original sources. A formal criterion to test

independence, from which all the separating strategies can be

derived, is described later in this section.

In order to recover the original source signals from the observed

mixtures, we use a separating scheme in the form of a feed-

forward neural network. The observed signals are input to an

N �M matrix W, referred to as the the synaptic weight matrix, the

adjustable entries of which (wij, i � 1;¼;N and j � 1;¼;M� are

updated for every sample of the input vector x(j ,h ) (at step t )

following a suitable learning algorithm. The output of matrix W at

step t will be

u�j;h; t� �W�t�x�j;h�: �15�
W(t) is expected to converge to a true separating matrix, that is a

matrix the output of which is a copy of the inputs for every point

(j ,h ). Ideally, this final matrix W should be such that WA � I;
where I is the N � N identity. As an example, if M � N; we should

have W � A21: There are, however, two basic indeterminacies in

our problem: ordering and scaling. Even if we are able to extract N

independent sources from M linear mixtures, we cannot know a

priori the order in which they will be arranged, because this

corresponds to unobservable permutations of the columns of

matrix A. Moreover, the scales of the extracted signals are

unknown, because when a signal is multiplied by some scalar

constant, the effect is the same as of multiplying by the same

constant the corresponding column of the mixing matrix. This

means that W(t ) will converge, at best, to a matrix W such that

WA � PD; �16�
where P is any N � N permutation matrix, and D is a non-singular

diagonal scaling matrix. From equations (6), (15) and (16) we thus

have

u �Wx �WAs � PDs: �17�
That is, as anticipated, each component of u is a scaled version of

a component of s, not necessarily in the same order. This is not a

serious inconvenience in our application because we should be

able to recover the proper scales for the separated sources from other

pieces of information, for example matching with independent lower

resolution observations like those of Cosmic Background Explorer

(COBE) in the case of Microwave Anisotropy Probe (MAP) and

Planck. If A was known, the performance of the separation

algorithm could be evaluated by means of the matrix WA. If the

separation is perfect, this matrix has only one non-zero element

for each row and each column. In any non-ideal situation each row

and column of WA should contain only one dominant element.

In all the cases treated here we assume M > N; but we consider

the case where N, although smaller than M, is not known.

The mutual statistical independence of the source signals can be

expressed in terms of a separable joint probability density function

q(s):

q�s� �
YN
j�1

qj�sj�; �18�

where qj(sj) is the marginal probability density of the jth source.
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Various algorithms can be used to obtain the matrix W. All

these algorithms can be derived from a unified principle based on

the Kullback±Leibler (KL) divergence between the joint prob-

ability density of the output vector u, pu(u), and a function q(u),

which should be suitably chosen among the functions of the type

in equation (18). The KL divergence between the two functions

mentioned above may be written as a function of the matrix W,

and can be considered as a cost function in the sense of Bayesian

statistics:

R�W� �
�

pu�u� log
pu�u�
q�u� du: �19�

It can be proved that, under mild conditions on q(u), R(W) has a

global minimum where W is such that WA � PD: The different

possible choices for q(s) lead to the different particular learning

strategies proposed in the literature (Bell & Sejnowski 1995; Yang

& Amari 1997; Amari & Chichocki 1998).

The uniform gradient search method, which is a gradient-type

algorithm, takes into account the Riemannian metric structure of

our objective parameter space, which is the set of all non-singular

matrices W (Amari & Chichocki 1998). In a general case, where

the number N of sources is only known to be smaller than the

number of observations, the following formula is derived:

W�t� 1� �W�t� � a�t� � {L 2 u�t�uT�t�2 f �u�t��uT�t�}W�t�;
�20�

where L is an M �M diagonal matrix,

L � diag{�u1 � f 1�u1��u1}¼{�uM � f M�uM��uM}: �21�
Pixel by pixel, the M �M matrix W is multiplied by the M-vector

x, and gives vector u as its output. This output is transformed

through the non-linear vector function f(u), and the result is

combined with u itself to build the update to matrix W through

equation (20). The process has to be iterated by reading the data

maps several times. If N is strictly smaller than M, then M 2 N

outputs can be shown to rapidly converge to zero, or to pure noise

functions.

