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ABSTRACT

A current trend of research focuses on artificial intelligence based cryptography which although proposed

almost thirty years ago could not attract much attention. Abadi and Anderson’s work on adversarial

cryptography in 2016 rejuvenated the research area which now focuses in building neural networks that

are able to learn cryptography using the idea from Generative Adversarial Networks (GANs). In this paper,

we survey the most prominent research works that cover neural networks based cryptography from two

main periods. The first period covers the oldest models that have been proposed shortly after 2000 and

the second period covers the more recent models that have been proposed since 2016. We first discuss the

implementation of the systems from the earlier era and the attacks mounted on them. After that, we focus

on post 2016 era where more advanced techniques are utilized that rely on GANs in which neural networks

compete with each other in order to achieve a goal e.g. learning to encrypt a communication. Finally, we

discuss security analysis performed on adversarial cryptography models.

INDEX TERMS cryptography, deep learning, neural networks, generative adversarial networks

I. INTRODUCTION

W
ITH the rapid expansion of communication through

networks among multiple terminals (computers,

smartphones etc.), it is stringent to develop technologies to

protect the information exchanged in those networks. Often,

when one device communicates with one or more devices,

a cryptographic protocol is applied to encrypt all the trans-

mitted data in order to protect the communication(s). Two

kinds of cryptographic protocols are typically considered in

the literature: one to establish a common secret key, and the

other to encrypt the messages exchanged. In the practical

applications, the lightweight and secure protocols are highly

desired especially for some terminals with low performance,

such as devices with limited battery-lives. To meet the ap-

plication requirements, cryptography is consistently evolving

through time according to the extensive development and

improvement on the security of cryptographic protocols.

Among others, the RSA cryptosystem [1] is widely used as

a standard for public-key encryption and digital signature;

and the Rijndael algorithm (also known as AES) [2] for

symmetric encryption.

Machine learning plays a major role in cryptanalysis, a

sub-domain of cryptology [3]–[5]. Roughly speaking, crypt-

analysis aims to test and analyze the security of cryptographic

protocols by feeding different inputs to the cryptographic al-

gorithm and analyzing the outputs in order to find a common

or repetitive pattern in the outputs that might help find the

secret key or even decrypt the ciphertext without access to the

key. Machine learning can help learn from the data generated

by the cryptographic algorithm and detect significant patterns

[6]–[8]

In late 90’s and early 2000’s, several cryptographic proto-

cols using machine learning and deep learning models were

proposed such as [9]–[11], but were deemed insecure and

even some concrete attacks [12] were shown subsequently.

The interest in neural network based cryptography took a dip

because of the fact that simple computations, even as basic

as exclusive-or (XOR) operation could not be computed by

simple neural networks.

However recently, Abadi and Andersen [13] initiated a re-

search direction on learning to protect communications with

adversarial neural cryptography. Specifically, it aims to create

neural networks that can learn to encrypt a communica-

tion without being taught any specific encryption algorithm.
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This technique is based on generative adversarial networks

(GANs), in which neural networks try to achieve a goal in

the presence of an adversary (i.e. another neural network) by

pitting against each other [14]. The main idea behind GANs

is to have two neural networks competing in order to generate

a new set of data that can be taken as the real data. GANs

are powerful in their ability of mimicking various types of

data, and hence broadly used especially in image and voice

generation [15]–[17] to generate synthetic data which are

indistinguishable from the true data distribution. Following

Abadi and Andersen’s work [13], a flow of research appeared

in order to study the security of their model (e.g. [18]), as well

as extend it to an assumed perfectly secure protocol [19], and

many more [20]–[23].

In this paper, we aim to survey the recent progress on

neural networks based cryptography, how it evolved since

the late 90s, explain the model proposed by Abadi et al. [13]

and how it learns to encrypt a communication. We will also

see how other researchers [20], [21] ported this model to

steganography. Finally, we will evaluate the security of the

model proposed by Abadi et al. [13] based on the security

analysis done by Zhou et al. [18]. We will also see how it was

improved by Coutinho et al. [19] and Zhengze et al. [24].

The remainder of this paper is organized as follows. In

Section II, we review the technical terms and techniques that

are used in this survey by giving the essential terminology on

neural networks, deep learning (DL), generative adversarial

neural networks (GANs) and how neural networks work in

general.

In section III, we discuss the Tree Parity Machine which

is deemed to be the first work in neural networks based

cryptography [10]. We will see how it was broken in [12]

and some of its improvements especially in [25]. Other works

will also be discussed. We will then discuss the GANs based

encryption technique [13] and how the neural networks learn

to encrypt the communication as well as some follow up

works [20], [21], [23].

In Section IV, we will analyse the security of the GANs

based encryption model proposed by Abadi et al. [13]. The

security analysis is focused on the randomness of the cipher-

text in order to see if it reveals any information about the key.

We will finally see how it was improved by Coutinhou et al.

[19].

Finally, in Section V, we give a conclusion on the survey

as well as possible futur research paths.

II. BACKGROUND

In this section we introduce the background material that

will be used in the later sections. We begin with some basic

terminologies.

A. CRYPTOGRAPHY

Cryptography’s main aim is towards data protection and com-

munication security. Cryptographic protocols are designed in

a way that only the authorized parties are able to join read the

communication.

In the early days, the main focus of cryptology was to

design systems related to secure encryption schemes and

their analysis. However with the massive growth in commu-

nications, the field has acquired new sets of techniques and

protocols to make encryption tasks more reliable and less

dependent on physically meetings to exchange an encryp-

tion/decryption key or to change it.

In terms of security, cryptography can be broadly divided

into two main models – information theoretic security and

computational security. In the former model the adversary,

against whom a cryptographic protocol is supposed to ensure

security, is taken to be computationally unbounded and in

the latter one the adversary is assumed to be bounded with

respect to its computational power. We make a note of the

fact that any cryptographic primitive providing information

theoretic security does not depend on any kind of hard-

ness assumption and hence cannot be broken (in a prov-

able manner) even with unlimited computing power. On the

other hand, computationally secure primitives are based on

hardness assumptions e.g. integer factorization, discrete log

computation where the security is based on the infeasiblility

of obtaining any “practical" algorithm to break the hardness

problem(s).

