
Received April 28, 2020, accepted May 4, 2020, date of publication May 11, 2020, date of current version May 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2993562

Neural Networks-Based Aerodynamic Data
Modeling: A Comprehensive Review

LIWEI HU , (Student Member, IEEE), JUN ZHANG, YU XIANG , (Member, IEEE),

AND WENYONG WANG , (Member, IEEE)
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Jun Zhang (zhangjun@uestc.edu.cn)

This work was supported by the National Numerical Wind Tunnel Project No. 13RH19ZT6B1.

ABSTRACT This paper reviews studies on neural networks in aerodynamic data modeling. In this paper,
we analyze the shortcomings of computational fluid dynamics (CFD) and traditional reduced-order models
(ROMs). Subsequently, the history and fundamental methodologies of neural networks are introduced. Fur-
thermore, we classify the neural networks based studies in aerodynamic data modeling and illustrate compar-
isons among them. These studies demonstrate that neural networks are effective approaches to aerodynamic
data modeling. Finally, we identify three important trends for future studies in aerodynamic data modeling: a)
the transformation method and physics informed models will be combined to solve high-dimensional partial
differential equations; b) in the research area of steady aerodynamic response predictions, model-oriented
studies and data-integration-oriented studies will become the future research directions, while in unsteady
aerodynamic response predictions, radial basis function neural networks (RBFNNs) are the best tools for
capturing the nonlinear characteristics of flow data, and convolutional neural networks (CNNs) are expected
to replace long short-term memories (LSTMs) to capture the temporal characteristics of flow data; and c) in
the field of steady or unsteady flow field reconstructions, the CNN-based conditional generative adversarial
networks (cGANs) will be the best frameworks in which to discover the spatiotemporal distribution of flow
field data.

INDEX TERMS Aerodynamics, convolutional neural networks, neural networks, generative adversarial
networks, recurrent neural networks.

I. INTRODUCTION

Aerodynamic data modeling refers to the approximation of
the mapping function between input and output data using
appropriate models [1].
Generally, the governing equations, usually ordinary dif-

ferential equations (ODEs) or partial differential equa-
tions (PDEs), in aerodynamics express the mapping between
input data (design parameters) and output data (response
parameters). Computational fluid dynamics (CFD) [2] has
the ability to approximate the governing equations to cal-
culate response values under a restricted flow condition.
However, the shortcomings of CFD are obvious: a) the
accuracy of calculation is easily affected by the mesh den-
sity; b) CFD is a time-consuming approach; and c) even
worse, some complex governing equations have no numerical
solutions.

The associate editor coordinating the review of this manuscript and
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To overcome the drawbacks of CFD, reduced-order mod-
els (ROMs) [3] were proposed. ROMs simplify the governing
equations and improve the solution efficiency. However, there
are always three problems with aerodynamic ROMs. The
first problem is that some mappings between outputs and
inputs in aerodynamics are highly nonlinear, which makes
it more difficult for ROMs to process aerodynamic data.
The second problem is that tens of thousands of samples
are needed for training to guarantee the accuracy of ROMs.
Paradoxically, using CFD to calculate these sample data
is very time-consuming. The third problem is that some
special aerodynamic problems possess spatial and temporal
characteristics, for example, turbulence [4]. These problems
undoubtedly reduce the credibility of ROMs.

Therefore, one tough question in aerodynamic data model-
ing is what kind of technology is appropriate to build highly
reliable aerodynamic data models?

Nerual networks, as a data-driven learning method, has
achieved great success in computational vision [5]–[7],
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natural language processing [8], [9], and nonlinear system
identification [10]–[12]. These works illustrate that neural
networks have the ability to learn the conditional probability
P(X |Y ) between input data X and output data Y within a
short time from the training set. There exist some notable
examples for exploring neural network algorithms in physics
and engineering [13]. Researchers believe that the combi-
nation of neural networks and aerodynamics will be a way
to solve many problems in the field of aerodynamic data
modeling [14]–[16]. As a matter of fact, neural networks
provide many sophisticated models or algorithms to address a
number of problems in aerodynamics, including solutions to
the governing equations, aerodynamic force predictions, flow
field reconstructions, and so on [17].
Compared to traditional ROMs, the advantages of apply-

ing neural networks in aerodynamic data modeling lie in
the fact that a) neural networks, as a data-driven model,
does not rely on aerodynamic theories or physical models,
which means it does not require thorough knowledge on
aerodynamics; b) neural networks can be used to address
high-dimensional [18], multiscale [19] and nonlinear [20]
problems that are difficult for traditional ROMs; and c) some
neural networks [21], [22] have the ability to process time
sequence data. Apparently, these advantages answer the ques-
tion posed earlier.
Different from images and language, flow data usu-

ally have both spatial and temporal variations; particularly,
the distribution of flow data is highly nonuniform. Conse-
quently, aerodynamic data modeling presents new challenges
to neural networks: a) complex flow changes require the
ability of the neural networks to express the physical mech-
anism of aerodynamics; b) some complex flow phenomena
(for example, turbulence) that cannot be effectively recog-
nized in CFD, require neural networks to provide specialized
solutions; and c) small aerodynamic flow data require neural
networks to learn the underlying aerodynamic features as
much and as accurately as possible from a limited number
of samples.
To meet these new challenges, some new neural networks

that are suitable for aerodynamic data modeling should be
studied. Take a look at the current works in this field:
the most commonly used models are multilayer percep-
trons (MLPs), convolutional neural networks (CNNs), radial
basis function neural networks (RBFNNs), recurrent neu-
ral networks (RNNs) and generative adversarial networks
(GANs), etc. These models are usually used in solving
ODEs/PDEs, aerodynamic response predictions, flow field
reconstructions and so on. Figure 1 shows some impor-
tant areas in aerodynamic data modeling, namely solving
PDEs/ODEs, nonlinear aerodynamic response predictions,
flow field reconstructions and some scattered studies. For
example, in nonlinear aerodynamic response predictions,
steady and unsteady nonlinear aerodynamic response pre-
dictions are discussed. In steady nonlinear aerodynamic
response predictions, we divide the existing studies into two
categories: predictions based on flow state and predictions

based on aerodynamic shapes and flow state. In unsteady
nonlinear aerodynamic response predictions, we also divide
the existing studies into two categories: spatial nonlinear-
ity oriented predictions and temporal continuity oriented
predictions.

The contributions of this paper are a) we sort out the
applications of common neural networks in the field of
aerodynamic data modeling from the perspective of neu-
ral networks; b) we compare these studies and analyze the
advantages and disadvantages of them; and c) we highly
evaluate some excellent models/methods [14], [23], [24], and
point out the future development trend in this field based on
them.

The structure of this review is as follows. Section II
describes the history of neural networks, as well as the
details of the models mentioned above. Section III describes
the applications of neural networks in solving ODEs/PDEs.
In Section IV, we introduce the applications of neural
networks in nonlinear aerodynamic response predictions.
In Section V, the applications of neural networks in flow field
reconstructions are expounded. In Section VI, we introduce
some scattered applications. In Section VII, we summarize
the existing research, and future prospects of combining aero-
dynamics with neural networks are discussed.

II. NEURAL NETWORK FUNDAMENTALS

A. HISTORY OF NEURAL NETWORKS

The combination of aerodynamics and artificial intelligence
dates back to the 1940s. Kolmogorov [25] adopted statistical
learning methods to address turbulence problems. Neural
networks are a science developed from statistical learning.
The original concept of MLPs was proposed by McCulloch
and Pitts [26]. They attempted to explain the mechanism
by which the human brain handles complex tasks. Based
on their research, Rosenblatt [27] proposed the single-layer
perceptron. However, it was found in 1969 that the perceptron
with only one hidden layer were not able to learn the XOR
function. Motivated by this drawback, the MLP structure was
proposed by Minsky [28], but how to train the parameters
of this model is still unresolved. Consequently, the MLPs
entered an age of winter (for example, see the ‘‘Lighthill
report’’of 1974).

In the mid-1980s, Rumelhart et al. [29] proposed the back
propagation algorithm, which solved the training problem of
MLPs. Since then, MLPs have developed into neural net-
works, which marks the begining of neural networks. How-
ever, due to the shortage of the computing power of computers
in those days, as well as the limitations of the hardware,
the maximum number of hidden layers in MLPs is two. The
development of neural networks was restricted and entered an
age of winter once again.

At the turn of the century, with the appearance of neural
networks, there was an explosion in the study of the com-
bination of aerodynamics and neural networks, especially in
the areas of aeroelasticity, particle image velocimetry and
flow field reconstruction [30]–[32]. Among these studies,
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FIGURE 1. The areas of aerodynamic data modeling discussed in this paper.

Milano [32] was the first to use a true neural network to
simulate compressible fluids.

The significant improvement in computing power has
motivated the development of neural networks. In 2006,
Hinton et al. [33] put forward the method of deep belief
networks (DBNs), which overcame the difficulty of neural
network trainingwith the help ofmodern computers. Hinton’s
research opened the era of deep learning. This also marks the
formal beginning of the integration of neural networks and
aerodynamics.
The goal of neural network models can be summarized as

estimating the parameters in a limited number of iterations
so that the convergent model can map inputs to outputs [34].
In this section, we mainly introduce the fundamentals of the
most commonly used neural networks (i.e., MLPs, CNNs,
RBFNNs, RNNs and GANs) in aerodynamic modeling,
as well as the training processes.

B. MULTILAYER PERCEPTRONS

Multilayer perceptrons (the MLPs in this paper refer to fully
connected neural networks) are the most common nonlinear
models in the field of deep learning. It has been proved that an
MLP with enough layers has the ability to approximate any
function [35]. This proof lays a theoretical foundation for the
application of MLPs.
AnMLP is composed of layers of artificial neurons (neural

nodes), see Figure 2. One neuron in a specific layer is con-
nected to all neurons in the next layer with the corresponding
weights and biases. An MLP consists of one input layer, one
output layer and several hidden layers. Neurons in the input
layer receive input data, neurons in the hidden layers process
the input data, and neurons in the output layer output the final
results. The training process of an MLP is composed of two
parts: forward propagation and back propagation [36].
Forward propagation describes how the input data prop-

agate from the input layer forward to the output layer.

FIGURE 2. A four-layer MLP. Because the input layer does not participate
in the calculation, this is a four-layer conceptron.

As shown in Figure 3, the input layer has n nodes, and the
hidden layer hasm nodes. wlij denotes the weight between the
ith neuron at layer l−1 and the jth neuron at layer l. blj denotes
the bias of the jth neuron at layer l. The forward propagation
can be expressed as in equation 1, where z denotes the current
sample processed by this MLP and f (.) denotes the activation
function of neurons at layer l in this MLP.

hlj = f (
n
∑

i=1

wlijxzi + blj), j = 1, 2, . . . ,m (1)

Gradient based back propagation algorithm is the most
commonly used method. The latest studies show that back
propagation approach based on quasi-Newton method [17]
is also effective. In this section, we still focus on gradient
based back propagation, because it is widely applied in many
different neural networks. Back propagation is a nonlinear
optimization algorithm, which describes how errors in an
MLP pass from the output layer back to the input layer.
The errors of an MLP propagate backwards in the form of
a gradient. Through multiple back propagation processes,
the parameters (including the weights and biases) of an MLP
are determined such that the loss function of the MLP is very
near its minimum value. Equations 2 and 3 formulate the
process of updating the weights and biases, where E denotes
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FIGURE 3. Forward propagation. For example, the input of the first node
in the hidden layer is xz1 · w11 + xz2 · w21 + · · · + xzn · wn1, while the
output of this node is f (xz1 · w11 + xz2 · w21 + · · · + xzn · wn1 + b1).

the loss function of an MLP and η denotes the learning rate.
Equation 4 describes a feasible error calculation formula,
where yi denotes the output value of the ith neuron in the
output layer and di denotes the corresponding true value.

