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Abstract

A neural network is developed to model the rainfall-runoff behaviour of the
Tiber River basin. Performances of the neural network are then compared
with the ones gained through an autoregressive model with exogenus input
(ARX) and via the persistence hypothesis. The comparison shows that the
neural scheme is able to provide very accurate discharge forecasts and
performances quite superior to the other two approaches.

1.Introduction

The subject of rainfall-runoff modelling affects a wide spectrum of topics
ranging from water resources management to areal flooding and dam safety
analysis. Fundamental to each topic is the problem of how to accurately
compute runoff at a point from meteorological data consisting mainly of
rainfall and temperature measurements over the catchment area. The fact that
there is no single universally accepted approach to computing runoff and that
several models have been developed within different frameworks (for a
review, see Franchini and Pacciani,! Todini,2 Hromadka I1,> Karlsson and
Yakowitz,4) clearly indicates that a definitive solution has yet to be found and
that research in the field is still active.

The purpose of this work is to assess the possibility of employing a new
approach based on a neural network scheme, whose use is becoming more
popular among scientists involved in hydraulic and hydrometeorological
activities (French et al.,> Ranjithan et al.,® Dartus et al.”), for forecasting the
daily mean discharge in the hilly basin of the Tiber River in Central Italy.

Forecasts obtained with the neural network are then compared with the
discharges gained through a black box transfer model, formulated as an
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autoregressive model with exogenus inputs (ARX) (Box and Jenkins,?) and
finally with the results obtained via the persistence hypothesis. The
comparison clearly shows that the neural scheme, if "properly" trained (for
the meaning of "properly” see the following sections) is able to provide very
accurate discharge forecasts and performances quite superior to the ARX
approach.

Although additional research is obviously required these preliminary
results indicate that the neural network (NN) approach could well constitute
an efficient and reliable alternative for runoff forecasting.

2 Description of the basin and available hydrologic data

The basin chosen to test the capability of runoff forecasting by neural
networks is the upper Tiber River basin, located in Central Italy (Fig.1)
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Figure 1. The upper Tiber River basin



\:~.§{ Transactions on Ecology and the Environment vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3541

Hydraulic Engineering Software 133

The basin has a complex mainly hilly orography (200800 m a.s.l.), yet
shows higher peaks (10001500 m a.s.l.) over a wide area of the boundary.
The really mountainous area is in the northern zone, while the southwestern
part of the basin is mostly level; a worth noting karst is located to the east.
Given the basin's limited mean altitude and the reduced areal range of zones
at altitudes > 1000 m a.s.l., the role of nival precipitations and the
subsequent spring melt is negligible so that floods generally occur during the
November-May period and are caused by widespread rainfall. Daily
discharge forecasting is required for the management of the Corbara reservoir
which supplies the Baschi hydroelectric power plant, the most important
hydro plant along the Tiber River, with an installed power of 100 MW and a
maximum turbine discharge of 200 m3/s.

Available hydrometeorological data covers the period from 1/8/1988 to
31/12/1992, and are composed of:

- daily precipitation values from 26 raingauges located inside the basin;

- daily mean temperature from 13 thermographic stations;

- daily mean discharge values at the section of Monte Molino, just

upstream of the Corbara reservoir.

To test the performance of the various models, the period 4/8/1988+
31/12/1991 was chosen as the calibration period, leaving the whole 1992 as
the trial or validation period. Since 1992 witnessed numerous flood episodes
of particular significance (daily mean flow Q=500 m3/s) and in particular the
maximum flood (Q=880 m3/s) measured over the entire investigation
period, this trial is particularly probative.

3. The neural network structure

The term "neural network" means a set of basic units, or nodes, which
communicate with each other through a closely-woven network of
interconnections. As a general concept, neural networks are mathematical
models of theorized mind and brain activity which attempt to exploit the
massively parallel local processing and distribution storage properties
believed to exist in the brain (Grossberg,®). Different possibilities exist for
the neural network structure and neuron forms (see for instance Lippman,!0
for a more complete discussion). In this particular network the various nodes
are arranged in three layers, an input layer, a hidden layer and an output
layer; each node is interconnected with all the nodes in the adjacent layers,
but not with the ones in the same layer.

Each interconnection between two units indicates transmission of data
whose importance is proportionate to the value of the weight w of the
interconnection itself. Once the number of nodes has been fixed, weights w
are determined in the "learning phase"” where the network output value x,' is
compared to the real value x, so that the error (x,-x,') can be used to adjust
the interconnection weights. The mathematical adopted method for this
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purpose is known as "error back-propagation" and is based on a non-linear
optimization approach which uses a descendent gradient method over the
error surface (Jones and Hoskins,!! Sforna, !2).