Among several important existing cryptographic primitives

our main area of focus in this paper will be on key exchange,

symmetric key encryption and steganography.

One Time Pad.

One time pad (OTP) is a symmetric key encryption tech-

nique which requires an n bit message to be xor-ed with a

uniform n bit key to compute the ciphertext. The recipient

who is already in possession of the n bit key can recover

the message. It can be observed that this primitive is an

information theoretically secure encryption scheme. How-

ever, OTP suffers from some serious drawbacks – size of

the secret key has to be same as the message as well as

the key has to be uniformly distributed over the key space

and that the key cannot be reused. For every message an

independently chosen key has to be used and this makes the

scheme impractical to implement.

B. ARTIFICIAL INTELLIGENCE AND MACHINE

LEARNING

Artificial Intelligence is the domain that aims to build robots

and computer software that are able to mimic the human

behavior. An AI software or robot can be either explicitly

programmed with a big stack of conditions and actions or it

can be a self learning program that learns how to do or mimic

specific tasks.

Machine learning is a subset of AI that creates computer

programs that learn to do a specific task by building a model

from many observable examples. For example, in the case

of machine learning, an algorithm builds a model based on

the features given and based on those features, the model

can perform predictions, recognition or actions depending

on the task. Machine learning also contributes in the domain
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of cryptanalysis – researchers can, for example, use machine

learning algorithms to detect patterns in ciphertexts that can

help break the encryption technique or find flaws inside it.

1) Classification Tasks

Classification tasks are considered to be one of the most

widely used techniques in machine learning. The machine

learning algorithm aims to predict the class of a given

input based on its training on already observed example-

inputs. For example, a machine learning algorithm that can

classify an input picture of a person into a class of fa-

cial expressions – the class of facial expressions can be

{smile, laugh, cry, . . .} and the goal of the algorithm

would be to assign each picture to its correct class.

Another important example of classifications tasks is spam

detection, the machine learning algorithm learns to classify

an e-mail to be either spam or not. Machine learning classifi-

cation tasks are countless – besides spam detection and image

recognition some applications are used in our daily life such

as credit approval, advertising, etc.

2) Neural Networks

Neural Networks are one of the building blocks of machine

learning algorithm and are inspired from the structure human

brain which is composed of a large number of neurons con-

nected to each other and messages (signals) transit through

each of them.

The basic structure of neural networks are organized into

layers as shown in Figure 1. The first layer (Input Layer) is

composed of the neurons that read the data without changing

it; The second layer (Contains one or more hidden Layer) is

composed of the neurons processes the data. Lastly, the final

layer is the output layer and generally the activated neuron in

the output layer is the decision, action or recognition made by

the neural network. It can either have a single neuron which

contains a value or have multiple neurons where each neuron

represents a class or a possibility. In the case of an output

layer with multiple neurons, each neuron represents will have

a value and usually the neuron with the higher value is the

neuron activated.

When dealing with machine learning, we only use one

hidden layer. But when dealing with deep learning, there is

more than one hidden layer. Each layer will have a specific

task such as features extraction, data processing, etc.

3) Supervised Learning and Unsupervised Learning

To train a machine learning algorithm, there are two main

methods: Supervised Learning and Unsupervised Learning.

In supervised learning, the model is trained with data that

is labeled. This means that the training data is already tagged

with the correct answer and the neural networks compare

their prediction with the correct answer. Supervised learning

is mainly useful when trying to predict, expect or foresee

a behavior or event based on previous data. For example

training a neural network to test if a person can get a credit

or loan based on his/her credit payment history.

Input

Input

Input

Input

Input

Input

Input Layer

Hidden

Layer 1

Output Layer

Hidden

Layer 2

FIGURE 1. General Structure of Neural Networks.

However in unsupervised learning the training is done

without any labeled data: extraction is done on determin-

istic features from the data before processing it. Nearest

neighborhood algorithm is one such example of unsupervised

learning.

C. TYPES OF NEURAL NETWORKS

There are several different types of neural networks and each

are designed for a specific target. We discuss the most used

ones in the following.

1) Feedforward neural networks

This is one of the simplest types of neural networks. In

a feedforward neural network, the data passes through the

different input nodes till it reaches the output node.

This means that data moves in only one direction from the

first tier until it reaches the output node. This is also known as

a front propagated wave which is usually achieved by using

a classifying activation function.

2) Convolutional Neural Networks (CNN)

These neural networks are mostly used in image and video

editing, natural language processing (NLP) and recommen-

dation systems as CNNs produce very efficient results.

A CNN contains one or more convolutional layers that can

either be completely connected or pooled. Before passing

the data to the next layer, the convolutional layer uses a

convolutional operation on it.

D. GENERATIVE ADVERSARIAL NEURAL NETWORKS

(GANS)

Generative Adversarial Networks [14], or GANs for short,

are an approach to generative modeling using deep learning

methods, such as convolutional neural networks.

Generative modeling is an unsupervised learning task that

involves automatically discovering and learning the regulari-

ties or patterns in input data in such a way that the model can
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be used to generate or output new examples that plausibly

could have been drawn from the original data.

GAN has proven to be a useful approach to build crypto-

graphic tools in presence of a neural network considered as

an adversary.

One should note however that while adversarial learning

using GANs is generally used for image processing, it is not

limited to that. GANs-Based cryptography is an example of

that. Another example is by Dash et al. [26] where the authors

investigate whether it is possible to apply adversarial neural

networks for playing the popular hide-and-search board game

called Scotland Yard. The authors show that neural networks

can indeed learn to assess the game like humans and find the

hider.

III. NEURAL NETWORKS BASED CRYPTOGRAPHY

Deep Learning based cryptography is a fairly new way of

doing cryptography. While first attempts to design crypto-

graphic protocols based on machine learning were imple-

mented in the late 90s, the security was not satisfying. The

main idea was to use make neural networks learn a specific

cryptographic task. For example, use two neural networks

and train them to learn how to exchange a key or encrypt and

decrypt sequences of data. This is different from common

methodologies where algorithms are explicitly implemented

to perform the specified task.