W
(l)
ij = W

(l)
ij − η

∂E

∂W
(l)
ij

(2)

b
(l)
i = b

(l)
i − η

∂E

∂b
(l)
i

(3)

E =

∑n
i=1 (yi − di)

2

2n
(4)

C. CONVOLUTIONAL NEURAL NETWORKS

CNNs for processing image data are special models devel-
oped on the basis of MLPs. Image data are different from
general statistical data, for example, a pixel in an image
is usually relevant with respect to its surrounding pixels or
even pixels that are far away. Therefore, CNNs change the
form of weights in MLPs: the weights in full connections
between two different layers are replaced with convolutional
kernels [37]. The appearance of convolutional kernels makes
it possible to consider the local information of image data in
the training process of CNNs. CNNs learn the distribution
of image data by constantly moving convolutional kernels,
which is impossible for MLPs. The special structure and
training methods are more consistent with how the brain
processes what we see. Consequently, CNNs are commonly
used in the field of computer vision. Remarkably, the latest
studies [21], [38] illustrated that CNNs could address time
sequence data processing, even better than RNNs. We will
make a detail introduction in IV.B.2).
Figure 4 illustrates a classic CNN structure. The network

is composed of several different layers: convolutional layers,
pooling layers and fully connected layers.
The function of a convolutional layer is achieved by con-

volutional kernels (i.e., filters), which can fully use global
and local spatial information of the input pictures. The
weights in the convolutional kernels and biases are the
parameters to learn. Equation 5 and Figure 5 describe one

FIGURE 4. A classic CNN in nonlinear steady aerodynamic response
predictions. The network consists of two convolutional layers, two
pooling layers and two fully connected layers. By the CNN,
the corresponding aerodynamic responses, such as the lift (L) and drag
(D) of the input wing, can be identified.

FIGURE 5. Three-dimensional convolution operation with only one
convolutional kernel. Equation 5 describes a convolution operation of the
red part in this graph.

three-dimensional convolution operation with only one con-
volutional kernel (the stride equals to 1), where I denotes the
input image, which is an L × H × D matrix, w denotes the
weight matrix with a size of l1 × l2 × D, b denotes the bias
of this convolutional layer, and f (.) denotes the activation
function. In particular, the depth of the input image I is
generally equal to the depth of the convolutional kernel w in
the field of image processing. The output of this convolutional
layer (i.e., I ∗ w) is a two-dimensional matrix with shape
(L + 2 × p − l1 + 1) × (H + 2 × p − l2 + 1), where p
denotes the padding value of this convolutional operation.
Indeed, the output of a convolution operation with only one
convolutional kernel is a two-dimensional matrix. In other
words, the number of convolutional kernels determines the
depth of the output matrix.

(I ∗ w)ij = f (
l1−1
∑

m=0

l2−1
∑

n=0

D−1
∑

d=0

wm,n,d · Ii+m,j+n,d + b) (5)

0 < i < L + 2 × p− l1 + 1 (6)

0 < j < H + 2 × p− l2 + 1 (7)

The pooling layer usually follows a convolutional layer, but
it is often not required. The objective of the pooling layer is
to reduce the dimension of the data to avoid overfitting under
the premise of keeping the features unchanged. The most
common types of pooling operations are maximum pooling
and average pooling. The maximum pooling operation is
performed to select the maximum value in the local region
of the output matrix of one convolutional layer. In a similar
way, the average pooling operation calculates the average
value.
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FIGURE 6. The structure of an RBFNN.

A fully connected layer, similar to MLPs, usually follows a
pooling layer. In this section, we do not discuss this in further
detail.

D. RADIAL BASIS FUNCTION NEURAL NETWORKS

RBFNNs are feedforward neural networks with only one
hidden layer. With the maturing of research, RBFNNs have
attracted much attention in various fields due to their simple
structure, strong nonlinear approximation and good gener-
alization. RBFNNs have been extensively applied in many
research fields such as pattern classification, function approx-
imation and data mining [39].
An RBFNN (Figure 6) consists of one input layer, one

hidden layer and one output layer. Different from MLPs,
the activation function of neurons in the hidden layer is the
radial basis function (RBF), for example, the Gaussian basis
function (Equation 9), where xi denotes the ith sample in the
training set and vj and σj denote the center and width of the
jth hidden neuron, respectively. The mechanism of the output
layer in this RBFNN can be described as in Equation 8, where
q denotes the number of neurons in the hidden layer and wj
represents the weight between one hidden neuron and one
output neuron.

yi = w0 +

q
∑

j=1

wj · g
(

xi, vj, σj
)

(8)

g
(

xi, vj, σj
)

= exp

(

−

∥

∥xi − vj
∥

∥

2

2σ 2
j

)

(9)

Different from MLPs, the weights of full connections
between the input neurons and hidden neurons are replaced
with an RBF in RBFNNs. It is amazing that this simpli-
fication improves the ability of neural networks to map a
low-dimensional input space into a higher-dimensional space.
Compared with MLPs, RBFNNs not only simplify the net-
work structure and speed up the network training process but
also improve the ability to address high-nonlinear mapping
problems [40].

E. RECURRENT NEURAL NETWORKS

Different from feedforward neural networks, RNNs get their
name from the presence of a feedback loop. The feedback

FIGURE 7. The structure of an RNN.

FIGURE 8. The structure of the classic LSTM.

loop points from a hidden neuron to itself, thus constituting a
recurrent structure. Because of the presence of this recurrent
structure, RNNs can remember previous input data. There-
fore, RNNs are always employed to process time sequence
data [41], [42].

Figure 7 illustrates a simple example of an RNN. Given a
time sequence x = {x0, . . . , xT−1}, the output of a hidden
neuron at time t can be described by Equation 11, whereWxh

denotes the connection weight between input neuron x and
hidden neuron h and Whh denotes the connection weight of
the feedback loop. The output of this RNN at time t can be
described by Equation 10, whereWho denotes the connection
weight between hidden neuron h and output neuron o. H (·)
and O(·) are the activation functions in the hidden layer and
the output layer, respectively.

yt = O
(

Whoh
t + bo

)

(10)

ht = H
(

Wxhx
t +Whhh

t−1 + bh

)

(11)

Although RNNs can be used to process time sequence data,
it is difficult to train RNNs due to the vanishing gradient
problem [43], [44]. To address this problem, LSTMs were
proposed by Hochreiter [45]. Figure 8 illustrates a typical
LSTM cell. The cell consists of three different gates, namely,
the forget gate f , input gate i and output gate o [45].
A forget gate determines what information should be dis-

carded by an LSTM. The function of a forget gate can be
formulated as in Equation 12, where ht−1 denotes the output
of this cell at time t − 1, xt denotes the input data of this cell
at time t , andWf and bf denote the weights and biases of the
forget gate, respectively. The activation function σ maps the
input data to a specific range between 0 and 1. Consequently,
some part of the input value will be discarded by the forget
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gate.

ft = σ
(

Wf · [ht−1, xt ] + bf
)

(12)

An input gate determines what information should be
updated to the cell state. The function of an input gate can
be formulated as in Equation 13 and 14, where C ′

t represents
the provisional cell state calculated by the input gate, and it
determines which parts ofC ′

t should be added to the final state
Ct . Equation 15 describes how the input gate updates the cell
state Ct .

it = σ (Wi · [ht−1, xt ] + bi) (13)

C ′
t = tanh (WC · [ht−1, xt ] + bC ) (14)

Ct = ft × Ct−1 + it × C ′
t (15)

An output gate determines the output value of an LSTM
cell. The function of an output gate can be formulated as in
Equation 16 and 17, where ot represents a provisional ratio
that determines which parts of the cell should be exported
and ht is the final output of this cell.

ot = σ (Wo [ht−1, xt ] + bo) (16)

ht = ot ∗ tanh (Ct) (17)

F. GENERATIVE ADVERSARIAL NETWORKS

Different from the above basic models, GANs [46], pro-
posed by Goodfellow in 2014, are generative models that are
pervasively used to produce content. GANs consist of two
submodels, namely, the generator G and the discriminator D.
Both G andD can beMLPs, CNNs, RBFNNs, RNNs, LSTMs
or other neural networks. The goal of D is to train a function
D(x) that has the capability to distinguish between real data
and generated data. The goal of G is to train a function G(z)
that transfers a simple data distribution pz(z) (e.g., a Gaussian
distribution [47]) to a desired data distribution pdata(x) that
confuses D. G and D are trained alternately until Nash equi-
librium is reached. Equation 18 and 19 respectively describe
the loss functions of D and G.

LD = −Ex∼pdata (x)[logD(x)] − Ez∼pz(z)[log(1 − D(G(z)))]

(18)

LG = Ez∼pz(z)[log(1 − D(G(z)))] (19)

After 2014, the number of varieties of GANs exploded.
In general, GAN series models are divided into two
categories: conditional and unconditional GANs. The
Wasserstein-GAN [48]–[50], DC-GAN [51], etc. are out-
standing examples of unconditional GANs, which are com-
mitted to producing realistic and high-resolution image data.
The cGAN [52] and info-GAN [53] are good examples
of conditional GANs, which focus on how to control the
output by adding some additional variants related to the target
function in the input data.

G. OTHER NEURAL NETWORKS OR MECHANISMS

In this section, we introduce some neural networks or mech-
anisms that are not commonly used in aerodynamic data

modeling. However, these state-of-the-art models or mech-
anisms represent the front of artificial intelligence. Besides,
we believe that these new models or mechanisms can be used
to analyze the spatiotemporal characteristics of the flow field
data and key parts of the aerodynamic shape, so it is necessary
to provide an overview of them.

1) GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) were firstly proposed by
Scarselli in 2009 [54]. Subsequently, many varieties of GNNs
emerged, for example gated graph neural networks [55],
graph attention networks [56], graph LSTM [57], and graph
convolutional networks [58], etc. Different from standard
neural networks, every node in a GNN maintain a state
embedding that expresses information from its neighborhood.
Therefore, GNNs are unique models that obtain the depen-
dence of graphs via information passing among the nodes
of graphs. undoubtedly, GNNs are widely used in learning
tasks with complex dependencies, for example social net-
work prediction [59], traffic prediction [60], recommender
systems [61], graph representation [62], and image process-
ing [55], etc.
According to the current situation, the application of GNN

in aerodynamic data modeling is rare. However, we believe
that the powerful ability of GNNs to analyze dependency can
be used in the analysis of spatiotemporal characteristics of
flow field data.

2) ATTENTION MECHANISM IN NEURAL NETWORKS

Attention mechanism was proposed by Bahdanau
in 2014 [63]. Similar to human visual processing system,
attention mechanism always focus on some parts of the
input information, ignoring the irrelevant parts [64]. Sim-
ilarly, some input data, for example languages, speeches
or images, possess the characteristic that some parts are
more relevant compared to others. Consequently, attention
mechanism has been widely used in natural language pro-
cessing [65], statistical learning [66], and computational
vision [67]. There are many variations of attention mech-
anism, for example soft attention [68], multi-level atten-
tion [69] and multi-dimensional attention [70], etc. More
details of the category of attention mechanism can be found
in [71].
From the perspective of aerodynamic data modeling,

we believe that attention mechanism can be used to identify
key aerodynamic features (such as key dimensions in the flow
state, key parts in aerodynamic shape, etc.)

III. SOLVING ORDINARY/PARTIAL DIFFERENTIAL

EQUATIONS

In recent decades, the cross research of CFD and neural
networks has attracted much attention [17]. It has become
a common practice in the field of aerodynamics to adopt
data driven models to overcome the shortcomings of CFD.
Differential equations (DEs) play a significant role in CFD.
DEs are divided into two categories: ODEs and PDEs. Most
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of the DEs in aerodynamics are complex PDEs. It is unre-
alistic to pursue an ultraprecise numerical solution to every
PDE. Consequently, many types of approximation methods
including MLPs are utilized to solve PDEs. In this section,
we classify the existing studies into two categories: physics
uninformed neural networks and physics informed neural
networks.

A. PHYSICS UNINFORMED MODELS

Classic neural networks, as a data driven model, do not
involve the physical laws contained in the governing equa-
tions when solving them. Therefore, we regard classic neural
networks as physics uninformed neural networks. The studies
based on physics uninformed neural networks can be divided
into two categories: decomposition method and transforma-
tion method.

1) DECOMPOSITION METHOD

Early studies often use the decomposition method: dividing
one ODE/PDE into different parts, some of which can be
fitted by MLPs. Lagaris et al. [72] proposed a method to
divide one ODE/PDE into two parts. The first part is a simple
function that satisfies the boundary conditions. The second
part is an unexplainable function that is not affected by the
boundary conditions. The advantage of this approach is that
the second function can be easily simulated by an MLP. The
result shows that MLPs can be used to solve ODEs and PDEs,
with an accuracy of 10−5. In this research, the number of
nodes in the hidden layers is determined by trial, which is
the most common way in deep learning or neural networks.
Based on Lagaris’s research, Mall et al. [16] proposed a

method for determining the number of nodes and the initial
weights of an MLP, which was used to simulate the second
part of a specific PDE. The structure of an MLP with a single
hidden layer was considered. The numbers of nodes in the
hidden layers are related to the degree of the polynomial.
For example, a degree n polynomial will generate a specific
MLP with the number of nodes in the hidden layer equal to
n + 1, and the coefficients of the polynomial will be taken
as the initial weights both from the input layer to the hidden
layer and from the hidden layer to the output layer. Mall
considered three-, four-, and five-degree polynomials for
the experiments. The results demonstrate that the proposed
method is preferable over a random initialization. However,
an abnormal phenomenon is observed: increasing the degree
of polynomials does not lead to a high accuracy.
The above studies demonstrate that MLPs are good tools

for solving ODEs/PDEs. However, in the above papers,
the ODEs/PDEs are relatively simple, which means that it
is still not clear weather MLPs can be applied to solve
high-dimensional ODEs/PDEs.

