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Abstract. A neural network classification method has been developed as an alternative approach to the search/ 

organization problem of protein sequence databases. The neural networks used are three-layered, feed-forward, 

back-propagation networks. The protein sequences are encoded into neural input vectors by a hashing method that 

counts occurrences of n-gram words. A new SVD (singular value decomposition) method, which compresses the 

long and sparse n-gram input vectors and captures semantics of n-gram words, has improved the generalization 

capability of the network. A full-scale protein classification system has been implemented on a Cray supercomputer 

to classify unknown sequences into 3311 PIR (Protein Identification Resource) superfamilies/families at a speed 

of less than 0.05 CPU second per sequence. The sensitivity is close to 90% overall, and approaches 100% for large 

superfamilies. The system could be used to reduce the database search time and is being used to help organize the 

PIR protein sequence database. 
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Introduct ion 

Nucleic acid and protein sequences contain a wealth of information of interest to molecular 

biologists since the genome forms the blue-print of the cell. Currently, a database search 

for sequence similarities represents the most direct computational approach to decipher the 

codes connecting molecular sequences with protein structure and function (Doolittle, 1990). 

If the unknown protein is related to one of known structure/function, inferences based on 

the known structure/function and the degree of the relationship can provide tile most reliable 

clues to the nature of the unknown protein. This technique has proved successful and has 

led to new understanding in a wide variety of biological studies (Boswell & Lesk, 1988). 

There exist good algorithms and mature software for database search and sequence analysis 

(Gribskov & Devereux, 1991; von Heijne, 1991). However, due to the advancement of 

genetic engineering technology and the advent of the human genome project, the molecular 

sequence data has been accumulating at an accelerating rate. This is making the database 

search become computationally intensive and ever more forbidding, even with the rapid 

advancement of new search tools. It is, therefore, desirable to develop methods whose 

search time is not constrained by the database size. 
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A classification method can be used as an alternative approach to the database search/ 

organization problem with several advantages: (1) speed, because the search time grows 

linearly with the number of sequence classes (families), instead of the number of sequence 

entries; (2) sensitivity, because the search is based on information of a homologous family, 

instead of any sequence alone; and (3) automated family assignment. We have developed a 

new method that applies back-propagation neural networks for sequence classification (Wu, 

et al., 1992; Wu, 1993). In addition, three other sequence classification methods have been 

devised: a multivariant statistical technique (van Heel, 1991), a binary similarity comparison 

followed by an unsupervised learning procedure (Harris, et al., 1992), and Kohonen's self- 

organized feature map (Ferran, et al., 1994). All of these classification methods are very fast, 

thus, applicable to thelarge sequence databases. Themajordifference between our and other 

approaches is that the back-propagation neural network is based on "supervised" learning, 

whereas the other two are "unsupervised". The supervised learning can be performed 

using training sets compiled from any existing second generation database (i.e., database 

organized according to family relationship) and used to classify new sequences into the 

database according to the predefined organization scheme of the database. The unsupervised 

system, on the other hand, defines its own family clusters and can be used to generate new 

second generation databases. 

The neural network technique has its origins in efforts to produce a computer model of the 

information processing that takes place in the nervous system (Rumelhart & McClelland, 

1986). One can simply view a neural network as a massively parallel computational device, 

composed of a large number of simple processing units (neurons). The neurons communi- 

cate through a large set of interconnections with variable strengths (weights), in which the 

learned information is stored. Artificial neural networks with back-propagation currently 

represent the most popular learning paradigm, and have been successfully used to perform 

a variety of input-output mapping tasks for recognition, generalization, and classification 

(Dayhoff, 1990). In fact, neural networks can approximate linear and nonlinear discrimi- 

nant analysis with a stronger capability of class separation (Webb & Lowe, 1990). As a 

technique for computational analysis, neural network technology has been applied to many 

studies involving the sequence data analysis (please see Hirst & Sternberg, 1992 for a re- 

cent review). Back-propagation networks have been used to predict protein secondary and 

tertiary structures (Qian & Sejnowski, 1988; Holley & Karplus, 1989; Kneller, et al., 1990; 

Bohr, et al., 1990), to distinguish ribosomal binding sites from non-binding sites (Stormo, 

et al., 1982) and encoding regions from non-coding sequences (Uberbacher & Mural, 1991; 

Farber, et al., 1992), and to predict bacterial promoter sequences (Demeler & Zhou, 1991; 

O'Neill, 1992; Horton & Kanehisa, 1992). 

This study extends our protein classification neural networks into a full-scale system that 

classifies 3311 PIR superfamilies/families and introduces a new SVD method for sequence 

encoding to improve network accuracy. The paper further analyzes system performance, 

evaluates its strength and weakness, and discusses system application for database search 

and organization. 