As mentioned above, deep learning based cryptography is

fairly new, with very few research works especially before

the development of GANs and the advances in deep learning.

One of the first papers [10] related to this research direction

was back in 2000, showcasing a secure key exchange through

the synchronization of two neural networks. However the

model was proven to be vulnerable by Klimov et al. [12].

After the development of GANs, a research spurring paper

appeared in late 2016, featuring two neural networks learning

a symmetric key encryption system in the presence of an

adversary [13]. Several follow up works performed a study

on the security [18], ported it to steganography [20], [21]

or improved its security [19]. More details and a security

analysis are summarized in Table 1 and explained in Section

IV.

Figure 2 shows the default setup of a secure symmetric

encryption between two parties. Two parties Alice and Bob

share a secret key K, the Encryption/Decryption algorithm is

known to all including the Eavesdropper Eve that is listening

to the communication but cannot replay messages. When Al-

ice wants to send a message P , she inputs it to the algorithm

along the secret key K in order to encrypt it. The cipher text

C is the output of the algorithm and will be sent publicly to

Bob who will use the decryption algorithm in order to decrypt

the ciphertext C using the same key K that have been used

during encryption by Alice.

A common problem in this kind of communications is how

to share the secret key K without having to meet physically.

There are many classical cryptography methods to share

a secret key between two parties e.g. the Diffie-Hellman

ALICE BOB

EVE

CP

K

Pbob

Peve

K

FIGURE 2. 2-party symmetric communication general scheme.

Key Agreement Protocol [27]. One can also use public key

encryption protocols such as RSA [1] to encrypt a secret key

and send it to the recepient. However our focus will be on

neural networks based protocols.

One very popular protocol by Kanter et al. [10] was pro-

posed during the year 2001 and showed how two neural

networks can learn to exchange a secret key without using

any sort of known cryptography methods. The mechanism

will be discussed in Section III. Table 2 highlights the most

prominent works.

A. SECURE EXCHANGE OF INFORMATION BY

SYNCHRONIZATION OF NEURAL NETWORKS

Kanter et al. [10], were among the first researchers to make

use of machine learning to learn cryptography. In their case,

it was to perform a key agreement between two neural

networks.

The idea consists of having two neural networks called

Tree Parity Machines (TPMs) and synchronize them to con-

vey on a key securely in the presence of passive eavesdrop-

pers that have access to the communication but cannot change

or replay messages.

The structure of the two neural networks considered in

[10] consists of three layers. A single-neuron output layer,

K hidden neurons and K · N input neurons as shown in Fig.

3.

W11 W1N W2N

WKN =


 {-L…+L}

X11 X1N X21 X2N XK1 XKN 
……

…

={-1, +1}

={-1, +1}

Xij = {-1,1}

FIGURE 3. Neural Network structure of the parity tree machine.

The leading party (Alice) starts with generating a random

input of size N and shares it publicly wit the other party

(Bob). They both pass them through their neural network

and get the output O. They compare their outputs and if
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TABLE 1. Summary of the contributions in GANs based cryptography.

YEAR WORK
SUMMARY OF
CONTRIBUTION

TECHNIQUE
SUMMARY OF
VULNERABILITIES

2016

Learning to Protect
Communications
With Adversarial
Neural Cryptography [13].

Use the idea of GANs
for 2-party secure
communication.

Two neural networks synchronize
and build a secure communication
in the presence of an eavesdropper.

Vulnerable against probabilistic
attacks. The ciphertexts generated
have many repetitive patterns.

2017

Generating Steganographic
Images via Adversarial
Training [21].

Uses the same model in [13] to
learn steganography instead
of encryption.

Two neural networks learn
steganography in the presence
of an eavesdropper that learns
to distinguish between cover
and steganographic images.

As it is based on the model
by Abadi et al. [13], it is also
weak against probabilistic attacks
however the authors show good
results against known steganalysers.

2018

Security Analysis
and New Models
on the Intelligent
Symmetric Key
Encryption [18].

Prove that the model learned
in [13] is weak against
probabilistic attacks.

The authors generate multiple
ciphertexts and test their
randomness using different
techniques.

Not Applicable.

2018

Learning Perfectly
Secure Cryptography
to Protect
Communications
with Adversarial
Neural Cryptography [19].

The authors change the structure
of the neural networks so that they
learn the One-Time Pad which is
secure against probabilistic attacks.

The two neural networks learn
are given a set of keys
and plaintexts.They learn to
XOR each plaintext with
a unique key from the set.

The one time pad is based on a
pseudo-random generator
which still makes it vulnerable
when not using quantum
computers.

2018

Neural Cryptography Based
on the Topology Evolving
Neural Networks [23].

The authors investigate
whether neural networks
in Spectrum-Diverse
Neuroevolution with
Unified Neural Models [23]
can learn encryption
with the same training
process by Abadi et al. [13].

Similarly to [13],
the authors implement the same
model but by using
Spectrum-Diverse Neuroevolution
with Unified Neural Models [23]
and train the neural networks.

The authors do not provide
any security analysis as
their work focused on
establishing a successful
communication.

TABLE 2. Summary of contributions in Neural Networks based Cryptography.

YEAR WORK
SUMMARY OF
CONTRIBUTION

TECHNIQUE
SUMMARY OF
VULNERABILITIES

2001

Secure Exchange of
Information by
Synchronization of
Neural Networks [10]

Fast synchronization of neural
networks to agree on a secret
key.

Two neural networks mutually
synchronize and end up with
the same weights vector
that is used as a key.

Broken in [12] using three technique:
Passive, Geometric and Probabilistic
attack. (See the row below)

2002
Analysis of Neural
Cryptography [12].

Shows that the work done in [10]
is vulnerable against attacks.

There are three different attacks:
passive, geometric and probabilistic.
The attacks are detailed in Section III-A

Not Applicable.