4 Application of the neural network

The training phase of the NN, i.e. the definition of weights w which
regulate the interconnections, is of primary importance to achieving accurate
performances in the reconstruction phase of the discharges. From the
experience gained in this particular application, it is worth highlighting the
following points:

a) Great care should be taken in accurately preparing the "learning" data.
The observations set should be constructed to include, as far as possible, the
different conditions the network will have to operate under. If "holes" are left
in the training set, once the network is operating it is likely to come up
against unfamiliar situations to analyze, or at least ones which differ greatly
from the cases trained for, and this would therefore increase the likelihood of
considerable errors in the supplied forecasts. In this case it means that if the
network is supposed to be capable of forecasting discharges between O and
1000 m?/s, the training values should be distributed as uniformly as possible
over this interval.

b) The number of examples which represent very similar hydrological
conditions should be limited; in fact, by supplying the network with a great
number of very similar examples and which contain significant errors, the
"back-propagation" method may lead the network to a local minimum of the
error function which is much higher than the absolute minimum.

¢) The training process should be followed very closely in the evolution
phase. The network's learning rate should be decreased gradually to values
close to zero. In this way it is possible to make the solution stable and to
annull the effect the order the examples are supplied in has on the final
values of the weights w.

d) When deciding on how many inputs to supply to the network, excess
should be avoided as surplus information entails needlessly long computing
times or worse still could produce an erroneous interpretation of the data. For
this reason a test period is indispensable in order to verify the validity and
accuracy of the training phase. In the Tiber case, a series of trials were
carried out on different training sets representative of different possible
subdivisions of the basin into subzones (from 1 to 5) based on altimetric and
geological characteristics. This following optimal set came to be defined:

Q= f( Qu15Qu2s PPy Py Prisges Toots Tnedroge) (1)

where t indicates the current day, Q the mean daily discharge, P the total
daily precipitation (areal mean over the entire basin), T the mean areal
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temperature, P, total rainfall (areal mean) measured between t and t-4,
Tred10g the mean areal temperature in the period t, t-9.
e) The choice of the number of nodes in the hidden layer is fundamental for
the correct use of the network. In fact, the mean square error which the
network commits in the training period generally diminishes as the number of
hidden nodes increases. However, it does not mean that a larger-sized
network is better at learning the complex relations which regulate the
different phenomena under investigation. This clearly emerges from an
analysis of Fig. 2 where the RSME trend is shown for different numbers of
hidden nodes: while this function tends to decrease for the training period, in
the test period it presents a minimum which is then followed by a new
increase.
In the case under
407 investigation the optimal
| , number of hidden nodes

‘ \/// . is found to be threee.
o : - g i Once again it is
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ensure the network has
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T : I ; ; ; . corresponding to the
numosr of pigden noges physical variables
Figure 2. RSME for different numbers of hidden recorded above, and 3
nodes : o training period, ~ test period hidden nodes.

5. The ARX rainfall-runoff model

The stochastic black box model implemented to compare the NN scheme
is a non linear transfer function rainfall-runoff model with autoregressive
component and exogenous inputs represented by the areal rainfall. Non
linearity is achieved by the threshold value S based on the Antecedent
Precipitation Index (API) (Linsley at al,'3) as computed in Todini and
Wallis,* which tries to take the soil saturation degree into account.

In the calibration phase of the model, different possible subdivisions of
the basin based on the altimetric and soil characteristics were tested, as
occurred with the neural networks; 1,2,3,4 and 5 zones respectively, were
considered, corresponding to a number of rainfall inputs between 1 and 5.
Since the performances of the different models were essentially equivalent, in
terms of time-saving the model with the lowest number of parameters, the
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one characterized by just one rainfall input, was chosen. This choice is
consistent with the one made regarding the neural network. The selected
rainfall-runoff model is:

Q = 0, Qu+ 0,Q, + oy P+ oy P+a P+ o, P +E 2
where Q = daily mean discarge (m?¥/s)
P' = rainfall input if function API < S (mm)
P" = rainfall input if function API > S (mm)
E =residual error (m?/s)
The model parameters were calibrated with the widely documented CLS
method (Erlich,'%) imposing the positiveness of the transfer function

coefficients. The final parameters, identified by trial and error on the basis of
the minimum standard deviation of residuals were :

®, =0.682, ©,=-0.0281, o', =0.6389, o, =1.229, a", =2.508, o",=6.341
6. Comparison of the results

The performances of the three models can be compared by analyzing
Fig.3 where the efficiency of the reconstruction of the discarges obtained
with the various method is shown up and Tab.l1 where the following
statistical parameters are given for both the calibration and the validation
periods:

- Number of data ND
- Maximum error [m?/s] E ax
- Minimum error  [m3/s] Ein
- Mean error [m?/s] E can
- Standard deviation of the Error [m3/s] o,
- Root mean square error {m3/s] RSME
- Determination coefficient R?
Neural network |ARX model Persistence
Training] Test |Training| Test |Training| Test
ND 585 365 1245 365 1245 365
E max 125.5 | 177.4 210 220.3 | 392.7 | 502.7
E min -173 | -234.9 | -382 | -399.3 | -516.7 | -610.6
E mean -1.2 -4.3 -0.8 -3.2 0 0.1
o, 20.2 29.2 29.3 41.3 40 57.9
RSME 20.2 29.5 29.3 41.4 40 57.8
R? 0.95 0.9 0.8 0.79 0.63 0.59

Table 1. Comparison of the statistical performances of NN, ARX model and

persistences hypothesis.