System Design 

The neural network system was designed as an associative memory capable of classifying 

unknown sequences. Once trained with known sequences from molecular databases, the 
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Figure 1. A neural network system for molecular sequence classification. The molecular sequences are first 

converted by a sequence encoding schema into neural net input vectors. The neural networks then classifies them 

into predefined classes according to sequence information embedded in the neural interconnections after network 

training. 

network can classify new (not trained previously) sequences into predefined classes based 

on information embedded in the network interconnections. In other words, it can map 

molecular sequences (input) into sequence classes (output) (Fig. 1). There are two major 

design issues: the sequence encoding schema, and the neural network architecture. 

Sequence Encoding Schema 

The sequence encoding schema is used to convert molecular sequences (character strings) 

into input vectors (numbers) of the neural network classifier (Fig. 1). An ideal encoding 

scheme should satisfy the basic coding assumption so that similar sequences are represented 

by 'close' vectors. There are two different approaches for the sequence encoding. Once can 

either use the sequence data directly, as in most neural network applications of molecular 

sequence analysis, or use the sequence data indirectly, as in Uberbacher and Mural (1991). 

Where sequence data is encoded directly, most studies (e.g., Qian & Sejnowski, 1988; 

Farber, et al., 1992) use an indicator vector to represent each molecular residue in the 

sequence string. That is, a vector of 20 input units (among which 19 have a value of zero, 

and one has a value of one) to represent an amino acid, and a vector of four units (three 

are zeroes and one is one) for a nucleotide. This representation, however, is not suitable 

for sequence classifications where long and varied-length sequences are to be compared. 

For example, a protein sequence of 500 amino acids long would require a vector of 10,000 

units, and sequences of different lengths would result to input vectors of different sizes. 

N-Gram Method. We have been using a n-gram hashing function (Wu, et al., 1992; Wu, 

1993) that extracts and counts the occurrences of n-gram patterns from a sequence string. 
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N-gram patterns, similar to k-tuple words used in the Fasta program (Pearson & Lipman, 

1988), consist ofn  consecutive residues and are extracted from sequence strings in a sliding 

window fashion. In the encoding, the original protein sequence string can be represented 

by different alphabet sets, including: set A, the 20-letter amino acids; set E, the six-letter 

exchange groups derived from the PAM (accepted point mutation) matrix; and set S, the 

three-letter structural groups (I, A, E for internal, ambivalent and external). 

Different n-gram encoding methods are named by a two-character code: the first character 

is a letter designating the alphabet set; the second character is a digit representing the size 

(length) of the n-gram. Figure 2 shows the n-gram encoding of an example sequence using 

s2 method (i.e., bi-grams of the structural groups). Note that the counts of the n-gram 

patterns are scaled to fall between 0 and 1 and used as input vectors for the neural network, 

with each unit of the vector representing an n-gram pattern. The size of the input vector 

(i.e., the number of input units) for each n-gram method is m n, where m is the size of the 

alphabet. In the example shown, the size of the input vector is 9 or 32 (Fig. 2). 

The n-gram method has several advantages: (1) it maps sequences of different lengths into 

input vectors of the same length; (2) it providescertain representation invariance with respect 
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Figure2. Then-gramsequenceencodingrnethod. Theencodinginvolvesthreesteps: (1) sequence interpretation, 

during which each sequence string is converted into strings of different alphabet sets; (2) n-gram extraction, when 

all different n-gram patterns are extracted from the sequence; and (3) pattern transformation, when the occurrence 

of each n-gram pattern is counted and converted into a real-valued input vector of the neural network. 
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to residue insertion and deletion; and (3) it is independent from the a priori recognition of 

certain specific patterns. The major drawback of the n-gram method is that the size of 

the input vector tends to be large. This indicates that the size of the weight matrix (i.e., 

the number of neural interconnections) would also be large because the weight matrix size 

equals to w, where w = input size x hidden size + hidden size x output size. This prohibits 

the use of even larger n-gram sizes, e.g., the trigrams of amino acids would require 203 or 

8000 input units. Furthermore, accepted statistical techniques and current trends in neural 

networks favor minimal architecture (with fewer neurons and interconnections) for its better 

generalization capability (Le Cun, et al., 1990). To address this problem, we have attempted 

different approaches to reduce the size of n-gram vectors. 

SVD (Singular Value Decomposition) Method. SVD, a new encoding method developed 

in this study, is used to reduce the size of n-gram vectors and to extract semantics from the n- 

gram patterns. The method was adopted from the Latent Semantic Indexing (LSI) analysis 

(Deerwester, et al., 1990) used in the field of information retrieval and information filtering. 