2) TRANSFORMATION METHOD

Transforming a high-dimensional ODE/PDE into another
convex optimization problem is a solution for the ‘‘curse
of dimensionality’’ of ODEs/PDEs. Han [73] introduced

an MLP-based transformation approach that can solve
high-dimensional parabolic PDEs. The target PDEs, which
could be approximated by MLPs, are reformulated by back-
ward stochastic DEs from the original PDEs. The relative
approximation error is stable at 10−3. Based on the principle
of MLPs, Sirignano [23] proposed a learning method, i.e., the
deep Galerkin method (DGM), to solve high-dimensional
PDEs. The test results show that the DGM is able to solve
PDEs in up to 200 dimensions.
Compared with decomposition method, the transformation

method verified the feasibility of using MLPs to solve the
high-dimensional ODEs/PDEs. However, neither the decom-
position method nor the transformation method incorporate
aerodynamic laws into MLPs, which means that the above
research is not of physical significance.

B. PHYSICS INFORMED MODELS

Some recent aerodynamic studies showed that neural net-
works can solve ODEs/PDEs with respecting the physical
laws contained in them. Usually, physical laws can be fused
with neural networks as prior knowledge. Based on MLPs,
Raissi et al. [74], [75] proposed a continuous time model and
a discrete time model to approximate the governing equa-
tions. These two state-of-the art physics informed neural net-
works followed the symmetry, invariance, principles coming
from the physical laws that govern the observed data. Similar
studies are [76]–[78]. These studies regard physical laws as
prior knowledge and integrate them into neural networks. The
resulting physics informed models meet the challenge a) that
we introduced in Section I very well. However, Raissi [75]
mentioned that the proposed methods which may introduce a
severe bottleneck in high-dimensional ODEs/PDEs are sup-
plementary methods for solving ODEs/PDEs because tra-
ditional ROMs (for example finite elements [79], spectral
methods [80], etc.) have already matured. Therefore, these
physics informed methods, as a combination between neural
network and aerodynamic potential laws, remain to be further
studied.

C. A CONCLUSION OF SOLVING ORDINARY/PARTIAL

DIFFERENTIAL EQUATIONS

In terms of physics uninformed models, the earlier research
focused on how to solve ODEs/PDEs using MLPs, leaving
out the high-dimensional problem. However, recent research
has been consumed with the ‘‘curse of dimensionality’’ of
ODEs/PDEs. In terms of physics informed models, the idea
of incorporating physical laws expressed by governing equa-
tions into neural networks is catching on. Table 1 illustrates
the differences between the above studies. The studies on the
first four lines are physics uninformed models, while those
on the last lines are physics informed models. Compared
with the decomposition methods, transformations are able
to address high-dimensional ODEs/PDEs, but they are more
complex and difficult to accomplish. Compared with physics
uninformed models, physics informed models are more suit-
able to solving ODEs/PDEs in aerodynamics, but how to
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TABLE 1. Comparison of the above studies on solving ODEs/PDEs.

deal with high-dimensional ODEs/PDEs are still unknown.
From our perspective, combining transformation methods
and physics informed models may be a feasible approach to
solving high-dimensional ODEs/PDEs in aerodynamics.

IV. NONLINEAR AERODYNAMIC RESPONSE

PREDICTIONS

Aerodynamic response predictions refer to the utilization of
appropriate methods to build aerodynamic data models that
can express the variation in aerodynamic response parameters
(force and moment, etc.) with the design parameters (height,
Mach number and Reynolds number, etc.) [17], and finally
output the predicted value of response parameters in the
case of given design parameters. Because most aerodynamic
problems are nonlinear, we mainly discuss nonlinear aero-
dynamic response predictions. In addition, since the flow
state of fluid mechanics is generally divided into steady and
unsteady flow [81], the corresponding aerodynamic response
predictions in this paper are also divided into steady and
unsteady aerodynamic response predictions.

A. STEADY NONLINEAR AERODYNAMIC RESPONSE

RREDICTIONS

In the field of steady nonlinear aerodynamic response pre-
dictions, the response parameters, for example aerodynamic
forces or moment coefficients, are related to flow state and
aerodynamic shape. So we analyze the studies in this field
from two aspects: steady nonlinear aerodynamic response
predictions based on flow state and steady nonlinear aero-
dynamic response predictions based on both aerodynamic
shapes and flow state.

1) STEADY NONLINEAR AERODYNAMIC RESPONSE

PREDICTIONS BASED ON FLOW STATE

The applications of MLPs in steady aerodynamic response
predictions dates back to the 1990s. Koumoutsakos et al. [82]
established a low-order turbulence model by using MLPs.
Studies in this field has exploded since 2015. Ling et al. [83]
proposed a tensor basis neural network (TBNN) to improve
the accuracy of predictions of the Reynolds average
Navier–Stokes (RANS) equation. Tenney et al. adopted
MLPs to predict the noise of a rectangular jet. It was clearly
shown that the essence of the aerodynamic response predic-
tions is multivariable nonlinear regression [84]. These studies

FIGURE 9. The structure of a cluster network with 2 clusters. The red
network is the function network, while the dark blue network is the
context network. A function network and a context network constitute a
cluster. Furthermore, multiple clusters constitute a clustering network.

demonstrate that the architecture of MLPs does work, but
the results of these experiments show that the accuracy of
the predicted data still has much room for improvement.
Usually, the accuracy can be enhanced by additional hidden
layers or units in each hidden layer. However, these additional
layers or units will lead to a long training period for the
model. In summary, one of the biggest problems in steady
aerodynamic modeling is how to predict the aerodynamic
responses more quickly with high accuracy [85].

To alleviate the above problem of steady aerodynamic
models based on MLPs, White et al. [85] proposed a novel
network architecture (named the cluster network, Figure 9)
based on MLPs to predict fluid dynamic solutions from
limited samples. The cluster network is unique because it
consists of a number of fully connected networks (called clus-
ters). Each cluster automatically addresses different part of
the training set. One cluster is composed of two parts: a func-
tion network and a context network. The function network
learns the conditional probability P(X |Y ), while the context
network determines howmuch the result of the corresponding
function network should be added to the final predicted result.

White designed two experiments based on different data
sets. One data set comes from Burgers’ equation (Equa-
tion 20), which appears in many fields of applied mathe-
matics, such as fluid mechanics, nonlinear acoustics, aero-
dynamics, and traffic flow [86]. Burgers’ equation is a
one-dimensional PDE used to express the movement of a
shockwave across a tube in the first experiment. The other
comes from the shock bubble test case of the Navier-Stokes
(N-S) equation (Equation 21). TheN-S equation describes the
flow of many fluids, such as ocean currents, water in a pipe,
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FIGURE 10. Comparison between the MLP (left) and cluster
network (right) on Burgers’ data (velocity u) prediction.

TABLE 2. Comparison of the prediction errors between the MLP and our
cluster network based on Burgers’ equation.

the air around wings, etc. [77]. In the second experiment,
the N-S equation was used to describe how a shockwave
moves across a 2D bubble. White chose only 5 numerical
solutions from these two cases. In Burgers’ case, the training
set contains only three samples, with the viscosity µ equal to
1.0, 3.0 and 4.0. The remaining two samples, with µ equal
to 2.0 and 5.0, constitute the validation set. In the N-S case,
the training set contains three samples, with the velocity v
equal to 1.4, 2.0 and 5.0; in a similar way, the remaining
two samples, with v equal to 1.8 and 3.0, constitute the
validation set. The result illustrate that bothMLPs and cluster
networks can closely approximate Burgers’ equation and the
N-S equation, but cluster networks extrapolate better than
MLPs in the test sets.

∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
(20)

ρ

[

∂V

∂t
+ (V .∇)V

]

= −∇P+ ρg+ µ∇2V (21)

We [87] noticed that White’s paper did not mention how to
divide the training set into different subsets for every cluster
nor the conditions these subsets should satisfy. Motivated
by this, in our design, the uniformly distributed Burgers’
data set was split into 4 disjoint subsets according to the
value of time t , with each subset processed by one clus-
ter. We designed 14 different structures for the MLPs and
32 different structures for the cluster networks, with their
parametric variation occurring in a similar way. We com-
pared these MLPs and cluster networks based on Burgers’
equation and the N-S equation. Table 2 shows the results
of the most accurate MLP and cluster network based on
Burgers’ equation. Notably, we tried to add both the hidden
layers and nodes for the most accurate MLP structure, but
doing so did not improve the accuracy. Figure 10 illustrates
the predicted velocity u, and visualizations of the prediction
of data are shown in Figure 11. As for the N-S equation,
Table 3 shows the comparison results based on the N-S
equation, and visualizations of prediction of data are shown
in Figure 12.

FIGURE 11. Visualization of the data predicted by our proposed structure
based on Burgers’ equation. The figure on the left is a prediction of the
velocity u, and the graph on the right shows the relationship between the
velocity u and displacement x .

TABLE 3. Comparison of the prediction errors between the MLP and our
cluster network based on the N-S equation.

FIGURE 12. Visualization of the data predicted by our proposed structure
based on cylindrical laminar case of the N-S equation. The figure on the
left describes the friction field on the surface of a cylinder, and the
figure on the right shows the distribution of pressure coefficients on the
surface of a cylinder.

TABLE 4. Comparison of the above research on aerodynamic
performance prediction.

As a conclusion, the comparison results of the above
studies based on MLPs are shown in Table 4. By contrast,
we noticed that cluster networks are better than MLPs in
terms of accuracy and efficiency, because it decomposes
a complex nonlinear problem into several independent and
simple nonlinear problems, which greatly reduces the diffi-
culty of data processing for each cluster. However, cluster
networks are more complex than MLPs, especially in the
partition of subsets when dealing with uniformly distributed
data. We tried to adopt different partition methods, e.g.
k-means [88], but this did not bring an improvement in accu-
racy or efficiency. Therefore, we believe that cluster neural
networks are more suitable for the processing of non-uniform
distributed data. Of course, this speculation still needs to be
proven by a lot of experimental and theoretical analysis.
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FIGURE 13. The structure of AeroCNN-I.

2) STEADY NONLINEAR AERODYNAMIC RESPONSE

PREDICTIONS BASED ON BOTH AERODYNAMIC SHAPES

AND FLOW STATE

The ability of CNNs to process image data has motivated the
development of neural networks in the field of steady aero-
dynamic response predictions based on aerodynamic shapes
and flow state. Compared with MLPs, CNNs take both the
geometric profiles of the airfoil and the flow state into con-
sideration. Theoretically, they are more reliable than MLPs.
In this section, we classified the existing studies into three
typical categories: traditional CNNs, improved CNNs and
artificial images.
Yilmza et al. [90] adopted traditional CNNs to probe

the feasibility of CNNs in the field of aerodynamic shapes
modeling. In this study, the author compared the effects of
MLPs and CNNs on predicting the pressure coefficient on
the airfoil surface. For MLPs, they constructed a training
data set, e.g., [(xi, y),C i

p]
tr
N , where (xi, y) denotes a specific

point on the airfoil surface and C i
p denotes the corresponding

pressure coefficient of the corresponding point. For CNNs,
the input data are images of the airfoil profile. The accuracy
of CNNs can exceed 80%, which demonstrates that CNNs are
much better thanMLPs in addressing the geometry of airfoils.
An obvious drawback of this research is that the process of
this study involved only the shapes of the airfoils, leaving out
the flow state.
To address the problem of traditional CNNs in steady

aerodynamic response predictions, improved CNNs were
proposed. Considering the importance of the flow state,
Zhang et al. [14] presented a new model named AeroCNN-I
(Figure 13), which can take both the flow state and aero-
dynamic shapes into consideration. AeroCNN-I was used
to learn the conditional probability P(Y |[X1,X2]), where Y ,
the output value, denotes the specific aerodynamic forces
or moment coefficients, X1 denotes the aircraft geometric
shapes, and X2 denotes the flow state (i.e., the flow Mach
number and Reynolds number in this case). The prediction
accuracy of AeroCNN-I is better than that of MLPs.
Subsequently, the artificial image method appeared.