\IQ Transactions on Ecology and the Environment vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3541

Hydraulic Engineering Software 137

30
20 « Temperature A Ven N
Al RN \'\/
o 4 A /
K
0
=10 - T T T T T T T
50
45 4 Rainfall
30
\E,
R
0.4
990
65 4 —— Maeasured daily discarge a)
L R Computed daily discarge
My 500, . ! l
£ \ " I
=250 4 ,"\\/\ i il J \\
n y AR AN
0 T T J T T LS I T T — e T =
300
150 1 Residuals ‘ ,
T Mo ]
N W avant | ‘
=-150.4
-300 : . r . . ,
1000
64 J — Measured daily discarge b) i
I R Computed daily discarge f
~5 500+ |
=
£ A !
=250, 4 {\A A E\\
o J P I | SRR ) N ~y
, \ ; : ‘
o0 T 0
150 4 Residuals ‘H ‘
2 ! ! ) S
R T e P e e =
£ v VY ! |
S-is0 : ,
1 ;
300 : ; v : ; : |
1000
750 4 —— Measured daily discarge C)
2 -~ --- Computed daily discarge
5500 noo
Fl
=250 B 4 Lo | f
o r e M p s e AN e
T T T T T T = —
300
_ 150 4 Residuals ] 1
w i | | |
rfEi 0. 4 J‘w'\v.ﬁ E P ﬂ_~,MA,A/‘H’NﬁV,,,Aﬂ1(,,,/ }(,/ -
/
150+ f / i
~300 i

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3. One-step-ahead daily discarge forecast at Monte Molino:
a) Neural network, b) ARX model, c) Persistence hypotesis
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7. Conclusions

The application of a neural network scheme for the forecast of the daily
mean discharge which fills the Corbara hydroreservoir, located along the
Tiber River in Central Italy, has shown that the proposed method, if properly
built and trained, may provide highly accurate runoff reconstructions. The
forecast is constructed on the basis of the previous discharge, the daily
precipitation and the daily mean temperature; additional inputs which try to
take the degree of soil saturation into account are represented by the total
rainfall of the previous five days and the mean temperature over the previous
ten days. Finally, the method is compared with both the simple persistence
hypothesis and with an ARX rainfall-runoff model. The comparison clearly
shows that the neural network is able to provide much better performances.
Even if wider experience must be gained to confirm the results, this
preliminary experience indicates that the neural approach may constitute an
efficient alternative to the more classical rainfall-runoff modelling
approaches.

References

1. Franchini, M., Pacciani, M. Comparative analysis of several conceptual rainfall-runoff
models, Journal of Hydrology, 1991, 122, 161-219.

2. Todini, E. Rainfall runoff modelling-Past, present and future. Journal of Hydrology,
1988, 100, 341-352.

3. Hromadka II, T.V. Rainfall-runoff models: A review, Environmental Software, 1990, §,
82-103.

4. Karlsson, M. & Yakowitz, S. Nearest-neighbour methods for non parametric rainfall-
runoff forecasting, Water Resources Research, 1987, 23, 1330-1338.

5. French, M., Krajewskj, W., Cuykendall, R. Rainfall forecasting in space and time using
a neural network , Journal of Hydrology, 1992, 137, 1-31.

6.  Ranjithan, S., Eheart, JW., Garrett Jr., JH Necural network-based screcning for
groundwater reclamation under uncetainty, Water Resources Research, 1993, 29, 563-574.

7. Dartus, D.,Courivaud, J.M., Dedecker, L. Utilisation d'un réseau neuronal pour l'étude
de la propagation d'une onde de crue dans un canal, Journal of Hydraulic Research, 1993,
31, 161-169.

8. Box, G.E.P., Jenkins, GM. Time series analysis: forecasting and control, Holden-Day,
Inc., San Francisco, Calif., 1970.

9.  Grossberg, S.A. Neural networks and natural intelligence, MIT Press, Cambridge,
1988.

10. Lippmann, R.P. An introduction to computing with neural nets, /EEE Transaction on
ASSP, 1987, 4-25.

11.  Jones, W.P., Hoskins, J. Back-propagation, BYTE, 1987, 155-162.

12. Sforna, M. Cenni sulla teoria e sull'uso delle reti neurali percettrone
multistrato, ENEL Technical Report n°195/93, 1993.

13. Linsley, RD., Kohler, M. A. & Paulus, J.L.H. Hydrology for Engineers, 2nd edn
McGraw Hill, New York, 1982.

14. Todini, E.,Wallis, J.R. Using CLS for daily or longer period rainfall runoff modelling,
in: Mathematical Models for Surface Water Hydrology, John Wiley & S., UK., 1977,

15. Erlich, M. Propagation des crues avec le Constrained Linear System (CLS). La Houille
Blanche, 1988, n°5-6, 445-449,