The LSI approach is to take advantage of implicit high-order structure in the association of 

terms with documents in order to improve the detection of relevant documents which may or 

may not contain actual query terms. The particular technique used is SVD, in which a large 

"term-by-document" matrix is decomposed into a set of k orthogonal factors from which 

the original matrix can be approximated by linear combination. In the present study, the 

term-by-document matrix is replaced by the "term-by-protein" matrix to represent n-gram 

patterns (terms) of different protein sequences. The reduced model (Fig. 3) can be shown 

by: 

X ~- Y = T S P '  (1) 

where X = the original term-by-protein matrix, of rank m (m < min(t, p)), Y = approx- 

imation of X, of rank k (k < m), T = matrix of left singular (s) vectors corresponding to 

k-largest s-values, P = matrix of right s-vectors corresponding to k-largest s-values, and 

S = diagonal matrix of k-largest s-values. 

Note that (a) both T and P have orthonormal columns, and (b) if X is used to represent 

the original term-by-protein matrix for training sequences, then P becomes the reduced 

matrix for the training sequences (Fig. 3a, also see example below). 

The representation of unknown sequences (Fig. 3b) is computed by "folding" them into 

the k-dimensional factor space of the training sequences, that is, the unknown sequences are 

projected onto the span of the right s-vectors of training sequences. The folding technique, 

which amounts to placing sequences at the centroid of their corresponding term points, can 

be expressed by: 

Pu = X~u TS-1  (2) 

where Pu = the reduced term-by-protein matrix of unknown sequences, Xu = the original 

term-by-protein matrix of unknown sequences, T = matrix of left s-vectors computed from 

Eq. (1) during training phase, S -1 = inverse of S, which reflects scaling by reciprocals of 

corresponding s-values. 

The following is an example that illustrates how SVD vectors are computed for a data 

set of 1000 training sequences and 500 prediction sequences using the a3 (trigram of amino 

acids) n-gram encoding. In this example, the original matrix is a 8000 x 1000 matrix 
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Figure 3. The singular value decomposition (SVD) of a "term-by-protein" matrix. (a) The original matrix (X) 

is approximated using the k-largest singular (s) values and their corresponding s-vectors (Eq. (1) in text). P is 

the matrix of the right s-vectors, and is the reduced matrix for training sequences, t and p, the numbers of rows 

and columns of X, are the number of original terms obtained from n-gram encoding, and the number of training 

sequences, respectively, k is chosen number of dimensions in the reduced model. The dimension of the (erm 

vector of a given sequence is reduced from t to k, as shown in shaded area. (b) The reduced matrix for prediction 

sequences (Pu) is computed using a "folding" technique (Eq. (2) in text). Pu is the number of unknown sequences 

in the prediction set. Again, the dimension of the term vector of an unknown sequence is reduced from t to k, as 
shown in shaded area. 

that represents 8000 (203) terms of 1000 training proteins. This large and sparse term-by- 

protein matrix is decomposed into singular triplets, i.e., the s-values and the corresponding 

left and right s-vectors (Fig. 3a). With k being the chosen number of dimensions in the 

reduced model, the right s-vectors corresponding to the k-largest s-values (matrix P)  are 

then used as input vectors for training neural networks. In the example, i fa  100-dimensional 

representation is used, the size of the input vector would be reduced from 8000 to 100 (i.e., 

from t to k, as shown in shaded areas of Fig. 3a). Similarly, a 8000 × 500 matrix would be 

used to represent the 8000 a3 n-gram terms of 500 prediction proteins. The term vectors of 

8000 dimensions are then reduced to 100 dimensions using the folding technique described 

in Eq. (2) (shown in shaded areas of Fig. 3b). 

The amount of dimension reduction, i.e., the choice of k, is critical to network perfor- 

mance. The value of k, determined heuristically in our study, should be large enough 

to fit all the real structure in the data, but small enough so that it does not attempt to fit 
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Figure 4. The input vectors derived from the SVD method for a 8000 x 894 "term-by-protein" matrix. The right 
singular vectors corresponding to the 20-largest singular values are plotted. 1-1, 1- 2, 21-1, and 21-2 represents 
the first and second sequence entries of superfamily 1, and the first and second sequence entries of superfamily 
21, respectively. 

unimportant details. A 100-dimensional representation appears to be optimal in the present 

study. 