Thuerey et al. [91] adopted CNNs to predict steady aero-
dynamic responses. Some flow state parameters and airfoil
shapes were encoded into a N × 128 × 128 × 3 matrix,
where N is the number of samples. A CNN was used to
predict the velocity of a specific airfoil shapes under a given
flow condition. This research provided a feasible scheme
for considering the shapes of the airfoil and the flow state
parameters simultaneously. Similar to Thuerey’s research,
Zhang et al. [14] further proposed AeroCNN-II based on

TABLE 5. Comparisons of the above research on aerodynamic
performance predictions.

AeroCNN-I. The core idea of AeroCNN-II is the ‘‘artifi-
cial image’’, in which the flow state parameters are fused.
Consequently, a synthetic image can express both the flow
state and the geometric shapes of the airfoils. Compared
with AeroCNN-I, the prediction accuracy of AeroCNN-II is
higher, which demonstrates that the ‘‘artificial image’’ is a
working concept.

Table 5 illustrates the comparisons of the mentioned mod-
els in this section. It is clear that a) CNNs can take both airfoil
shapes and flow state parameters into consideration and b) the
use of an ‘‘artificial image’’ is an effective way to integrate
these two different parameters.

3) A CONCLUSION OF STEADY NONLINEAR AERODYNAMIC

RESPONSE RREDICTIONS

As a matter of fact, in steady aerodynamic response predic-
tions, there are two parallel approaches: a) approaches based
on MLPs and b) approaches based on CNNs. [90] believes
that the approaches based on CNNs are better than those
based on MLPs. The main reasons are that a) aerodynamic
forces and moments not only depend on the flow state param-
eters but also are affected by the aircraft profile and b) MLPs
are not powerful enough to learn the geometric shapes of
airfoils. In fact, the data in the training set of MLPs are
measurements of one specific aircraft shape. Consequently,
the training set of MLPs implies a representation of this spe-
cific geometric profile. Therefore, we believe that bothMLPs
and CNNs are feasible, but the key factor that affects the
prediction accuracy is the high reliability of the original data
in the training set. Besides, the models based on MLPs need
to explore new structures to improve the prediction accuracy,
we call this type of research model-oriented research. The
models based on CNNs focus on how to merge flow state
and aerodynamic shapes, we call this type of research data-
integration-oriented research.

Despite that CNNs-based models are successful in the
field of steady nonlinear aerodynamic response predictions,
mechanisms of CNNs to learn aerodynamic shapes are still
unknown. Understanding the mechanisms of CNNs to per-
ceive aerodynamic information can help us to optimize the
network structure or super parameters. In computational
vision, there are some studies [92]–[94] based on visual-
ization method try to explain the mechanisms for CNNs to
perceive image data. However, in aerodynamic modeling,
the study on the interpretability [95] of CNNs is at the initial
stage. The research on the interpretability of CNNs-based
aerodynamic models is not only convenient to optimize the
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structure and parameters of the models, but also to interpret
the potential aerodynamic law. Consequently, we believe that
the interpretability research will be one of the hot topics in
the future.

B. UNSTEADY NONLINEAR AERODYNAMIC RESPONSE

PREDICTIONS

Different from the steady aerodynamic response predictions,
the unsteady aerodynamic response predictions in this section
refer to the predictions of aerodynamic responses in unsteady
air flows. In unsteady nonlinear aerodynamic response pre-
dictions, the relative movement between an aircraft and air-
flow changes with time (e.g. aerodynamic force presents a
periodic or aperiodic change law), which makes unsteady
aerodynamics one of the difficulties in the study of aerody-
namics [96]. In addition, this high-nonlinear dynamic sys-
tem often has a large number of degrees of freedom, which
increasing the computational cost of CFD. Compared with
the computational cost of the current CFD methods, neural
networks are an efficient and feasible surrogate model for
nonlinear unsteady aerodynamics [97].
In this section, we focus on two areas: spatial nonlinear-

ity oriented unsteady aerodynamic response predictions and
temporal continuity oriented unsteady aerodynamic response
predictions.

1) SPATIAL NONLINEARITY ORIENTED UNSTEADY

AERODYNAMIC RESPONSE PREDICTIONS

Radial basis function neural networks (RBFNNs) are con-
sidered as nonlinear input–output models that have been
found to be very useful for multivariate scattered data
interpolation [98]. Besides, Poggio et al. [40] proved that
RBFNNs are the best approximator for nonlinear continuous
function while MLPs are not. Therefore, In this section,
we focus on the high-nonlinear characteristics of unsteady
aerodynamic response predictions. We divide recent stud-
ies into two categories: pure nonlinear models and hybrid
models.
The most prevailing RBFNNs-based unsteady aerody-

namic models are pure nonlinear models. Hoceva et al. [99]
adopted RBFNNs to predict the fluctuations in the
passive-tracer concentration for the turbulent wake behind
an airfoil. This study is just the beginning of the application
of RBFNNs to turbulence modeling. The veritable explosion
came after 2010 [100].
Ghoreyshi [101] summarized in detail the definition and

formulation of nonlinear unsteady aerodynamic problems
and applied RBFNNs to study unsteady aerodynamic mod-
eling at low-speed flow conditions. The results show that the
converged RBFNN can predict a nonlinear unsteady aerody-
namic load in a few seconds, making it faster than MLPs.
Zhang et al. [102], [103] probed the feasibility of RBFNNs
for high-Reynolds-number turbulent flows. In Zhang’sworks,
the whole flow field was divided into three parts: near-wall
region, wake region, and far-field region. Three different
RBFNNs were built for every region to predict the eddy

TABLE 6. Comparison of the above RBF neural network models on
nonlinear unsteady aerodynamic response predictions.

viscosity. Zhang validated the accuracy and generalization
capability of RBFNNs in turbulence eddy viscosity pre-
diction. Compared with Hoceva, Zhang greatly improved
the effectiveness of the RBFNNs in turbulence modeling.
Kou et al. [47] proposed a novel model called the multikernel
neural network and used it to model unsteady aerodynamics.
Based on the recurrent radial basis function neural networks
(RRBFNNs), Kou realized a multikernel neural network by
adopting the linear combination of the Gaussian kernel func-
tion andwavelet kernel function instead of using the Gaussian
kernel function alone. The experimental results show that
the multikernel neural networks have fewer errors than do
RRBFs in both fixedMach number and variant Mach number
experiments.

Although research on nonlinear unsteady aerodynamics
based on neural networks has made great progress, the the-
oretical research on unsteady aerodynamics is limited due to
the inability to consider linear and nonlinear characteristics
at the same time. For example, the pure nonlinear ROMs
mentioned above may fail to capture the flutter boundary
accurately [104]. Hybrid models in nonlinear unsteady aero-
dynamics began to emerge. Kou et al. [97] proposed a hybrid
model containing both linear and nonlinear characteristics
for nonlinear unsteady aerodynamics. Combining the linear
autoregressive with exogenous input (ARX) model [105] and
RBFNNs, the hybrid model can predict unsteady aerody-
namic forces, limit cycle oscillations (LCOs) [106] and flutter
behaviors.

In summary, the unsteady aerodynamic response predic-
tions in this section focus on addressing linear or nonlinear
problems. The comparison results of the above studies are
shown in Table 6. By contrast, we notice that a) multikernel
models are more accurate than single-kernel models and
b) the hybrid model achieves better precision than do the pure
nonlinear models.

2) TEMPORAL CONTINUITY ORIENTED UNSTEADY

AERODYNAMIC RESPONSE PREDICTIONS

In this section, we focus on the temporal continuity of
unsteady aerodynamic response predictions. We classify the
existing studies into two categories: RNNs and CNNs.

The ability of RNNs to deal with time sequence
data in other fields (e.g. natural language processing)

VOLUME 8, 2020 90815



L. Hu et al.: Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review

promotes its development in the field of temporal continuity
oriented unsteady aerodynamic response predictions. Man-
narino et al. [107] presented a continuous time recurrent
neural network (CTRNN)-based ROM for nonlinear unsteady
aerodynamic load predictions. Based on traditional RNNs,
Mannarino added a simple direct integration in the time
domain to obtain the CTRNNs, which gave the whole model
continuity in the time domain. Compared with RBFs and
AeroFoam [108], the validity and accuracy of the CTRNN
were verified. However, the author had to assign delay orders
for the CTRNN, and the vanishing gradient problem was still
unsolvable.

As one of the most popular models for processing
time sequence data, the LSTM models overcome the
above drawbacks of RNNs. Li et al. [109] adopted an
LSTM to predict aerodynamic and aeroelastic responses.
In their research, the input variables of this LSTM were
the Mach number, pitching angle and plunging displace-
ment of the transonic NACA64A010 airfoil, while the
output variables were the corresponding lift and pitch
moment coefficients. Compared with the CFD and proper
orthogonal decompositions (POD)-RBF [110] approaches,
it was demonstrated that LSTMs can effectively capture
the dynamic characteristics of aerodynamic and aeroelastic
systems.

The combination of PODs [111] and LSTMs is another
common approach. Because PODs are mathematically opti-
mal [112] for any given data set, combining PODs and
LSTMs is feasible for nonlinear unsteady aerodynamic
response predictions. Wang et al. [113] combined PODs and
LSTMs to construct a novel ROM, which was applied to
study the changing process when air flows past a cylinder.
Compared with the RBF methods, the new novel ROM has
a smaller error in the velocity prediction. Mohan et al. [114]
adopted PODs and LSTMs/BiLSTMs [115] to learn the spa-
tiotemporal feature of turbulent flows based on high-fidelity
simulation databases coming from the N-S equation. The
results show that LSTM is more accurate than BiLSTM
in predicting the turbulence amplitude. Similar studies
are [116], [117].

Another approach is CNN-based model. Recent stud-
ies [21], [38] illustrated that CNNs outperform RNNs (e.g.
LSTMs) on problems of sequence data modeling, while
demonstrating longer effective memory. This breakthrough
makes CNNs be used in time sequence modeling gradually.
Fukami et al. [118] developed a turbulent inflow genera-
tor (Figure 14) based on CNNs to generate time-dependent
turbulent inflow data. Fukami combined a convolutional
encoder, an MLP and a convolutional decoder to form a
generative model to produce the turbulent data in next time.
Han et al. [119] proposed a novel hybrid DNN which con-
sists of convolutional layers, convolutional long short term
memory layers, and deconvolutional layers. The new archi-
tecture was designed to capture the spatial-temporal features
of unsteady flows. Similar studies are [120]–[122].

FIGURE 14. The structure of the turbulent inflow generator by
Fukami [118].

TABLE 7. Comparisons of the above models on nonlinear unsteady
aerodynamic response predictions.

In summary, the comparison results of the above studies
are shown in Table 7. By contrast, we notice that LSTMs
are more accurate than PODs, RBFs and traditional RNNs.
In addition, there is no requirement for assigning delay orders
for LSTMs, which undoubtedly makes nonlinear unsteady
aerodynamic modeling more convenient. Although it is not
mentioned that CNNs keep longer effective memory than
LSTMs in studies of Fukami and Han, CNNs are similar to
LSTMs in prediction error, which makes CNNs a promising
model in temporal continuity oriented unsteady aerodynamic
response predictions. From our point of view, proving that
CNNs have longer effective memory than LSTMs in this field
is the next research point, which will determine the dominant
position of CNNs.

3) A CONCLUSION OF UNSTEADY NONLINEAR

AERODYNAMIC RESPONSE PREDICTIONS

There are two problems in unsteady nonlinear aerodynamic
response predictions: spatial nonlinearity oriented and tem-
poral continuity oriented modeling. As for spatial nonlinear-
ity oriented modeling, the RBFNNs are a feasible method.
An RBFNN constructs a hyperplane by linear combination of
several RBFs to approximate the sample point. As for tem-
poral continuity oriented modeling, both RNNs and CNNs
can learn the temporal continuity contained in the training
set. However, CNNs have shown a long effective memory
in the field of natural language processing, which makes
the model gradually concerned in the field of aerodynamic
data modeling. RBFNNs, RNNs and CNNs mentioned in this
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FIGURE 15. Comparison of the classic GAN with our cGAN. (a) The
training process of the classic GAN. (b),(c),(d) The training processes of
our cGAN in three times.

section meet the challenge b) that we introduced in Section I
very well.