The convergence properties of this iterative formula are shown

to be independent of the particular matrix A, so that even a

strongly ill-conditioned system does not affect the convergence of

the learning algorithm. In other words, even when the contribu-

tions from some components are very small, there is no problem to

recover the contributions. This property is called the equivariant

property because the asymptotic properties of the algorithm are

Figure 1. Input maps used in the ICA separation algorithm: from top left in a clockwise sense, simulations of CMB, synchrotron, radio sources and dust

emission are shown. Radio sources and dust grey-scales are non-linear to better show the signal features.
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independent of the mixing matrix. The t -dependent parameter a
is the learning rate; its value is normally decreased during the

iteration. As far as the choice of a (t) is concerned, a strategy to

learn it and its annealing scheme is given in (Amari & Chichocki

1998); we have chosen a (t ) to decrease from 1023 to 1024

linearly with the number of iterations.

The final problem is how to choose the function f(u). If we

know the true source distributions qj(uj), the best choice is to make

f 0j�uj� � qj�uj�; because this gives the maximum likelihood

estimator. However, the point is that when qj(uj) are specified

incorrectly, the algorithm gives the correct answer under certain

conditions. In any case, the choice of f(u) should be made to

ensure the existence of an equilibrium point for the cost function

and the stability of the optimization algorithm. These require-

ments can be satisfied even though the non-linearities chosen are

not optimal. A suboptimal choice for sub-Gaussian source signals

(negative kurtosis) is

f i�ui� � bui � uijuij2; �22�
and for super-Gaussian source signals (positive kurtosis):

f i�ui� � bui � tanh�gui�; �23�
where b > 0 and g > 2: If one source is Gaussian, the above

choices remain viable as well. In our case, we verified that all the

source functions except CMB are super-Gaussian, and thus we

implemented the learning algorithm following equation (20) with

the non-linearities in equation (23), b � 0 and g � 2: As already

stated, the mean of the input signal at each frequency is

subtracted. In previous work (Yang & Amari 1997) the initial

matrix was chosen as W / I; in that analysis, the image data

consisted of a set of components with nearly the same amplitude.

The initial guess for W affects the computation time as well as the

scaling of the reconstructed signals and their order. Interestingly,

we found that adjusting the diagonal elements so that they roughly

reflect the different weights of the components in the mixture can

speed-up the convergence. For the problem at hand, the results

shown in Section 5 have been obtained starting from W �
diag�1; 3; 30; 10�; for the case of a 4 � 4 W matrix, and using only

20 learning steps: the time needed was about 1 min on an

UltraSparc machine (equipped with a 300-MHz UltraSparc

processor with 256 Mb RAM, running on a SUN Solaris 7

operating system), which compiled the fortran 90 code using

SUN Fortran Workshop 5.0.

4 S I M U L AT E D M A P S

We produced simulated maps of the antenna temperature

Figure 2. Reconstructed maps produced by the ICA method; the initial ordering has not been conserved in the outputs. From top left, in a clockwise sense, we

can recognize synchrotron, radio sources, dust and CMB. Radio sources and dust grey-scales are non-linear as in Fig. 1.
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distribution, using a pixel size of 3.5 arcmin for a 158 � 158
region centred at l � 908 and b � 458; at the four central

frequencies of the Planck Low Frequency Instrument (LFI)

channels (Mandolesi et al. 1998), namely 30, 44, 70 and

100 GHz (Fig. 1). The HEALPix pixelization scheme (see GoÂrski

et al. 1999) was adopted. The maps include CMB anisotropies,

Galactic synchrotron and dust emissions, and extragalactic radio

sources.

CMB fluctuations correspond to a flat cold dark matter (CDM)

model �VCDM � :95; Vb � :05 and three massless neutrino

species), normalized to the COBE data (see Seljak & Zaldarriaga

1996). As it is well known, the CMB spectrum, in terms of

antenna temperature, is written:

santenna
CMB �j;h; n� � stherm

CMB �j;h�
~n2 exp� ~n�

�exp� ~n�2 1�2 ; �24�

where ~n � n=56:8; n is the frequency in GHz and stherm
CMB �j;h� is

frequency independent (Fixsen et al. 1996).