2007
Dynamics of neural
cryptography [28]

Show that the geometric attack
shown in [12] can be overcome.

Shows that increasing
the number of neurones
increases the complexity of the
geometric attack exponentially.

Not Applicable.

2010

Permutation parity
machines for neural
cryptography [29].

Improves the TPM
by building the Permutation
Parity Machine (PPM).

The PPM has the same structure
as the TPM but its weights
take different values.The authors
claimed it robust against
probabilistic attacks.

Broken in [30]. (See the row
below)

2012

Successful attack on
permutation-parity-
machine based neural
cryptography [30].

Proves that the
PPM [29] can be vulnerable
against probabilistic attacks.

An attacker that simulates
the space of possible weight
vectors using the Monte-Carlo
probabilistic method can predict
the final weight vector before
the two parties.

Not Applicable

2019

On the Development
of an Optimal
Structure of Tree
Parity Machine for
the Establishment
of a Cryptographic
Key [25].

Improves the security of
the TPM.

Looks for the optimal values
for the strcture of the TPM.
Results a 0.00004% probability of
successful passive attacks and 0% on
geometric attacks.

No insights regarding probabilistic
attacks provided.

2020

3D CUBE Algorithm
for the Key Generation
Method: Applying Deep
Neural Network
Learning-Based [31].

Generates a mutual secret
key between two parties.

Both parties shuffle a 3D cube
using the same algorithm
and if the patterns match,
a key is generated using
XOR and Hash operations.

No insights regarding
attacks provided.
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they are equal then the two neural networks are said to

be synchronized (have the same weights) and can use their

weights vector W as a secret key [10], [32].

However shortly after this proposal, Klimov et al. [12] three

working methods that can break the protocol. We describe the

three attacks in the following.

B. ANALYSIS OF NEURAL CRYPTOGRAPHY

Klimov et al. [12] analysed and showed that the work done by

Kanter et al. [10] is insecure and impractical as it is vulnerable

against different attacks that are explained below.

a: The Genetic Attack

This attack looked at the two neural networks from the

biological point of view to make an attack using genetic

algorithms. The general idea is to simulate a big population

of neural networks that have the same structure as Alice

and Bob and train them with same public inputs. The neural

networks from the population whose outputs are similar to

the two targeted neural networks, are now synchronised with

the targets and can read the communication between them.

b: The Geometric Attack

In this attack, the authors simulate each input of the two target

neural networks as a K random hyperplanes X1, . . . , XK

corresponding to K perceptrons and the weights of each

neural network as K points W1...WK in the N-discrete space

U = {−L, . . . , L}N where Wi = (wi1, . . . , wiK). Con-

cretely, an attacker constructs a neural network with random

weights but with the same neural network structure as the

target and at each step of training, the weights are updated

according to these rules:

• If the two target neural networks have different outputs,

the attacker does not update his weights.

• If the two target neural networks have the same outputs

and the attacker also has the same output, the neural

network’s weights will be updated in the normal way.

• If the two target neural networks have the same outputs

but not the attacker, then the attacker should find an

i0 that minimises this formula:

∣

∣

∣

∑N

j=0 w
C
ij · xij

∣

∣

∣
and

updates the weights assuming the hidden bits and the

target’s outputs.

The authors of [10] however conducted a study on the

geometric attack in [28] to prevent it. In their study, they

deducted that neural networks with a larger value N of the

hidden units will increase the complexity of the geometric

attack exponentially and therefore render it difficult to con-

duct. Brute force attacks and similar attacks are also affected

by the size of N .

c: The probabilistic attack

In the probabilistic attack, the attacking Tree Parity Machine

is actually a probabilistic Tree Parity Machine this means that

the weights are actually probabilistic weights pi,j(l) = l ∈
[−L,+L] where each probabilistic weight is a probabilistic

distribution that represents the probability of the Tree Parity

Machine A taking l as a parameter. Then, by passively

eavesdropping the inputs xi,j the attacker can use either

the Hebbian learning rule or the Monte-Carlo method to

update pi,j(l) and end up with identical weights to the parties

communicating. This is mainly due to the limited possible

values in [−L,+L] which makes them easy to simulate.

The work done in [10] was improved by Prabakaran et al.

[33]. The authors worked on a solution for the probabilistic

attacks that were used before to break [10]. In order to

improve the security and remove the possibility of an attacker

passively synchronizing, they introduced queries: instead

of generating random inputs, Alice and Bob generate (in

turn) at every iteration a set of inputs that is correlated to

their respective weights, by doing this, the probability of an

attacker passively synchronizing is low because the input is

either linked to Alice’s weights or Bob’s weights. The inputs

are generated using a specific algorithm and do not reveal

much information about the weights of the neural network

and allow to have a mutual influence between A and B which

highly reduces the probability of a successful passive attack.

C. IMPROVEMENTS TO THE TREE PARITY MACHINE

The tree parity machine [10] has seen several improvements

and attacks since it was first introduced.

One of those improvements is the work done by Reyes et al.

[29] where the authors transformed the Tree Parity Machine

into a Permutation Parity Machine (PPM) to improve the

security.

A Permutation Parity Machine has the same overall neural

network structure as a Tree Parity Machine; however the

number of parameters and their values are different from the

TPM.

A Permutation Parity Machine is defined as a neural net-

work with K hidden units just like the Tree Parity Machine.

These units are simple perceptrons (neurons) each having its

own input. There are N units with N inputs that take binary

values (either 0 or 1).

As for the weights W , they are drawn from a state vector

S ∈ {0, 1}G where G must be greater than K ·N .

The ith hidden units are calculated using an exclusive or

between the weight w and the input x. The final output is

either 1 or 0.

Reyes et al. [29] conduct comparative attacks on the TPM

and the PPM. The results show that the Permutation Parity

Machine performs better against the attacks proposed by

Klimov et al. [12] compared to the Tree Parity Machine.

The authors then demonstrate that the probability order of

a successful attack on the Permutation Parity Machine can be

as low as 10−20 when the value of N is equal to 16 and the

value of G is equal to 128.