V. FLOW FIELD RECONSTRUCTIONS

Similar to nonlinear aerodynamic response predictions,
we still analyze the studies in this field from two aspects:
steady flow field reconstructions and unsteady flow field
reconstructions.

A. STEADY FLOW FIELD RECONSTRUCTIONS

There are two striking indicators in steady flow field recon-
structions: a) the accuracy of the generated data and b) the
stability of the model. The accuracy indicator ensures the
reliability of the output data, which represent the spatial dis-
tribution of the steady flow field data. The stability indicator
guarantees the feasibility and practicality of the data model.
In steady flow field reconstructions, a good model should
have both of these indicators.
Early research adopted MLPs to reconstruct the steady

flow field [15], [32], which is better than the use of PODs.
Although the stability of the model was guaranteed, the accu-
racy of generated data was unsatisfactory.
To improve the accuracy of generated data, cGANs were

gradually adopted for use in steady flow field reconstruc-
tions. Farmani [123] adopted a cGAN to study the transport
phenomena. Transport phenomena refer to the exchange of
energy, momentum, temperature, and so on. In Farmani’s
paper, cGANs were compared with numerical finite differ-
ence (FD) methods. The MAE of the cGANs was lower
than 0.01, while the training time was more than an order
of magnitude faster than that of the FD methods. However,
the stability of cGANs was omitted.
We [87] adopted cGANs to generate steady flow field data.

Figure 15 illustrates the training process of our model, which
shows that, to some extent, we have improved the stability
of cGANs. The MSE and MAE of our model are shown
in Table 8.

TABLE 8. Comparison of MLPs and our cGANs on steady flow field
reconstruction.

In summary, we infer from Table 8 that cGANs are better
thanMLPs in steady flow field reconstructions. These studies
show that cGANs can capture the spatial distribution of aero-
dynamic data in a steady flow field. Unexpectedly, cGANs
are not only applicable to the steady flowfield reconstructions
but also made great breakthroughs in the field of unsteady
flow field reconstructions.

B. UNSTEADY FLOW FIELD RECONSTRUCTIONS

Compared with steady flow field reconstructions, unsteady
flow field reconstructions are more difficult because of the
temporal continuity of the unsteady flow. Consequently,
the assessment indicators are a) the accuracy of the generated
data; b) the stability of the model; c) the resolution of the
reconstructed flow field image; and d) the temporal conti-
nuity of the unsteady flow field. Super-resolution images of
generated data describe the spatial data distribution, namely,
the spatial characteristics. Generally, super-resolution images
have more powerful representations of spatial characteristics
than a single numerical value. Combining the spatial char-
acteristics and the temporal continuity of an unsteady flow,
we can understand the variation in flow in both the space and
time dimensions.

We classify the existing studies into two categories: CNNs
and CNN(or RNN)-based GANs.

Since CNNs can be used in the field of time sequence data
modeling [21], [38], CNNs can be used to generate unsteady
flow field data. Fukami et al. [124] adopted the CNNs
and the hybrid Downsampled Skip-Connection Multi-Scale
(DSC/MS) models to perform super-resolution and temporal
continuity analysis to reconstruct the high-resolution turbu-
lent flow field based on only 50 training data. Liu et al. [125]
proposed a novel multiple temporal paths convolutional neu-
ral network (MTPC). The MTPCmodel takes a time series of
velocity fields as input. The experimental results showed that
MTPC remarkably improve the spatial resolution in turbulent
flow field reconstructions. Significantly, MTPC performed
well in temporal continuity as well as other features (for
example kinetic energy spectra). The satisfy indicators of
Fukami and Liu’s work are a), c) and d). They did not consider
the stability of the model. However, from the accuracy of
generated data, we know that the stability of these models
are not satisfactory.

CNNs can also be combined with GANs to capture
the spatio-temporal characteristics of unsteady flow data.
Xie et al. [24] proposed a novel generative model named
tempoGAN to generate super-resolution flow field images.
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TABLE 9. Comparison of CNNs and GANs on steady flow field
reconstruction.

TempoGAN is a conditional GAN with double discrimina-
tors. One discriminator (CNN-based discriminator) is used to
determine the spatial distribution of the generated data, while
the other (CNN-based discriminator) is used to determine
the temporal distribution. The flow velocity v, vorticity w

and density ρ are the three-dimensional input data of the
two discriminators, while the input data of the generator are
z (stochastic noise) and ρ, which means that tempoGAN
generates v and w when the density equals ρ. The satisfy
indicators of tempoGAN are a), c) and d). Kim et al. [126]
developed a generative model named RNN-GAN to gener-
ate an inlet boundary condition of turbulent channel flow.
RNN-GAN can generate time-varying flow for a long time.
RNN-GAN satisfies indicator a) and d). Lee et al. [127]
developed a generative model based on CNNs and GANs to
predict unsteady flow over a circular cylinder. This model is
composed of multiple CNNs that generate flow field data at
the next time according to the data at the current moment. The
studies of Lee satisfies indicator a) and d).
In summary, it is clear that the way to satisfy the four

indicators will be a vital research topic. However, it is not easy
to satisfy all these indicators simultaneously. Hence, how to
measure the importance of these indicators is something that
researchers need to consider.

C. A CONCLUSION OF FLOW FIELD RECONSTRUCTIONS

In flow field reconstructions, MLPs, CNNs and GANs are
widely used to generate steady/unsteady flow field data.
Among these models, we suppose that CNN-based GANs
are the most promising models to meet the requirements of
accuracy, super-resolution images and temporal continuity at
the same time. However, the stability of GAN itself limits the
application and promotion of CNN-based GANs. Therefore,
how to address the stability problem of them will become a
research hotspot in this field.

VI. OTHER SCATTERED STUDIES

In this section, we introduce some scattered research areas or
methods. Research areas are aerodynamic inverse design and
dimension reduction.

A. AERODYNAMIC INVERSE DESIGNS

Inverse designs [128] play a vital role in aircraft
designs. The inverse design approaches are clearly divided
into gradient-free and gradient-based algorithms [129].
Gradient-free algorithms (traditional approaches), for

example particle swarm optimization [130], are not based on
neural networks, therefore, we focus on the gradient-based
algorithms in this section. Gradient-based algorithms calcu-
late the continuous gradient of the objective function.

Early gradient-based inverse design algorithms were based
on MLPs [2], [131], [132], which has proven to be a poor
approach. The problems are as follows: a) these works,
to some extent, are less accurate; and b) these works
still require the parametrization of the geometric shapes
of wings. In contrast, CNNs can automatically extract
high-dimensional features, which are more suitable for
the processing of aircraft shapes. Consequently, to further
improve the accuracy of inverse design and reduce the amount
of manual intervention, MLPs were replaced with CNNs in
the inverse design of airfoils. Sekar et al. [128] applied deep
CNNs to obtain the airfoil shape based on the distribution of
the pressure coefficient. The advantages of CNNs in aero-
dynamic inverse are apparent: CNNs are more accurate than
MLPs, and there is no need to parameterize the airfoils.

B. FEATURE EXTRACTION

Aerodynamic data (flow state or aerodynamic shapes) usually
possess multi-dimensional features (for example, after an
airfoil is parameterized, thousands of dimensional features
can be obtained). This problem increases the difficulty of
learning potential aerodynamic laws. Neural networks are
natural dimension reduction models to extract key features.
Sekar et al. [121] use a deep convolutional neural network and
a deep multilayer perceptron to predict incompressible lami-
nar steady flow field over airfoils. In Sekar’s work, the deep
CNN was only used to reduce the dimension of input data.
In the work of Wang et al. [133] and Omata et al. [134],
a deep convolutional autoencoder was used for dimension-
ality reduction in unsteady flow fields. Murata et al. [135]
proposed the mode decomposing convolutional neural net-
work autoencoder (MD-CNN-AE) to visualize the decom-
posed flow fields. The results suggest a great potential for
the nonlinear MD-CNN-AE to be used for feature extraction
of flow fields in lower dimension. Chen et al. [136] applied
CNN-based GANs to reduce the dimension of input airfoil
shapes to realize the design optimization of an airfoil. CNNs
are better than traditional approaches (e.g. PODs [111]), espe-
cially in the aerodynamic shape processing.

C. SOLVING ORDINARY/PARTIAL DIFFERENTIAL

EQUATIONS BY RADIAL BASIS FUNCTION

Because RBFs are the basis of RBFNNs, we briefly introduce
the applications of RBFs in this section and the next section.

RBFs are usually used to solve ODEs/PDEs in
aerodynamics [137]–[139]. Compared with the traditional
methods [140]–[142] of solving PDEs, their real meshless
characteristic is the biggest advantage, which has promoted
the application of RBFs in this field [143]–[145]. Different
from the solving of ODEs/PDEs presented in Section III,
RBFs do not involve artificial neural networks. RBFs are
methods based on function approximation by reducing the
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error between the approximation functions and ODEs/PDEs
to obtain the approximate solutions. However, consider-
ing that many ODEs/PDEs in aerodynamics possess highly
nonlinear properties, MLPs are still the most promising
approaches in this field.

D. TURBULENCE MODELING BASED ON RADIAL BASIS

FUNCTION

Another application of RBFs in aerodynamics is turbulence
modeling. Duraisamy et al. [146], [147] and Singh et al. [148]
used an RBF (a Gaussian kernel function) to build turbulence
and transition models and embedded them into CFD solvers.
Similar studies are [149]–[151]. Because RBFs (especially
Gaussian kernel functions) are quite simple, these models
reduce the time consumption of turbulence simulation. Com-
pared with RBFs, RBFNNs play an important role in aero-
dynamic data modeling, especially in nonlinear unsteady
aerodynamic response predictions.

VII. CONCLUSION AND DISCUSSION

In this review, we analyzed the shortcomings of CFD and
traditional ROMs in aerodynamic data modeling, and we
introduced existing neural network based approaches in
solving ODEs/PDEs, steady/unsteady aerodynamic response
predictions and steady/unsteady flow field reconstructions,
etc. We emphasized some successful studies, such as the
DGM by Sirignano, AeroCNN-II by Zhang, and tempoGAN
by Xie et al. These successful studies indicate the future
prospects in their respective fields.

In the field of solving ODEs/PDEs, we introduced physics
uninformed models and physics informed models, and fur-
ther pointed out the problem of sovling high-dimensional
ODEs/PDEs. As for physics uninformed models, the decom-
position of ODEs/PDEs is easy, but it is not powerful
enough to deal with high-dimensional ODEs/PDEs, while the
transformation of high-dimensional ODEs/PDEs is suitable
to address the ‘‘curse of dimensionality’’ of ODEs/PDEs.
As for physics informed models, physical laws can be fused
with neural networks as prior knowledge. However, physics
informed models also cannot address the ‘‘curse of dimen-
sionality’’ problems. Hence, we believe that the combination
of transformation methods and physics informed models will
be a feasible and aerodynamics informed approach to solve
high-dimensional ODEs/PDEs.

In aerodynamic response predictions, we analyzed them
from two perspectives: steady and unsteady aerodynamic
response predictions.

In steady aerodynamic response predictions, both MLPs
and CNNs are feasible. The difference is the representa-
tion of the geometric profiles of airfoils. In the approaches
based on flow state, more complex model structures and
training algorithms are the trend of future research, namely,
model-oriented research. In the approaches based on aerody-
namic shapes and flow state, those methods that can inte-
grate both flow state parameters and the geometric profile
will direct future studies, namely, data-integration-oriented

research. In addition, the interpretability of neural networks
in the field of aerodynamics will also be a hot topic in the
future.

In unsteady aerodynamic response predictions, RBFNNs,
RNNs and CNNs are commonly used for different targets.
RBFNNs focus on the spatial nonlinearity of unsteady aero-
dynamic modeling. Hybrid models and multikernel models
will be topics of future nonlinear research. RNNs and CNNs
focus on the temporal continuity of unsteady aerodynamic
modeling. It should be noted that CNNs can process time
sequence data in the way of a recursive input, and show
longer effective memory than LSTM. However, this feature
of CNNs, at present, is still unexplainable and needs further
study.

In the field of flow field reconstruction, the steady and
unsteady flow field reconstructions were analyzed. In steady
flow field reconstructions, the prediction accuracy and the
stability of models are key indicators. Compared with steady
flow field reconstructions, there are two new indicators for
unsteady flow field reconstructions, namely, the resolution
of the generated images and the temporal continuity, which
reflect the spatial distribution of the flow data and the
rule governing the change in flow data with time, respec-
tively. By combing existing studies, we can conclude that
CNN-based cGANs are most likely to meet all the indicators
in future studies.