As in the n-gram method, each component value of  the vector is scaled between 0 and 

1 before input to the neural network. Figure 4 plots the right s-vectors corresponding to 

the 20-largest s-values computed from a term-by-protein matrix. While the s-vectors of  

sequences within the same family are similar, the s-vectors of  different superfamilies (i.e., 

superfamilies 1 vs. 21) are very different. Therefore, as with the n-gram sequence encoding 

method, the SVD method also satisfies the basic coding assumption. 

Neural Network Architecture 

The neural networks used in this research are three-layered, feed-forward networks (Fig. 1) 

that employs back-propagation learning algorithm (Wu, et al., 1992). In the three-layered 

architecture, the input layer is used to represent sequence data, the hidden layer to cap- 

ture information in non-linear parameters, and the output layer to represent sequence 

classes. The size of  the input layer (i.e., number of  input units) is dictated by the se- 

quence encoding schema chosen. In the n-gram encoding method, the size is m n where 

m is the size of  the alphabet. In the SVD encoding method, the size is the number of  

dimensions (k) chosen in the reduced model. The output layer size is determined by the 

number of  classes represented in the network, with each output unit representing one se- 

quence class. The hidden size is determined heuristically, usually a number between input 
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Figure 5. The modular neural network architecture. A database module is used to train one or a few protein 

functional groups containing many superfamilies. Each module is a three-layered, feed-forward, back-propagation 

neural network. During the training phase, each module is trained separately. During the prediction phase, the 

unknown sequences are classified on all modules with classification scores combined. 

and output sizes. The networks are trained using weight matrices initialized with random 

weights ranging from -0 .3  to 0.3. Other network parameters included the learning fac- 

tor of 0.3, momentum term of 0.2, a constant bias term of -1 .0 ,  and error threshold of 

0.01. 

For full-scale system, a modular network architecture (Wu, 1993) that involves multiple 

independent neural networks, termed database modules, is used to embed the large PIR 

database (Fig. 5). During the training phase, each network module is trained separately 

using the sequences of known superfamilies (i.e., training patterns). During the prediction 

phase, the unknown sequences (prediction patterns) are classified on all modules with 

classification results combined. 

System Implementat ion  

Program Structure 

The system software has three components: a preprocessor to create from input sequence 

files the training and prediction patterns, a neural network program to classify input patterns, 

and a postprocessor to summarize classification results. The preprocessor has two programs, 

one for n-gram extraction, the other for SVD computation. The SVD program employs 

a single-vector Lanczos method (Berry, 1992) and is part of the SVDPACKC package 

(available from Netlib). All programs have been implemented on the Cray Y-MP8/864 

supercomputer of the Center for High Performance Computing of the University of Texas 

System. 
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Data Sets 

The present protein classification system is trained with sequences from the PIR database 

(Barker, et al., 1993) and classifies new protein sequences into superfamilies/families. The 

PIR database has three sections, PIR 1 for annotated and classified entries, PIR2 for annotated 

but not classified sequences, and PIR3 for unverified entries. In PIR1, sequence entries are 

organized into superfamilies, families, subfamilies, entries and subentries by assigning 

to each entry a set of numbers that uniquely specifies both its order (or placement) in 

the database and its relationship to other entries (Barker, et al., 1993.). The five-number 

classification distinguishes groups of proteins that are homologous over the majority of 

their lengths. A superfamily is a group of proteins that share sequence similarity due to 

common ancestry, and sequences within a superfamily have a less than 10 -6 probability of 

similarity by chance. The PIR2 database contains annotated entries that may or may not 

be assigned superfamily name or superfamily placement number. The PIR2 entries used in 

our data sets are the ones with superfamily assignment. 

Full-Scale System. A full-scale system has been implemented using PIR1 database, release 

36.0 (March 31, 1993). As summarized in Table 1, the system has thirteen network modules 

to partition different protein functional groups. All the annotated sequences (11,252 PIR1 

entries) are separated into a training set (8695 entries) and a prediction set (2557 entries) 

by using every third entries of superfamilies that have more than two entries for prediction. 

There are a total of 3071 superfamilies (i.e., superfamily placement numbers 1.0 to 3071.0). 

For superfamilies that have than 50 entries, we further used the placement numbers for 

families for second-level classification, which results to a total of 3311 protein classes 

(superfamilies/families). 

Other Data Sets. In addition to the full-scale system, three other data sets compiled 

from PIR1 and PIR2 databases are used to evaluate system performance and the new 

SVD encoding method (Table 2). All the additional data sets are implemented on single- 

module neural networks. The second data set (Table 2) is compiled from the fifty largest 

superfarnilies, whose sizes (i.e., number of entries) range from 471 to 25. The total of 3004 

PIR1 sequence entries is divided into disjoint training and prediction sets, with every third 

entry chosen as prediction pattern. The third data set consists of a training set of 3004 

PIR1 entries (from the 50 largest superfamilies) and a prediction set of 182 PIR2 entries of 

globin, the largest superfamily in PIR database. The last data set is used to develop a family 

classification system for the globin superfamily, which contains a total of 34 families. All 

471 PIR1 globin entries are used for training, and 182 PIR2 globin entries are used for 

prediction. 