The probability of a successful attack is demonstrated to

be dependent on the value of G by the following formula:

PE = 1
2G−1 .

We can see that with G = 128 we have PE = 10−20.
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The result is therefore lighter than the method proposed

in [28] as they use a value of 1000 for N which will

significantly increase the synchronization time and resources

usage compared to this method.

However Seoane et al. [30] demonstrate a successful prob-

abilistic attack on the Permutation Parity Machine which

therefore renders the PPM discussed by Reyes et al. [29] non-

secure.

Another improvement to the Tree Parity Machine has been

done by Salguero et al. [25]. They studied the original TPM

and proposed an optimal structure that generated a 512 bits

key. This was done by doing over 10 million simulations

with different parameters and neural network sizes. All of

these simulations were accompanied by a passive adversary

trying to synchronize in a passive way along Alice and Bob.

In their simulations, the authors showed a case where the

neural networks synchronize in a maximum of 6 seconds with

a 0% success rate for the attacker. This was done by using

the values K = 8, N = 16 and L = 23 for the structure

of the TPM. The authors finally validate their results with

the heuristic rule and the results show that a small change

in the parameters would lead to a polynomial increase of the

synchronization time and therefore the authors presume that

their method is secure enough.

D. AUTOMATIC SECURITY PROTOCOL GENERATION

Another variant of "self-learned" cryptography is automatic

generation of secure protocols or automatic security verifica-

tion for protocols. Basically, these protocols are algorithm-

based and do not rely on deep learning or machine learning.

The reason they are stated here is because they mimic hu-

man behavior by generating or evaluating security protocols

which is considered as an Artificial Intelligence Behavior.

The algorithm generally has as input the security require-

ments for the entity and then the algorithm generates a

protocol that is conform to the security requirements. A good

example of protocol generation is done by Kiyomoto et al.

[34]. Another work by Ota et al. [35] showcases automatically

verifying the security in exchange schemes in a 3-party sce-

nario. Figure 4 shows the workflow for generating a security

protocol in the model proposed by Kiyomoto et al. [34].

E. 3D CUBE ALGORITHM FOR THE KEY GENERATION

METHOD

Jin et al. [31] proposed a novel method where two parties

mutually generate the same secret key. The two parties syn-

chronize by shuffling and solving a 3D cube using a neural

network model. The patterns obtained during the shuffles are

combined with some XOR operations to obtain the key.

F. LEARNING TO PROTECT COMMUNICATIONS WITH

ADVERSARIAL NEURAL CRYPTOGRAPHY

Abadi-Anderson [13] were the researchers that spurred the

research in the adversarial cryptography topic. Their model

shows how to train two neural networks in a GAN setup to

Requirements for a  

Protocol

Combining Components of 

Key Exchange Protocols

Combining Components of 

Authentication Protocols

Selection of Datasets and 

Addition of Requisite Data
Remove and Merge 

Redundant Flows and Data

Choose Detailed Parameters

Protocol Definition File

FIGURE 4. Workflow for generating a security protocol Kiyomoto et al. [34].

learn a symmetric encryption protocol without being taught

any algorithm.

The model consists of two neural networks (Alice and

Bob) sharing a secret key k and their goal is to establish a

secure communication in the presence of an adversary, the

third neural network (Eve).

Alice and Bob’s goal is to communicate securely by min-

imizing the error between the original plaintext and Bob’s

deciphered output text. Eve’s goal is to reconstruct the plain-

text using the cipher text only i.e. without knowing the secret

key.

While in the setup of a GAN, Eve’s goal would be to

distinguish between the cipher text C and a random value

from a certain distribution; Her goal here is the reconstruction

of the plaintext from the ciphertext only. It does not matter if

the cipher text contains some meta data that proves that it

comes from a certain plaintext.

The setup of the neural networks is the same as in Figure

2 and the training process is separated in two phases that are

explained below:

a: Training phase

In this phase, a random key K and a random plaintext P

are generated at every iteration. The key is known to Alice

and Bob but not Eve. P and K are fed into Alice’s neural

network which is a series of convolutions and activations in

order to transform the plaintext as shown in figure 5. The

output of Alice’s neural network (the ciphertext C) will be

fed into Bob’s neural network along the key K. Bob will have

the same neural network structure as Alice and will use the

same series of convolutions and activations to decrypt C and

output Pbob. An additional malicious neural network called

Eve with the same structure as Alice and Bob will eavesdrop

the communication all the time and use every C that she

intercepts as a input to her neural network to output Peve. The
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neural networks are trained until Bob’s accuracy is as close as

possible to the original plaintext and Eve’s output is around

50%. The reason why Eve’s accuracy needs to be around

50% is because in probabilities, when an entity is making

random guesses; the worst case scenario is to be 50% wrong

and 50% correct. In that case, you can not tell which guesses

are correct and which are not. In the case of Eve, she cannot

know which bits are correct and which are not. Assuming if

she was trained to be 100% wrong, she can just flip the bits

and become 100% correct. The model used is the same as in

Figure 2. Figure 6 summarizes the training process. The loss

function used to train the neural networks is as follow:

LB(θA, θB , P,K) = d(P,DB(θB , EA(θA, P,K),K))

Where θA, θB , θE represent the parameters of Alice, Bob

and Eve respectively. DB represents the decryption process

of Bob and EA represents the encryption process of Alice.

Lastly, P represents the plaintext and K the secret key which

means that the loss for Bob is the distance between the

original plaintext and his tentative decrypted ciphertext PBob.

P + K
Fully Connected 

Layer

Convolution with 

stride 1 and 

[4,1,2] window

Sigmoid non-

linear

Convolution with 

stride 2 and 

[2,2,4] window

Sigmoid non-

linear

Convolution with 

stride 1 and 

[1,4,4] window

Sigmoid non-

linear

Convolution 

with stride 1 

and [1,4,1] 

window

Tanh

C

FIGURE 5. Encryption flow through Alice’s neural network [13].