As for Galactic synchrotron emission, we have extrapolated the

408-MHz map with about 18 resolution (Haslam et al. 1982),

assuming a power law spectrum, in terms of antenna temperature:

F syn / ~n2ns ; �25�
with spectral index ns � 2:9:

The dust emission maps with about 6 arcmin resolution

constructed by Schlegel, Finkbeiner & Davies (1998) combining

IRAS and DIRBE data have been used as templates for Galactic

dust emission. The extrapolation to Planck/LFI frequencies was

performed assuming a grey-body spectrum:

F dust / ~nm�1

exp� ~n�2 1
; �26�

with m � 2; ~n � hn=kTdust; Tdust being the dust temperature.

Although in general Tdust varies across the sky, it turns out to be

approximately constant at about 18 K in the region considered

here; we have therefore adopted this value in the above equation.

Because of the lack of a suitable template we have ignored here

free±free emission, which may be important particularly at 70 and

100 GHz. This component needs to be included in future work.

The model by Toffolatti et al. (1998) was adopted for extra-

galactic radio sources, which were assumed to have a Poisson

distribution. An antenna temperature spectral index nrs � 1:9 was

adopted �F rs / ~n2nrs �:

5 B L I N D A N A LY S I S A N D R E S U LT S

As it is well known, the strongest signals at the Planck/LFI

frequencies come from the CMB and from radio sources (although

the latter show up essentially as a few high peaks), whereas

synchrotron emission and thermal dust signals are roughly one or

two orders of magnitude reduced in strength, depending on the

frequency. Thus we are testing the performances of the ICA

algorithm with four signals exhibiting very different spatial

patterns, frequency dependences and amplitudes.

As we are interested in the fluctuation pattern, the mean of the

total signal (sum of the four components) is set to zero at each

Figure 3. Top left: input angular power spectra ± simulated (solid line) and theoretical (dashed line, see text). Top right: the angular power spectrum of the

reconstructed CMB patch. Bottom left: quality factor relative to the input/output angular spectra. Bottom right: scatter plot and linear fit (dashed line) for the

CMB input/output maps.
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frequency. We adopt a `blind' approach: no information on either

the spatial distribution or the frequency dependence of the signals

is provided for the algorithm.

The reconstructed maps of the the four components are shown

in Fig. 2. Several interesting features may be noticed. The order of

the plotted maps is permuted with respect to the input maps in

Fig. 1, reflecting the order of the ICA outputs: the first output is

synchrotron, the second represents radio sources, the third is CMB

and the fourth is dust. All the output maps look very similar in

comparison with the true ones; even synchrotron lower resolution

pixels have been reproduced. In Figs 3, 4, 5 and 6 we analyze the

goodness of the separation by comparing power spectra and

showing plots of the scatter between the inputs and the outputs.

5.1 Signal reconstruction

For each map we have computed the angular power spectrum

defined by the expansion coefficients C` of the two point

correlation function in Legendre polynomials. As is well known, it

can conveniently be expressed in terms of the coefficients of the

expansion of the signal S into spherical harmonics, S�u;f� �P
`ma`mY`m�u;f� :

C` � 1

2`� 1

X
m

ja`mj2: �27�

Such coefficients are useful because, from elementary properties

of the Legendre polynomials, it can be seen that the coefficient C`

quantifies the amount of perturbation on the angular scale u given

by u . �180=`�8:

The panels on the top of Figs 3, 4, 5 and 6 show the power

spectra of the input (left) and output (right) signals. The CMB

exhibits the characteristic peaks on subdegree angular scales as a

result of acoustic oscillations of the photon±baryon fluid at

decoupling; the dashed line represents the theoretical model from

which the map was generated, whereas the solid line is the power

spectrum of our simulated patch. The difference between the two

curves is caused by the sample variance corresponding to the

CMB Gaussian statistics. Radio sources are completely different

because of their point-like structure and shot noise spatial distri-

bution (Mandolesi et al. 1998; Puget et al. 1998). The bottom left-

hand panels show the quality factor, defined as the ratio between

true and reconstructed power spectrum coefficients, for each

multipole `. Owing to the limited size of the analysed region, the

power spectrum can be defined on scales below roughly 28. The

bottom right-hand panels are scatter plots of the ICA results: for

each pixel of the maps, we plotted the value of the reconstructed

image versus the corresponding input value.