We believe that neural networks will certainly solve many
difficult problems in aerodynamics. In the next few decades,
aerodynamic response predictions based on neural networks
will gradually mature. In the long run, the solving of
ODEs/PDEs and the flow field reconstructions are sure to be
the most considered topics in both artificial intelligence and
aerodynamics research.

REFERENCES

[1] H.-Y. Fan, G. S. Dulikravich, and Z.-X. Han, ‘‘Aerodynamic data model-
ing using support vector machines,’’ Inverse Problems Sci. Eng., vol. 13,
no. 3, pp. 261–278, Jun. 2005.

[2] M. M. Rai and N. K. Madavan, ‘‘Aerodynamic design using neural
networks,’’ AIAA J., vol. 38, pp. 173–182, Jan. 2000.

[3] D. J. Lucia, P. S. Beran, and W. A. Silva, ‘‘Reduced-order modeling:
New approaches for computational physics,’’ Prog. Aerosp. Sci., vol. 40,
nos. 1–2, pp. 51–117, Feb. 2004.

[4] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, ‘‘Proper orthogonal
decomposition closure models for turbulent flows: A numerical compar-
ison,’’ Comput. Methods Appl. Mech. Eng., vols. 237–240, pp. 10–26,
Sep. 2012.

[5] T. Karras, T. Aila, S. Laine, and J. Lehtinen, ‘‘Progressive growing of
GANs for improved quality, stability, and variation,’’ in Proc. 6th Int.
Conf. Learn. Represent. (ICLR), 2018, pp. 1–26.

[6] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, 5967–5976.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[8] R. Collobert and J. Weston, ‘‘A unified architecture for natural lan-
guage processing,’’ in Proc. 25th Int. Conf. Mach. Learn. (ICML), 2008,
pp. 160–167.

[9] A. Kumar et al., ‘‘Ask me anything: Dynamic memory networks for
natural language processing,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1378–1387.

VOLUME 8, 2020 90819



L. Hu et al.: Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review

[10] E. de la Rosa and W. Yu, ‘‘Randomized algorithms for nonlinear system
identification with deep learning modification,’’ Inf. Sci., vols. 364–365,
pp. 197–212, Oct. 2016.

[11] J. Qiao, G. Wang, W. Li, and X. Li, ‘‘A deep belief network with PLSR
for nonlinear system modeling,’’ Neural Netw., vol. 104, pp. 68–79,
Aug. 2018.

[12] S. Genc, ‘‘Parametric system identification using deep convolutional neu-
ral networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 2112–2119.

[13] J. Carrasquilla and R. G. Melko, ‘‘Machine learning phases of matter,’’
Nature Phys., vol. 13, no. 5, pp. 431–434, May 2017.

[14] Y. Zhang, W.-J. Sung, and D. Mavris, ‘‘Application of convolutional neu-
ral network to predict airfoil lift coefficient,’’ 2018, arXiv:1712.10082.
[Online]. Available: https://arxiv.org/abs/1712.10082

[15] J. Yu and J. S. Hesthaven, ‘‘Flowfield reconstruction method using artifi-
cial neural network,’’ AIAA J., vol. 57, no. 2, pp. 482–498, Feb. 2019.

[16] S. Mall and S. Chakraverty, ‘‘Comparison of artificial neural network
architecture in solving ordinary differential equations,’’ Adv. Artif. Neural
Syst., vol. 2013, pp. 1–12, 2013.

[17] S. Brunton, B. Noack, and P. Koumoutsakos, ‘‘Machine learning
for fluid mechanics,’’ 2020, arXiv:1905.11075. [Online]. Available:
https://arxiv.org/abs/1905.11075

[18] L. Baert, E. Chérière, C. Sainvitu, I. Lepot, A. Nouvellon, and
V. Leonardon, ‘‘Aerodynamic optimization of the low-pressure tur-
bine module: Exploiting surrogate models in a high-dimensional design
space,’’ J. Turbomachinery, vol. 142, no. 3, Mar. 2020, Art. no. 031005.

[19] A. C. Huang, H. A. Carson, S. R. Allmaras, M. C. Galbraith,
D. L. Darmofal, and D. S. Kamenetskiy, ‘‘Correction: A variational mul-
tiscale method with discontinuous subscales for output-based adaptation
of aerodynamic flows,’’ in Proc. AIAA Scitech Forum, Jan. 2020, p. 1563.

[20] E. Kantor, D. E. Raveh, and R. Cavallaro, ‘‘Nonlinear structural, nonlin-
ear aerodynamic model for static aeroelastic problems,’’ AIAA J., vol. 57,
no. 5, pp. 2158–2170, May 2019.

[21] S. Bai, J. Zico Kolter, and V. Koltun, ‘‘An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,’’ 2018,
arXiv:1803.01271. [Online]. Available: http://arxiv.org/abs/1803.01271

[22] Y. Lakretz, G. Kruszewski, T. Desbordes, D. Hupkes, S. Dehaene,
and M. Baroni, ‘‘The emergence of number and syntax units in
LSTM language models,’’ 2019, arXiv:1903.07435. [Online]. Available:
http://arxiv.org/abs/1903.07435

[23] J. Sirignano and K. Spiliopoulos, ‘‘DGM: A deep learning algorithm
for solving partial differential equations,’’ J. Comput. Phys., vol. 375,
pp. 1339–1364, Dec. 2018.

[24] Y. Xie, E. Franz, M. Chu, and N. Thuerey, ‘‘TempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow,’’ ACM Trans.

Graph., vol. 37, no. 4, pp. 1–15, Aug. 2018.
[25] A. N. Kolmogorov, ‘‘The local structure of turbulence in incom-

pressible viscous fluid for very large Reynolds numbers,’’ Proc.

Math. Phys. Sci., vol. 434, pp. 9–13, 1991. [Online]. Available:
http://www.jstor.org/stable/51980

[26] W. S. McCulloch and W. Pitts, ‘‘A logical calculus of the ideas immanent
in nervous activity,’’ Bull. Math. Biol., vol. 52, nos. 1–2, pp. 99–115,
Jan. 1990.

[27] F. Rosenblatt, ‘‘The perceptron, a perceiving and recognizing automaton
project para,’’ Cornell Aeronaut. Lab., Buffalo, NY, USA, Tech. Rep. 85-
460-1, 1957.

[28] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry, Expanded Edition. Cambridge, MA, USA: MIT Press, 1988,
p. 28.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-
resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[30] C. L. Teo, K. B. Lim, G. S. Hong, and M. H. T. Yeo, ‘‘A neural net
approach in analyzing photograph in PIV,’’ in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., Oct. 1991, pp. 1535–1538.

[31] I. Grant and X. Pan, ‘‘An investigation of the performance of multi layer,
neural networks applied to the analysis of PIV images,’’ Experim. Fluids,
vol. 19, no. 3, pp. 159–166, Jul. 1995.

[32] M. Milano and P. Koumoutsakos, ‘‘Neural network modeling for near
wall turbulent flow,’’ J. Comput. Phys., vol. 182, no. 1, pp. 1–26,
Oct. 2002.

[33] G. E. Hinton, S. Osindero, and Y. W. Teh, ‘‘A fast learning algorithm for
deep belief nets,’’ Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[34] R. A. Lordo, ‘‘Learning from data: Concepts, theory, and methods,’’
Technometrics, vol. 43, no. 1, pp. 105–106, Feb. 2001.

[35] K. Hornik, M. Stinchcombe, and H. White, ‘‘Multilayer feedforward
networks are universal approximators,’’ Neural Netw., vol. 2, no. 5,
pp. 359–366, Jan. 1989.

[36] R. Hecht-Nielsen, ‘‘Theory of the backpropagation neural network,’’ in
Proc. Int. Joint Conf. Neural Netw., Aug. 1989, pp. 593–605.

[37] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, ‘‘Convolutional
kernel networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2627–2635.

[38] X. Zhang, J. Zhao, and Y. LeCun, ‘‘Character-level convolutional net-
works for text classification,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 649–657.

[39] J. Moody and C. J. Darken, ‘‘Fast learning in networks of locally-tuned
processing units,’’ Neural Comput., vol. 1, no. 2, pp. 281–294, Jun. 1989.

[40] T. Poggio and F. Girosi, ‘‘Networks for approximation and learning,’’
Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sep. 1990.

[41] H. Shi, M. Xu, and R. Li, ‘‘Deep learning for household load
forecasting—A novel pooling deep RNN,’’ IEEE Trans. Smart Grid,
vol. 9, no. 5, pp. 5271–5280, Sep. 2018.

[42] J.-S. Zhang and X.-C. Xiao, ‘‘Predicting chaotic time series using recur-
rent neural network,’’ Chin. Phys. Lett., vol. 17, no. 2, pp. 88–90,
Feb. 2000.

[43] A. Graves, ‘‘Supervised sequence labelling with recurrent neural net-
works,’’ Ph. D. dissertation, Tech. Univ. Munich, Munich, Germany,
2008.

[44] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, ‘‘Gradient flow
in recurrent nets: The difficulty of learning long-term dependencies,’’ in A
Field Guideto Dynamical Recurrent Neural Networks, S. C. Kremer and
J. F. Kolen, Eds. Piscataway, NJ, USA: IEEE Press, 2001.

[45] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[46] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., Jan. 2014, pp. 2672–2680.

[47] J. Kou and W. Zhang, ‘‘Multi-kernel neural networks for nonlinear
unsteady aerodynamic reduced-order modeling,’’ Aerosp. Sci. Technol.,
vol. 67, pp. 309–326, Aug. 2017.

[48] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein GAN,’’ 2017,
arXiv:1701.07875. [Online]. Available: https://arxiv.org/abs/1701.07875

[49] M. Arjovsky and L. Bottou, ‘‘Towards principled methods for training
generative adversarial networks,’’ in Proc. 5th Int. Conf. Learn. Repre-
sent. (ICLR), 2019, pp. 1–17.

[50] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. Adv. Neural Inf.

Process. Syst., Dec. 2017, pp. 5768–5778.
[51] J. Li, J. Jia, and D. Xu, ‘‘Unsupervised representation learning of image-

based plant disease with deep convolutional generative adversarial net-
works,’’ in Proc. 37th Chin. Control Conf. (CCC), Jul. 2018, pp. 1–16.

[52] A. Nguyen et al., ‘‘Plug & play generative networks: Conditional iterative
generation of images in latent space,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4467–4477.

[53] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
‘‘InfoGAN: Interpretable representation learning by information maxi-
mizing generative adversarial nets,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2180–2188.

[54] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, ‘‘The graph neural network model,’’ IEEE Trans.

Neural Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.
[55] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, ‘‘Gated graph

sequence neural networks,’’ 2015, arXiv:1511.05493. [Online]. Avail-
able: http://arxiv.org/abs/1511.05493

[56] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, ‘‘Graph attention networks,’’ 2017, arXiv:1710.10903.
[Online]. Available: http://arxiv.org/abs/1710.10903

[57] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W.-T. Yih, ‘‘Cross-
sentence N-ary relation extraction with graph LSTMs,’’ Trans. Assoc.
Comput. Linguistics, vol. 5, pp. 101–115, Dec. 2017.

[58] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907. [Online]. Available:
http://arxiv.org/abs/1609.02907

[59] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learn-
ing on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

90820 VOLUME 8, 2020



L. Hu et al.: Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review

[60] A. Rahimi, T. Cohn, and T. Baldwin, ‘‘Semi-supervised user geolocation
via graph convolutional networks,’’ 2018, arXiv:1804.08049. [Online].
Available: http://arxiv.org/abs/1804.08049

[61] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, ‘‘Graph convolutional neural networks for Web-scale rec-
ommender systems,’’ in Proc. 24th ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, Jul. 2018, pp. 974–983.
[62] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,

‘‘Hierarchical graph representation learning with differentiable pooling,’’
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4800–4810.

[63] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473. [Online].
Available: http://arxiv.org/abs/1409.0473

[64] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, ‘‘Show, attend and tell: Neural image caption
generation with visual attention,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2048–2057.

[65] A. Galassi, M. Lippi, and P. Torroni, ‘‘Attention, please! A critical
review of neural attention models in natural language processing,’’ 2019,
arXiv:1902.02181. [Online]. Available: http://arxiv.org/abs/1902.02181

[66] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder-decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078

[67] F.Wang and D.M. J. Tax, ‘‘Survey on the attention based RNNmodel and
its applications in computer vision,’’ 2016, arXiv:1601.06823. [Online].
Available: http://arxiv.org/abs/1601.06823

[68] D. Jain, A. Kumar, and G. Garg, ‘‘Sarcasm detection in mash-up language
using soft-attention based bi-directional LSTM and feature-rich CNN,’’
Appl. Soft Comput., vol. 91, Jun. 2020, Art. no. 106198.