Alice generates a 

random 

plaintext. And 

The plain text is 

fed along the 

key in Alice’s 

Neural Network

OUTPUT IS 

CIPHERTEXT C

The cipher text 

is sent to Bob 

and Intercepted 

by Eve.

Bob tries to decrypt 

C with the Key and 

Eve tries to decrypt 

without the key.

Is Bob’s 

accuracy close to 

100% and Eve’s 

Accuracy close 

to 50%?

Update Parameters

NO

YES

SAVE 

PARAMETERS 

AND END 

TRAINING

FIGURE 6. Diagram showing the training process of the neural networks [13].

b: Communication phase

After training is done, the parameters/weights that define the

state of the neural networks can be used for current and future

secure communications.

Comments

As stated before, this model is very interesting but one might

ask "how does it differ from classical cryptography proto-

cols?" or "what advantages does it provide?". The answer

is that there is no need to build a specific algorithm with

detailed steps which is a big difference and an advantage at

the same time. The neural networks will work on learning

a method on their own without being taught or shown any

specific encryption method such as AES. The only drawback

is that it takes a considerable amount of time to synchronize

two parties for the first time as they do not have pre-saved

parameters.

Purswani et al. [36] propose the same model but use chaos

theory to generate a more random key. Their results show

that the accuracy of the model can increase up to 21% when

replacing the python built-in random function with other

techniques such as the logistic chaotic key or the Henon key.

G. STEGANOGRAPHY

Besides encryption, different researchers in two recent papers

[20], [21] pushed the idea of the model proposed by Abadi

et al. [13] in order to build a steganography model based on

neural networks.

In their models and similarly to the work by Abadi et al.

[13], Alice will use an image and a secret text as input to

her neural network. Alice’s output will be the steganographic

image that Bob is going to try to extract the secret texts from.

A different image/secret-text combination is used at every

training iteration in order to prevent Alice and Bob from

learning a model specific to one particular image or secret

text.

H. ADVERSARIAL CRYPTOGRAPHY BASED ON THE

TOPOLOGY EVOLVING NEURAL NETWORKS

The authors of this work [37] wanted to build a model based

on a new topology called Spectrum-Diverse Neuroevolution

with Unified Neural Models [23] which is basically a type

of neural network structure that can evolve by adding or

removing neurons to/from its structure. So concretely, in

[37] they do not use a fixed neural network structure but

a structure that can evolve on the go. however the training

process and the concept is the same as the original adver-

sarial cryptography model proposed by Abadi et al. [13]. The

results from [37] show that it is possible to implement such

neural networks and they can evolve and learn a symmetric

encryption protocol.

I. GAN-BASED KEY SECRET-SHARING SCHEME IN

BLOCKCHAIN

The authors of this work [38] implement a secure key sharing

scheme based on GANs. The idea consists of transforming
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the text of a private key into an image which will be the

original image for the GAN. The original image is then

divided into several sub-images and each of them is encoded

using DNA coding. Finally, the proposed scheme is trained

to extract the secret key using the encoded sub-images. This

scheme helps lower the hardness of recovering a lost private

key in block chain.

J. MULTI PARTY ADVERSARIAL CRYPTOGRAPHY

Talking among multiple parties using Adversarial Cryptog-

raphy can be a useful feature to be implemented however

training multiple parties on learning the scheme might be

challenging and time consuming. The authors in [22] im-

plemented a 3-party scheme that showed how to train three

parties so that they learn the same encryption and decryption

scheme in different scenarios, and also gave a workaround

for communicating in larger groups.

K. GENERATIVE ADVERSARIAL PRIVACY

Training neural network models requires having on hand

a lot of data. This data is generally is difficult to acquire

due to privacy problems. A solution that is often used is

to anonymize the data by removing any identifying details

like names, unique identifying numbers, etc. However recent

attacks such as in [39], [40] show that it is possible to

deanonymize the data and link it to its original holders.

This is where the work Chong et al. [41] comes into play,

through what they called Generative Adversarial Privacy

(GAP) the authors built a model that can protect the data and

anonymize it properly while preserving its utility.

The model is composed of two learning blocks: A pri-

vatizer that learns to process the public data in order to

output a sanitized version of it and an adversary that tries to

learn private data from the public data. This is done through

competing in a constrained minimax zero-sum game. The

privatizer trains on minimizing the adversary’s performance

and the adversary tries to find the best strategy to maximize

its performance. A loss function is used to measure the

efficiency of the adversary.

L. AN APPROACH TO CRYPTOGRAPHY BASED ON

CONTINUOUS-VARIABLE QUANTUM NEURAL

NETWORK

While Abadi et al. [13] used classic neural networks for their

setup and training, Shi et al. [42] did a similar work but using

another approach based on Quantum Neural Networks. The

neural networks learn to encrypt plaintexts in an adversarial

setup. The training starts with creating a classical neural net-

work that can theoretically do the specified task (Encryption,

Classification, etc). The model is optimized with the Adam

algorithm [43] and the authors perform their experiments

using the Strawberry Fields32 tool. There are two neural

networks with the same structure, and the authors adopted a

3-layer (Input Layer, Hidden Layer, Output layer) structure.

The communication is between Alice and Bob and consists

of four stages as illustrated in figure 7:

• The first stage is to obtain Legitimate Measurement

bases for Alice and Bob.

• The second stage preprocesses and transforms the data

into quomodes.

• The third stages handles the key preparations.

• The last stages is the communication stage where data

is encrypted and decrypted.

Bob

1 Synchronize 

measurement bases 

Alice sends a 

message

2

Input 

quantum 

states?
CV-QNN


Convert to 

Qumodes

3 4

Encrypt Data

Bob receives 

Ciphertext

Decrypt Data

Bob receives 

plaintext

Y

N

FIGURE 7. 4 Stages of communication [42].

IV. SECURITY ANALYSIS OF GANS-BASED

CRYTOGRAPHY SCHEMES

In this section, we will see a security analysis conducted

by Zhou et al. [18] to see how the secure are the ciphertexts

generated by the neural networks in the model proposed by

Abadi et al. [13]. We will then see how the model has been

improved by Coutinho et al. [19] and Zhengze et al. [24].