The reconstructed signals have a mean of zero and are in units

of the constant d produced during the separation phase, as

described in Section 3: the scale of each signal is unreproducible

for a blind separation algorithm such as the ICA. Nevertheless, a

lot of information is encoded into the spatial pattern of each

signal, and ultimately the overall normalization of the signal could

be recovered by exploiting data from other experiments. There-

fore, the relation between each true signal and its reconstruction

is

sin
i � dsout

i � b; i � 1;¼;Npixels; �28�

Figure 4. Top panels: angular power spectra for the simulated input (left) and reconstructed (right) synchrotron maps. Bottom left: quality factor relative to

the input/output angular spectra. Bottom right: scatter plot and linear fit (dashed line) for the synchrotron input/output maps.
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where b merely represents the mean of the input signal,

which is zero for the CMB and some positive value for the

foregrounds.

To quantify the quality of the reconstruction, we have recovered

d and b by performing a linear fitting of output to input maps (sin,

sout) for each signal:

d �
P

is
in
i sout

i 2 �sin
P

is
out
iP

i�sout
i �2 2 �sout

P
is

out
i

; b � �sin 2 d �sout; �29�

where the sums run over all the pixels and the bar indicates the

average value over the patch; the values of d and b, as well as the

linear fits (dashed lines), are indicated for all the signals in the

scatter plot panels. Also, in the same panels, we show the standard

deviation of the fit, that is

s � 1

Npixels

X
i

�sin
i 2 dsout

i 2 b�2
" #1=2

: �30�

A comparison of this quantity with the input signals (bottom right-

hand panels) gives an estimate of the goodness of the reconstruc-

tion. CMB and radio sources are recovered with 1 and 0.1 per cent

precision, respectively, whereas the accuracy drops roughly to

10 per cent for the (much weaker) Galactic components,

synchrotron and dust. Also, the latter appear to be slightly

mixed; this is likely caused by the fact that they are somewhat

correlated so that the hypothesis of statistical independence is not

properly satisfied.

We have also tested to what extent the counts of radio

sources are recovered. This was performed in terms of the

relative flux

Ds � s=smax; �31�
smax being the flux of the brightest source.

In Fig. 7 we show the cumulative number of input (dashed) and

output (solid line) pixels exceeding a given value of Ds. The

algorithm correctly recovers essentially all sources with

Ds > 2 � 1022, corresponding to a signal of Ts . 50mK; or to

a flux density S � �2kBTs=l
2�DV . 15 mJy; where kB the

Boltzmann constant, l the wavelength and DV the solid angle

covered by a pixel that is 3:5 � 3:5 arcmin2 . 1026 sr: At fainter

fluxes the counts are overestimated; this is probably caused by

contamination from the other signals. In any case, the flux limit

for source detection is surprisingly low, even lower than the rms

CMB fluctuations �sCMB . 70mK at the resolution limit of our

maps), and substantially lower or at least comparable to that

achieved with other methods that require stronger assumptions

(Hobson et al. 1999; CayoÂn et al. 2000). This high efficiency in

detecting point sources illustrates the ability of the method in

taking the maximum advantage of the differences in frequency

and spatial properties of the various components.

On the other hand, we stress that our approach is idealized in a

number of aspects: beam convolution and instrumental noise have

not been taken into account, and the same frequency scaling has

been assumed for all radio sources. Therefore, more detailed

investigations are needed to estimate a realistic source detection

limit.

Finally, note that the quality of the separation is similar on all

scales, as shown by the bottom left-hand side panels of Figs 3, 4, 5

Figure 5. Top panels: angular power spectra for the simulated input (left) and reconstructed (right) dust emission maps. Bottom left: quality factor relative to

the input/output angular spectra. Bottom right: scatter plot and linear fit (dashed line) for the dust input/output maps.
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and 6. The exception are radio sources, the true power spectra of

which go to zero at low `s more rapidly than the spectrum of the

reconstructed one.