[69] Y. Song, J. Wang, L. Ma, Z. Yu, and J. Yu, ‘‘Weakly-supervised
multi-level attentional reconstruction network for grounding textual
queries in videos,’’ 2020, arXiv:2003.07048. [Online]. Available:
http://arxiv.org/abs/2003.07048

[70] Y. Yao, S. Zhang, S. Yang, and G. Gui, ‘‘Learning attention representation
with a multi-scale CNN for gear fault diagnosis under different working
conditions,’’ Sensors, vol. 20, no. 4, p. 1233, 2020.

[71] S. Chaudhari, G. Polatkan, R. Ramanath, andV.Mithal, ‘‘An attentive sur-
vey of attention models,’’ 2019, arXiv:1904.02874. [Online]. Available:
http://arxiv.org/abs/1904.02874

[72] I. E. Lagaris, A. Likas, and D. I. Fotiadis, ‘‘Artificial neural networks for
solving ordinary and partial differential equations,’’ IEEE Trans. Neural
Netw., vol. 9, no. 5, pp. 987–1000, Sep. 1998.

[73] J. Han, A. Jentzen, and E. Weinan, ‘‘Solving high-dimensional partial
differential equations using deep learning,’’ Proc. Nat. Acad. Sci. USA,
vol. 115, no. 34, pp. 8505–8510, Aug. 2018.

[74] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[75] M. Raissi, P. Perdikaris, and G. Em Karniadakis, ‘‘Physics informed
deep learning (Part I): Data-driven solutions of nonlinear partial
differential equations,’’ 2017, arXiv:1711.10561. [Online]. Available:
http://arxiv.org/abs/1711.10561

[76] M. Raissi, A. Yazdani, and G. EmKarniadakis, ‘‘Hidden fluid mechanics:
A Navier–Stokes informed deep learning framework for assimilating
flow visualization data,’’ 2018, arXiv:1808.04327. [Online]. Available:
http://arxiv.org/abs/1808.04327

[77] M. Raissi and G. E. Karniadakis, ‘‘Hidden physics models: Machine
learning of nonlinear partial differential equations,’’ J. Comput. Phys.,
vol. 357, pp. 125–141, Mar. 2018.

[78] M. Raissi, ‘‘Deep hidden physics models: Deep learning of nonlinear
partial differential equations,’’ J. Mach. Learn. Res., vol. 19, no. 1,
pp. 9320–955, 2018.

[79] J. Urban and J. Preinhaelter, ‘‘Adaptive finite elements for a set of second-
order ODEs,’’ J. Plasma Phys., vol. 72, no. 6, p. 1041, Dec. 2006.

[80] L. N. Trefethen. (1996). Finite Difference and Spectral Methods

for Ordinary and Partial Differential Equations. [Online]. Available:
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html

[81] Y. Liu, L. Sankar, R. Englar, and K. Ahuja, ‘‘Numerical simulations of the
steady and unsteady aerodynamic characteristics of a circulation control
wing airfoil,’’ inProc. 39th Aerosp. Sci. Meeting Exhib., Jan. 2001, p. 704.

[82] S. Müller, M. Milano, and P. Koumoutsakos, ‘‘Application of machine
learning algorithms to flow modeling and optimization,’’ Annu. Res.
Briefs, pp. 169–178, 1999.

[83] J. Ling, A. Kurzawski, and J. Templeton, ‘‘Reynolds averaged turbu-
lence modelling using deep neural networks with embedded invariance,’’
J. Fluid Mech., vol. 807, pp. 155–166, Nov. 2016.

[84] A. S. Tenney, M. N. Glauser, and J. Lewalle, ‘‘A deep learning approach
to jet noise prediction,’’ in Proc. AIAA Aerosp. Sci. Meeting, Jan. 2018,
pp. 1–9.

[85] C. White, D. Ushizima, and C. Farhat, ‘‘Fast neural network predic-
tions from constrained aerodynamics datasets,’’ 2019, arXiv:1902.00091.
[Online]. Available: https://arxiv.org/abs/1902.00091

[86] C. Basdevant, M. Deville, P. Haldenwang, J. M. Lacroix, J. Ouazzani,
R. Peyret, P. Orlandi, and A. T. Patera, ‘‘Spectral and finite difference
solutions of the burgers equation,’’ Comput. Fluids, vol. 14, no. 1,
pp. 23–41, Jan. 1986.

[87] L. Hu, J. Zhang, and Y. Xiang, ‘‘Research on deep learning in aerody-
namic modeling,’’ UESTC, Chengdu, China, Tech. Rep. 93-220-1, 2019.

[88] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recog-
nit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010.

[89] G.-J. Qi and J. Luo, ‘‘Small data challenges in big data era: A survey of
recent progress on unsupervised and semi-supervised methods,’’ 2019,
arXiv:1903.11260. [Online]. Available: http://arxiv.org/abs/1903.11260

[90] E. Yilmaz and B. German, ‘‘A convolutional neural network approach to
training predictors for airfoil performance,’’ in Proc. 18th AIAA/ISSMO
Multidisciplinary Anal. Optim. Conf., Jun. 2017, p. 3660.

[91] N. Thuerey, K. Weißenow, L. Prantl, and X. Hu, ‘‘Deep learning methods
for Reynolds-averagedNavier–Stokes simulations of airfoil flows,’’AIAA
J., vol. 58, no. 1, pp. 25–36, Jan. 2020.

[92] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learning
deep features for discriminative localization,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

[93] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 618–626.

[94] Q. Zhang, Y. N. Wu, and S.-C. Zhu, ‘‘Interpretable convolutional neural
networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8827–8836.

[95] S. Lee and D. You, ‘‘Mechanisms of a convolutional neural net-
work for learning three-dimensional unsteady wake flow,’’ 2019,
arXiv:1909.06042. [Online]. Available: http://arxiv.org/abs/1909.06042

[96] D. E. Raveh, ‘‘Reduced-order models for nonlinear unsteady aerodynam-
ics,’’ AIAA J., vol. 39, pp. 1417–1429, Jan. 2001.

[97] J. Kou and W. Zhang, ‘‘Layered reduced-order models for nonlinear
aerodynamics and aeroelasticity,’’ J. Fluids Struct., vol. 68, pp. 174–193,
Jan. 2017.

[98] M. D. Buhmann, ‘‘Radial basis functions,’’ Acta Numer., vol. 9, pp. 1–38,
Jan. 2000.

[99] M. Hočevar, B. Širok, and I. Grabec, ‘‘A turbulent-wake estimation using
radial basis function neural networks,’’ Flow, Turbulence Combustion,
vol. 74, no. 3, pp. 291–308, Apr. 2005.

[100] K. Duraisamy, P. R. Spalart, and C. L. Rumsey, ‘‘Status, emerging ideas
and future directions of turbulence modeling research in aeronautics,’’
Tech. Rep. NASA/TM-2017-219682, 2017.

[101] M. Ghoreyshi, A. Jirásek, and R.M. Cummings, ‘‘Computational approx-
imation of nonlinear unsteady aerodynamics using an aerodynamicmodel
hierarchy,’’ Aerosp. Sci. Technol., vol. 28, no. 1, pp. 133–144, Jul. 2013.

[102] W. Zhang, L. Zhu, Y. Liu, and J. Kou, ‘‘Machine learning meth-
ods for turbulence modeling in subsonic flows over airfoils,’’ 2018,
arXiv:1806.05904. [Online]. Available: http://arxiv.org/abs/1806.05904

[103] W. Zhang, B. Wang, and Z. Ye, ‘‘High efficient numerical method for
limit cycle flutter analysis based on nonlinear aerodynamic reduced order
model reduced order model,’’ in Proc. 51st AIAA/ASME/ASCE/AHS/ASC
Struct., Struct. Dyn., Mater. Conf., 18th AIAA/ASME/AHS Adapt. Struct.

Conf. 12th, Apr. 2010, p. 2723.
[104] W. Zhang, B. Wang, Z. Ye, and J. Quan, ‘‘Efficient method for limit cycle

flutter analysis based on nonlinear aerodynamic reduced-order models,’’
AIAA J., vol. 50, no. 5, pp. 1019–1028, May 2012.

[105] C. S. Huang, S. L. Hung, W. C. Su, and C. L. Wu, ‘‘Identification of
time-variant modal parameters using time-varying autoregressive with
exogenous input and low-order polynomial function,’’ Comput.-Aided
Civil Infrastruct. Eng., vol. 24, no. 7, pp. 470–491, Oct. 2009.

VOLUME 8, 2020 90821



L. Hu et al.: Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review

[106] J. P. Thomas, E. H. Dowell, and K. C. Hall, ‘‘Nonlinear inviscid aero-
dynamic effects on transonic divergence, flutter, and limit-cycle oscilla-
tions,’’ AIAA J., vol. 40, pp. 638–646, Jan. 2002.

[107] A. Mannarino and P. Mantegazza, ‘‘Nonlinear aeroelastic reduced order
modeling by recurrent neural networks,’’ J. Fluids Struct., vol. 48,
pp. 103–121, Jul. 2014.

[108] G. Romanelli and L. Mangani, ‘‘Object-oriented redesign of density-
based rans solver aerofoam for aerodynamic/aeroelastic industrial appli-
cations,’’ in Proc. 5-th OpenCFD Conf., 2010.

[109] K. Li, J. Kou, and W. Zhang, ‘‘Deep neural network for unsteady aerody-
namic and aeroelastic modeling across multiple mach numbers,’’ Nonlin-
ear Dyn., vol. 96, no. 3, pp. 2157–2177, May 2019.

[110] J. Kou and W. Zhang, ‘‘Reduced-order modeling for nonlinear aeroe-
lasticity with varying mach numbers,’’ J. Aerosp. Eng., vol. 31, no. 6,
Nov. 2018, Art. no. 04018105.

[111] G. Berkooz, P. Holmes, and J. L. Lumley, ‘‘The proper orthogonal decom-
position in the analysis of turbulent flows,’’ Annu. Rev. Fluid Mech.,
vol. 25, no. 1, pp. 539–575, Jan. 1993.

[112] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence,
Coherent Structures, Dynamical Systems and Symmetry. Cambridge,
U.K.: Cambridge Univ. Press, 2012.

[113] Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and
Y. Guo, ‘‘Model identification of reduced order fluid dynamics systems
using deep learning,’’ Int. J. Numer. Methods Fluids, vol. 86, no. 4,
pp. 255–268, Feb. 2018.

[114] A. T. Mohan and D. V. Gaitonde, ‘‘A deep learning based approach
to reduced order modeling for turbulent flow control using LSTM
neural networks,’’ 2018, arXiv:1804.09269. [Online]. Available:
http://arxiv.org/abs/1804.09269

[115] A. Graves, A.-R. Mohamed, and G. Hinton, ‘‘Speech recognition with
deep recurrent neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., May 2013, pp. 6645–6649.

[116] S. Pawar, S. M. Rahman, H. Vaddireddy, O. San, A. Rasheed, and
P. Vedula, ‘‘A deep learning enabler for nonintrusive reduced order
modeling of fluid flows,’’ Phys. Fluids, vol. 31, no. 8, Aug. 2019,
Art. no. 085101.

[117] Z. Deng, Y. Chen, Y. Liu, and K. C. Kim, ‘‘Time-resolved turbulent
velocity field reconstruction using a long short-term memory (LSTM)-
based artificial intelligence framework,’’ Phys. Fluids, vol. 31, no. 7,
2019, Art. no. 075108.

[118] K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata, ‘‘Synthetic turbulent
inflow generator using machine learning,’’ Phys. Rev. Fluids, vol. 4, no. 6,
Jun. 2019, Art. no. 064603.

[119] R. Han, Y. Wang, Y. Zhang, and G. Chen, ‘‘A novel spatial-temporal
prediction method for unsteady wake flows based on hybrid deep neural
network,’’ Phys. Fluids, vol. 31, no. 12, 2019, Art. no. 127101.

[120] X. Jin, P. Cheng, W.-L. Chen, and H. Li, ‘‘Prediction model of velocity
field around circular cylinder over various Reynolds numbers by fusion
convolutional neural networks based on pressure on the cylinder,’’ Phys.
Fluids, vol. 30, no. 4, Apr. 2018, Art. no. 047105.