A. SECURITY ANALYSIS AND NEW MODELS ON THE

INTELLIGENT SYMMETRIC KEY ENCRYPTION

Zhou et al. [18] proposed a security analysis as well as a

follow up work on the new way to do encryption based on

GANs as proposed by Abadi et al. [13]. The authors start

by investigating the security of the ciphertexts generated by

Alice by testing the randomness of the output to see if it can

be distinguished from a randomly picked one. Next, they per-

form different experiments that will push Alice to generate

more complicated and therefore more secure ciphertexts.

1) Test of the randomness of the ciphertexts

In this phase, the authors want to evaluate the randomness of

the ciphertexts generated by Alice. To do this, the authors

trained Alice in a normal setup as the one proposed by

Abadi et al. [13]. After the training is done, Alice is fed a

large number of keys and plaintexts that she will encrypt and

output. The output is saved in a local file for analysis.

The authors used three different methods for analysing

the randomness of the output: the χ2 approach, the Kol-

mogorov–Smirnov (KS) approach and finally the NIST sta-

tistical test. All the results show that the majority of cipher-
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texts are not secure which makes this model insecure in terms

of distinguishability.

2) Model Improvements

To get more secure ciphertexts, [18] proposed other setups

for the model proposed by Abadi et al. [13]. Instead of giving

Eve the ciphertext only, they train Alice in different scenarios

where in each scenario has a part of the key and/or a part of

the original plaintext.

When Eve gets more information, the authors noticed that

the behavior of Alice changes as Eve starts getting more

accuracy. Figure 8 shows the setup of the model where Eve

gets a part of the key.

ALICE BOB

EVE

CP

K

Pbob

Peve

K

Sub 

Key

FIGURE 8. Setup of model 1: Eve has a part of the key [18].

We can see in figure 9 and 10 that when Eve has only

4 bits of the key, Alice and Bob can beat her and the syn-

chronization is successful with 100% accuracy for Bob and

a little less than 50% accuracy for Eve. However with 8 bits

of key, Eve is much more accuracte in her decryption which

pushes Alice to make the encryption method so complicated

that Bob even cannot converge and get a perfect decryption

of the ciphertexts sent by Alice. Eve’s accuracy is also a little

higher than the goal of 0.5 after some iterations.

FIGURE 9. Results of experiment 1:Eve gets 4 bits of the key and Bob

converges to 100% accuracy [18].

The authors wanted to push Alice and Bob further and

made another experiment where Eve gets rich information

about the key and the plaintext. In such a case and as shown

in Figure 11, Alice and Bob will give up the security and only

FIGURE 10. Results of experiment 2: Eve gets 8 bits key and Bob cannot

converge [18].

focus on ensuring the communication. We can see that Bob

has a 100% accuracy while Eve has a little less than that.

FIGURE 11. Results of experiment 3: Eve gets 16 bits plaintext and the key

[18].

3) Overall results

The overall experiments and results in this work show that

the security can be improved by training against stronger

adversaries by giving them for example a part of the key

and/or a part of the plaintext. However the randomness of

the output needs to be improved in a way that does not leak

information on the plaintext or key.
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B. LEARNING PERFECTLY SECURE CRYPTOGRAPHY

TO PROTECT COMMUNICATIONS WITH ADVERSARIAL

NEURAL CRYPTOGRAPHY

Coutinho et al. [19] propose a solution to solve the problem

of randomness of the ciphertexts generated by Alice. The

authors change the structure and the function of the model in

order for the neural networks to learn the one time pad with

the use of a stronger Eve. The neural networks will do this

by learning the One Time Pad (OTP). Concretely, learning

the XOR operation and encrypting each given plaintext with

a unique key.

1) Structure for Alice and Bob

In order to learn the one time pad, the neural network struc-

ture of Alice and Bob has to be changed. The new structure

is shown in Figure 12 and was used by Coutinho et al. [19].

Pn-1P0 Kn-1K0… …

an-1a0 a2n-1an… …

…

…

…

FIGURE 12. Structure used for Alice and Bob in order to Generate a onetime

pad [19].

As we can see in Figure 12, the neural network takes as

input the plaintext (represented by p0...pn−1) and the secret

key (Represented by k0...kn−1) where n is the size of the

plaintext and the key k. the function f transforms the input

into an angle and is represented as follow:

f(b) = arccos(1− 2b)

A fully connected layer combines the angles to form the

variables h0...hn−1. Finally, the function f−1 reverts back

the angles to continuous bits (real numbers in the interval

[0, 1]). f−1 is defined as follow:

f−1(a) = 1−cos(a))
2

The output will be c0...cn−1 and will represent the cipher

text.

By processing the inputs this way, the authors show that

the neural networks were able to communicate but were not

able to learn the one time pad. A new structure for Eve was

needed in order to get a fully working one time pad for Alice

and Bob. The new structure used for Eve is shown in Fig. 13

P0,n-1P0,0 P1,n-1P1,0 Cn-1C0… … …

………

an-1a0 a2n-1an a3n-1a2n… … …

…

…

…

FIGURE 13. Structure used for Eve [19].

Eve receives as input two plaintexts P0 and P1 as well as

a cipher text C1. The same equation f used by Alice will

be used by Eve to transform the input into angles which is

followed by a fully connected layer to obtain the hidden layer

containing the values h0 through h1
R−1. Then, the function

f−1 used by Alice previously will also be used by Eve in

order to revert the angles into real numbers. The real numbers

will go through a Softmax layer outputting two probabilities:

π0 is the probability that P1 is a plaintext for the cipher text

and π0 is the probability that P1 is a plaintext for the cipher

text.

By using this method, the authors were able to get up

to 100% successful communications during their trials and

between 95% and 100% learned OTPs. Table 3 illustrates the

number of trials and successful communications.