5.2 Reconstruction of the frequency dependence

Another asset of this technique is the possibility of recovering the

frequency dependence of individual components. The outputs can

be written as u �Wx; where x � As: As previously mentioned, in

the ideal case WA would be a diagonal matrix containing the

constants d for all the signals, multiplied by a permutation matrix.

It can be easily seen that, if this is true, the frequency scalings of

all the components can be obtained by inverting the matrix W and

performing the ratio, column by column, of each element with the

one corresponding to the row corresponding to a given frequency.

However, as pointed out in Section 3, if some signals are much

smaller than others the above reasoning is only approximately

valid. This is precisely what happens in our case: we are able to

accurately recover the frequency scaling of the strongest signals,

CMB and radio sources, whereas the others are lost (see Table 1).

6 C O N C L U D I N G R E M A R K S A N D F U T U R E

D E V E L O P M E N T S

We have developed a neural network suitable to implement the

ICA technique for separating different emission components in

maps of the sky at microwave wavelengths. The algorithm was

applied to simulated maps of a 158 � 158 region of sky at 30, 44,

70 and 100 GHz, corresponding to the frequency channels of the

Planck/LFI.

Simulations include the CMB, extragalactic radio sources and

Galactic synchrotron and thermal dust emission. The various

components have markedly different angular patterns, frequency

dependences and amplitudes.

The technique exploits the statistical independence of the

different signals to recover each individual component with no

prior assumption either on their spatial pattern or on their

Figure 6. Top panels: angular power spectra for the simulated (left) and reconstructed (right) radio source map. Bottom left: quality factor relative to the

input/output angular spectra. Bottom right: scatter plot and linear fit (dashed line) for the radio source emission input/output maps.

Figure 7. Cumulative number of pixels as a function of the threshold Ds

(see text for more details): input (dashed line) versus output (solid line).
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frequency dependence. The great virtue of this approach is the

capability of the algorithm to learn how to recover the inde-

pendent components in the input maps. The price of the lack of a

priori information is that each signal can be recovered multiplied

by an unknown constant produced during the learning process

itself. However, this is not a substantial limitation, as a lot of

physics is encoded in the spatial patterns of the signals, and

ultimately the correct normalization of each component can be

obtained by resorting to independent observations.

The results are very promising. The CMB map is recovered

with an accuracy at the 1-per-cent level. The algorithm is

remarkably efficient also in the detection of extragalactic radio

sources: almost all sources brighter then 15 mJy at 100 GHz

(corresponding to .0.7sCMB, sCMB being the rms level of CMB

fluctuations on the pixel scale) are recovered; on the other hand, it

must be stressed that this is not directly indicative of what can be

achieved in the analysis of Planck/LFI data because the adopted

resolution �3:5 � 3:5 arcmin2� is much better than that of the real

experiment, instrumental noise has been neglected and the same

spectral slope was assumed for all sources.

Also, the frequency dependences of the strongest components

are correctly recovered (error on the spectral index is 1 per cent for

the CMB and extragalactic sources).

Maps of subdominant signals (Galactic synchrotron and dust

emissions) are recovered with rms errors of about 10 per cent;

their spectral properties cannot be retrieved by our technique.

The reconstruction has equal quality on all the scales of the

input maps down to the pixel size.

All this indicates that this technique is suitable for a variety of

astrophysical applications, i.e. whenever we want to separate

independent signals from different astrophysical processes occur-

ring along the line of sight.

Of course, much work has to be performed to better explore the

potential of the ICA technique. It has to be tested under more

realistic assumptions, taking into account instrumental noise and

the effect of angular response functions, as well as including a

more complete and accurate characterization of the foregrounds.

In particular, the assumption that the spectral properties of each

foreground component is independent of position will have to be

relaxed to allow for spectral variations across the sky. Also, it will

be necessary to deal with the fact that Galactic emissions are

correlated.

The technique is flexible enough to offer good prospects in this

respect. In the learning stage, the ICA algorithm makes use of

non-linear functions that, case by case, are chosen to minimize the

mutual information between the outputs; improvements could be

obtained by specializing the ICA inner non-linearities to our

specific needs. Also, it is possible to take into account properly

our prior knowledge on some of the signals to recover, while still

taking advantage as far as possible of the ability of this neural

network approach to carry out a `blind' separation. Work in this

direction is in progress.
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