[121] V. Sekar and B. C. Khoo, ‘‘Fast flow field prediction over airfoils
using deep learning approach,’’ Phys. Fluids, vol. 31, no. 5, May 2019,
Art. no. 057103.

[122] J. Kim and C. Lee, ‘‘Prediction of turbulent heat transfer using
convolutional neural networks,’’ J. Fluid Mech., vol. 882, p. A18,
Jan. 2020.

[123] A. B. Farimani, J. Gomes, and V. S. Pande, ‘‘Deep learning the physics
of transport phenomena,’’ 2017, arXiv:1709.02432. [Online]. Available:
https://arxiv.org/abs/1709.02432

[124] K. Fukami, K. Fukagata, and K. Taira, ‘‘Super-resolution reconstruction
of turbulent flows with machine learning,’’ J. Fluid Mech., vol. 870,
pp. 106–120, Jul. 2019.

[125] B. Liu, J. Tang, H. Huang, and X.-Y. Lu, ‘‘Deep learning methods for
super-resolution reconstruction of turbulent flows,’’ Phys. Fluids, vol. 32,
no. 2, Feb. 2020, Art. no. 025105.

[126] J. Kim and C. Lee, ‘‘Deep unsupervised learning of turbulence for inflow
generation at various Reynolds numbers,’’ J. Comput. Phys., vol. 406,
Apr. 2020, Art. no. 109216.

[127] S. Lee and D. You, ‘‘Data-driven prediction of unsteady flow over
a circular cylinder using deep learning,’’ J. Fluid Mech., vol. 879,
pp. 217–254, Nov. 2019.

[128] V. Sekar, M. Zhang, C. Shu, and B. C. Khoo, ‘‘Inverse design of airfoil
using a deep convolutional neural network,’’ AIAA J., vol. 57, no. 3,
pp. 993–1003, Mar. 2019.

[129] S. N. Skinner and H. Zare-Behtash, ‘‘State-of-the-art in aerodynamic
shape optimisation methods,’’ Appl. Soft Comput., vol. 62, pp. 933–962,
Jan. 2018.

[130] G. Venter and J. Sobieszczanski-Sobieski, ‘‘Particle swarm optimiza-
tion,’’ AIAA J., vol. 41, no. 8, pp. 1583–1589, 2003.

[131] A. Kharal and A. Saleem, ‘‘Neural networks based airfoil generation for
a given using Bezier–PARSEC parameterization,’’ Aerosp. Sci. Technol.,
vol. 23, no. 1, pp. 330–344, Dec. 2012.

[132] G. Sun, Y. Sun, and S. Wang, ‘‘Artificial neural network based inverse
design: Airfoils and wings,’’ Aerosp. Sci. Technol., vol. 42, pp. 415–428,
Apr. 2015.

[133] M. Wang, H.-X. Li, X. Chen, and Y. Chen, ‘‘Deep learning-based model
reduction for distributed parameter systems,’’ IEEE Trans. Syst., Man,

Cybern. Syst., vol. 46, no. 12, pp. 1664–1674, Dec. 2016.
[134] N. Omata and S. Shirayama, ‘‘A novel method of low-dimensional repre-

sentation for temporal behavior of flow fields using deep autoencoder,’’
AIP Adv., vol. 9, no. 1, Jan. 2019, Art. no. 015006.

[135] T. Murata, K. Fukami, and K. Fukagata, ‘‘Nonlinear mode decomposition
with convolutional neural networks for fluid dynamics,’’ J. Fluid Mech.,
vol. 882, p. A13, Jan. 2020.

[136] W. Chen, K. Chiu, and M. Fuge, ‘‘Aerodynamic design optimization and
shape exploration using generative adversarial networks,’’ in Proc. AIAA
Scitech Forum, Jan. 2019, p. 2351.

[137] C. Audouze, F. De Vuyst, and P. B. Nair, ‘‘Reduced-order modeling of
parameterized PDEs using time-space-parameter principal component
analysis,’’ Int. J. Numer. Methods Eng., vol. 80, no. 8, pp. 1025–1057,
Nov. 2009.

[138] C. Audouze, F. De Vuyst, and P. B. Nair, ‘‘Nonintrusive reduced-order
modeling of parametrized time-dependent partial differential equations,’’
Numer. Methods Partial Differ. Equ., vol. 29, no. 5, pp. 1587–1628,
Sep. 2013.

[139] W. Zongmin, ‘‘Hermite-Birkhoff interpolation of scattered data by radial
basis functions,’’ Approximation Theory Appl., vol. 8, no. 2, pp. 1–10,
1992.

[140] C. A. Duarte and J. T. Oden, ‘‘A new meshless method to solve
boundary-value problems,’’ in Proc. 16th CILAMCE-Iberian

Latin Amer. Conf. Comput. Methods Eng., Curitiba, Brazil, 1995,
pp. 90–99.

[141] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, and R. L. Taylor, ‘‘A finite
point method in computational mechanics. applications to convective
transport and fluid flow,’’ Int. J. Numer. Methods Eng., vol. 39, no. 22,
pp. 3839–3866, Nov. 1996.

[142] S. N. Atluri and T. Zhu, ‘‘A new meshless local petrov-Galerkin (MLPG)
approach in computational mechanics,’’ Comput. Mech., vol. 22, no. 2,
pp. 117–127, Aug. 1998.

[143] C. S. Chen and C. A. Brebbia, ‘‘The dual reciprocity method for
helmholtz-type operators,’’ WIT Trans. Model. Simul., vol. 21, pp. 1–10,
Jul. 1998.

[144] W. Chen and M. Tanaka, ‘‘A meshless, integration-free, and boundary-
only RBF technique,’’ Comput. Math. Appl., vol. 43, nos. 3–5,
pp. 379–391, Feb. 2002.

[145] Y. C. Hon and Z. Wu, ‘‘A quasi-interpolation method for solving stiff
ordinary differential equations,’’ Int. J. Numer. Methods Eng., vol. 48,
no. 8, pp. 1187–1197, Jul. 2000.

[146] K. Duraisamy, Z. J. Zhang, and A. P. Singh, ‘‘New approaches in tur-
bulence and transition modeling using data-driven techniques,’’ in Proc.
53rd AIAA Aerosp. Sci. Meeting, Jan. 2015, p. 1284.

[147] K. Duraisamy and P. Durbin, ‘‘Transition modeling using data driven
approaches,’’ in Proc. Summer Program, 2014, p. 427.

[148] A. P. Singh, S. Medida, and K. Duraisamy, ‘‘Machine-learning-
augmented predictive modeling of turbulent separated flows over air-
foils,’’ AIAA J., vol. 55, no. 7, pp. 2215–2227, Jul. 2017.

[149] D. Xiao, F. Fang, A. G. Buchan, C. C. Pain, I. M. Navon, and
A. Muggeridge, ‘‘Non-intrusive reduced order modelling of the Navier–
Stokes equations,’’ Comput. Methods Appl. Mech. Eng., vol. 293,
pp. 522–541, Aug. 2015.

[150] D. Xiao, F. Fang, C. Pain, and G. Hu, ‘‘Non-intrusive reduced-order
modelling of the Navier–Stokes equations based on RBF interpola-
tion,’’ Int. J. Numer. Methods Fluids, vol. 79, no. 11, pp. 580–595,
Dec. 2015.

[151] D. Xiao, F. Fang, C. Pain, I. M. Navon, and A. Muggeridge,
‘‘Non-intrusive reduced order modelling of waterflooding in geologically
heterogeneous reservoirs,’’ in Proc. 15th Eur. Conf. Math. Oil Recovery
(ECMOR), Aug. 2016, p. cp-494.

90822 VOLUME 8, 2020



L. Hu et al.: Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review

LIWEI HU (Student Member, IEEE) received
the B.S. degree in software engineering from
the School of Software, Hebei Normal Univer-
sity, Shijiazhuang, Hebei, China, in 2014, and
the M.S. degree in computer technology from the
University of Electronic Science and Technology
of China (UESTC), Chengdu, Sichuan, China,
in 2018, where he is currently pursuing the Ph.D.
degree in computer science and technology with
the School of Computer Science and Engineering.

His research fields include aerodynamic data modeling, deep learning, and
pattern recognition.

JUN ZHANG received the B.S. and M.S. degrees
in electronic engineering from the University
of Electronic Science and Technology of China
(UESTC), in 1995 and 1998, respectively. From
1998 to 2008, he worked as a Senior Researcher
and an Engineer with the China Education and
Research Network (CERNET). He is currently a
Lecturer with the School of Computer Science
and Engineering, UESTC. His current research
interests include software-defined networking,

machine learning applied in network traffic engineering, and aerodynamics.

YU XIANG (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the University
of Electronic Science and Technology of China
(UESTC), Chengdu, Sichuan, China, in 1995,
1998, and 2003, respectively. He joined the
UESTC, in 2003, and became an Associate Profes-
sor, in 2006. From 2014 to 2015, he was a Visiting
Scholar with The University of Melbourne, Aus-
tralia. His current research interests include com-
puter networks, intelligent transportation systems,
and deep learning.

WENYONG WANG (Member, IEEE) received
the B.S. degree in computer science from Bei-
hang University, Beijing, China, in 1988, and
the M.S. and Ph.D. degrees from the University
of Electronic Science and Technology (UESTC),
Chengdu, China, in 1991 and 2011, respectively.
He has been a Professor with the School of Com-
puter Science and Engineering, UESTC, in 2009.
He has served as the Director of the Informa-
tion Center of UESTC and the Chairman of

the UESTC-Dongguan Information Engineering Research Institute, from
2003 to 2009. He is currently a Visiting Professor with the Macau Uni-
versity of Technology. His main research interests include next-generation
Internet, software-designed networks, software engineering, and artificial
intelligence. He is a member of the expert board of CERNET and China
Next-Generation Internet Committee and a Senior Member of the Chinese
Computer Federation.

VOLUME 8, 2020 90823


	INTRODUCTION
	NEURAL NETWORK FUNDAMENTALS
	HISTORY OF NEURAL NETWORKS
	MULTILAYER PERCEPTRONS
	CONVOLUTIONAL NEURAL NETWORKS
	RADIAL BASIS FUNCTION NEURAL NETWORKS
	RECURRENT NEURAL NETWORKS
	GENERATIVE ADVERSARIAL NETWORKS
	OTHER NEURAL NETWORKS OR MECHANISMS
	GRAPH NEURAL NETWORKS
	ATTENTION MECHANISM IN NEURAL NETWORKS


	SOLVING ORDINARY/PARTIAL DIFFERENTIAL EQUATIONS
	PHYSICS UNINFORMED MODELS
	DECOMPOSITION METHOD
	TRANSFORMATION METHOD

	PHYSICS INFORMED MODELS
	A CONCLUSION OF SOLVING ORDINARY/PARTIAL DIFFERENTIAL EQUATIONS

	NONLINEAR AERODYNAMIC RESPONSE PREDICTIONS
	STEADY NONLINEAR AERODYNAMIC RESPONSE RREDICTIONS
	STEADY NONLINEAR AERODYNAMIC RESPONSE PREDICTIONS BASED ON FLOW STATE
	STEADY NONLINEAR AERODYNAMIC RESPONSE PREDICTIONS BASED ON BOTH AERODYNAMIC SHAPES AND FLOW STATE
	A CONCLUSION OF STEADY NONLINEAR AERODYNAMIC RESPONSE RREDICTIONS

	UNSTEADY NONLINEAR AERODYNAMIC RESPONSE PREDICTIONS
	SPATIAL NONLINEARITY ORIENTED UNSTEADY AERODYNAMIC RESPONSE PREDICTIONS
	TEMPORAL CONTINUITY ORIENTED UNSTEADY AERODYNAMIC RESPONSE PREDICTIONS
	A CONCLUSION OF UNSTEADY NONLINEAR AERODYNAMIC RESPONSE PREDICTIONS


	FLOW FIELD RECONSTRUCTIONS
	STEADY FLOW FIELD RECONSTRUCTIONS
	UNSTEADY FLOW FIELD RECONSTRUCTIONS
	A CONCLUSION OF FLOW FIELD RECONSTRUCTIONS

	OTHER SCATTERED STUDIES
	AERODYNAMIC INVERSE DESIGNS
	FEATURE EXTRACTION
	SOLVING ORDINARY/PARTIAL DIFFERENTIAL EQUATIONS BY RADIAL BASIS FUNCTION
	TURBULENCE MODELING BASED ON RADIAL BASIS FUNCTION

	CONCLUSION AND DISCUSSION
	REFERENCES
	Biographies
	LIWEI HU
	JUN ZHANG
	YU XIANG
	WENYONG WANG