C. INFORMATION ENCRYPTION COMMUNICATION

SYSTEM BASED ON THE ADVERSARIAL NETWORKS

FOUNDATION

Zhengze et al. [24] proposed training the model in another

way. Instead of using just one Eve, they used three Eves. The
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TABLE 3. Number of successful communications and the number of OTPs

learned [19]

Size of Key Number of Trial
Successful

Communication
OTPs Learned

4-bit 20 19 19

8-bit 20 20 20

16-bit 20 20 19

TABLE 4. Number of successful trials when using three Eves [24]

Order Number of Trial
Successful

Communication
OTPs learned

1 2048 100% 98.9%

2 2048 100% 99.4%

3 2048 100% 100%

4 2048 100% 99.8%

5 2048 100% 99.1%

three Eves differ from each other in the following manner:

• The first Eve has access not only to the ciphertext but

also the full key. The authors assumed the attacker got

the key in advance.

• The second Eve is the same as in [13] and has only

access to the ciphertext.

• The third Eve is a little similar to the one used by

Coutinho [19]. She receives a plaintext and two ci-

phertexts one being the real ciphertext and the second

randomly generated. She has to decide which ciphertext

corresponds to the plaintext.

The rest of the model is the same as by Abadi et al. [13] but

the data goes through 6 convolutions instead of just 4.

The authors conducted trials with two Eves and three Eves

separately and the results are pretty impressive. In their trials

with two Eves (Eve 1 and Eve 2), the maximum number of

successful trials was around 77%. But with the 3 Eves, they

got between 97 and 100% successful communications and

OTPs learned.

Table 4 illustrates the number of trials and the successful

rate of communications. The results reconfirms our intuition

that by training against stronger opponents, Alice and Bob

can perform better in terms of encryption in order to outper-

form the attackers.

D. SUMMARY

We presented a variety of cryptography techniques that are

based on neural networks; Most of them are based on deep

neural networks, GANs and the work done by Abadi et al.

[13].

The most important and prominent techniques were:

• The GANs based encryption model [13] where two

neural networks can synchronize and learn to encrypt

a communication in the presence of eavesdroppers.

• The GANs based steganography models [20], [21], [44]

which are based on [13] and enable neural networks to

learn steganography by hiding a text inside an image

and send it through an open network subject to eaves-

dropping.

• The introduction of the OTP by Coutinho et al. [19] and

Zhengze et al. [24] that solves the problem of randomness

and improving the model by Abadi et al. [13].

• The Tree Parity Machine and the various improvements

it has seen especially by Salguero et al. [25].

E. USAGE CASES OF NEURAL NETWORKS BASED

CRYPTOGRAPHY

As Neural Network models are usually lightweight, fast and

efficient, the first possible usage case is to apply the learned

protocols between IoT devices. As IoT devices work on time-

limited batteries, using neural networks based models for

encryption is expected to provide substantial security with

reduced CPU usage of the devices.

On the other hand, as the security is not based on any

computational hardness assumption, neural networks based

cryptographic models (with suitable enhancements and mod-

ifications) may be expected to provide a lightweight post-

quantum secure primitive.

Table 5 summarizes the most important works in the

security of GANs based encryption.

V. DISCUSSION & TREND

We presented the advances of AI-based cryptography during

the last two decades especially with GANs. We also pre-

sented the importance of GANs in developing cryptosystems

and observed that GANs-based neural networks can learn

symmetric encryption as well as privacy preserving.We have

also discussed several attack models which scrutinize the

security of the developed systems.

Neural network based cryptography has drawn significant

attention with the hope that it could provide post-quantum

cryptographic primitives. However, the research in this field

is still in a nascent stage and several developments in dif-

ferent fronts are observed on a regular basis. One important

direction that researchers are trying to explore include public

key cryptography and secret sharing – both of these act

as fundamental building blocks for several cryptographic

tasks. Moreover, for realizing real world secure NN based

distributed systems friendliness with low-capacity devices is

also a current trend of research.

Another interesting research area focuses on quantum-

enhancing the neural networks which requires writing a

quantum circuit of the neural network and running it on a

quantum machine simulator or on an online available quan-

tum machine [45]–[47].
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TABLE 5. Table that summarizes the contributions in security analysis done on the model by Abadi et al. [13].

Date Title Contribution Positive Points Negative Points

2016

Learning to Protect
Communications
With Adversarial
Neural Cryptography [13].

Proposed a research spurring
model that allows two neural
networks to learn an encryption
model in the presence of an
eavesdropper.

Opened the path
to a new way to use GANs
which might prove useful
against quantum computers
as the model learned
does not depend on a difficult
mathematical problem.

The proposed model learns
a weak encryption model.

The encryption model is weak
against probabilistic attacks.

2018

Security Analysis
and New Models
on the Intelligent
Symmetric Key
Encryption [18].

Prove that the model proposed in
[13] is weak against probabilistic
attacks.

Trained the neural networks
against stronger versions of Eve
which shows that the security can
be improved by doing so.

Trains the neural networks
against stronger versions of
Eve which highly reduces
the repetitive patterns in the
ciphertexts generated.

The model learned can do well
when the attacker does not
know the structure of the neural
networks or information about
the plaintext and/or key.

The authors do not test
how effective the ciphertext
is after Alice and Bob train
against stronger versions of Eve.

2018

Learning Perfectly
Secure Cryptography
to Protect
Communications
with Adversarial
Neural Cryptography [19]

Also shows that the mode learned
in [13] is weak against
probabilistic attacks.

The authors then propose another
model that learns the One Time Pad
which improves the security and
the weakness against probabilistic
attacks.

The neural networks learned
a perfectly secure model:
The One Time Pad.

The neural networks encrypt
each plaintext using XOR with
a unique key per plaintext.

As classical computers cannot
generate a fully random pattern,
the model will not prove useful
unless used with a quantum
computer.

2020

Information Encryption
Communication System
Based on the
Adversarial Networks
Foundation [24].

Trains alice and Bob against
multiple Eves where each Eve
has access to different information.

Shows that Alice and Bob
can learn the OTP without
altering their structure.

The neural networks learned
the OTP without the need
for major changes their structure.

Alice and Bob produce
more complex ciphertexts.

As Alice and Bob train against
three Eves, the model needs
a lot of resources and time
to be trained.
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