System Evaluation 

Evaluation Mechanism 

The predictive accuracy is expressed with three terms: the total number of correct patterns 

(true positives), the total number of incorrect patterns (false positives), and the total number 

of unidentified patterns (false negatives). The sensitivity is the percentage of total correct 
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Table 1. Database modularization for the PIR database, release 36.0. 
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Superfamilies/familiesl 

Number of entries 
Database Protein (Begin-End) Total 

module functional groups SF SF SF + F (Train + pred) Total 

EO Electron transfer proteins, 

Oxidoreductases (1-173) 173 218 (760 + 257) 1017 

TR Transferases (174-390) 217 240 (626 + 179) 805 

HY Hydrolases (391-606) 216 226 (658 + 204) 862 

LI Lyases, Isomerases, and 

Ligases (607-782) 176 181 (540 + 171) 711 

PG Protease inhibitors, Growth 

factors, Hormones, and Toxins (783-985) 203 222 (784 + 271) 1055 

IH Immunoglobulin-related, 

Heme carrier, Chromosomal, 

and Ribosomal proteins (986-1158) 173 257 (1224 + 469) 1693 

FL Fibrous, Contractile system, 

Lipid-associated proteins, 

and Miscellaneous (1159-1334) 176 205 (681 + 236) 917 

PM Plant, Membrane, and 

Organelle proteins (1335-1510) 176 176 (385 + 101) 486 

BP Bacterial, Bacteriophage, 

Plasmid, and Yeast proteins (1511-1839) 329 329 (475 + 63) 538 

AD Animal DNA, and Large DNA 

viral proteins (1840-2255) 416 416 (915 + 236) 1151 

AR Animal RNA, and Plant 

viral proteins (2256--2537) 282 307 (1008 + 344) 1352 

PH Phage proteins (2538-2904) 367 367 (460 + 22) 482 

HP Hypothetical proteins (2905-3071) 167 167 (179 + 4) 183 

Total (1-3071) 3071 3311  (8695 + 2557) 11252 

1The Begin-End number shown in parenthesis is the superfamily (SF) placement number. The total 

number shown is for superfamily only (SF), or for both supeffamily and family (SF + F). 

Table 2. Data sets for neural network training and prediction. 

Training Prediction 
Number of 

Data set classes Database #Seq Database #Seq 

1. Full-Scale 3311 SF/F 1 PIR1 8695 PIR1 2557 

2. Largest 50 50 SF PIR1 2020 PIR1 984 

3. Largest 50/Globin 50 SF PIR1 3004 PIR2 182 

4. Globin 34 F PIR 1 471 PIR2 182 

1 The protein classes determined may be superfamilies (SF) or families (F). 

patterns, the specificity is 1 - - t h e  percentage  of  total incorrect  patterns. A sequence  entry 

is considered to be  accurately classified i f  its classification matches  the target value  (the 

known class number  o f  the entry) with a classification score above the threshold (i.e., the 

cu t -of fva lue) .  The  classif ication score ranges f rom 1.0 for perfect  match to 0.0 for no match.  

The  predic t ive  accuracy is measured  at two stringencies.  The  high str ingency selects the 
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first-fit (the superfamily/family with highest score) at a threshold 0.9. The low stringency 

condition for the full-scale system is the first five-fits (the superfamilies/families with five 

highest scores) with a threshold of 0.1. The low stringency condition for single-module 

systems is the first-fit with a threshold of 0.1. At the lower stringency condition, more 

classes would be identified, which results in a higher sensitivity (more true positive), but a 

lower specificity (more false positive). 

A detail analysis was performed for data set three by comparing the results of neural 

network method with the Blast (Altschul et al., 1990) and Fasta programs. The degrees 

of sequence identity of unknown sequences to training sequences were determined by the 

Fasta and Blast programs and the Fastdb program of the IG Suite (IntelliGenetics, Inc., 

Mountain View, CA). 

Performance of Full-Scale System 

The ael2 n-gram encoding method, the best among 25 encoding methods tested before 

(Wu, et al., 1992), was used in the full-scale system. The input vector of the ael2 n-gram 

is concatenated from vectors representing four separate n-grams, namely, al (monograms 

of amino acids), el (monograms of exchange groups), a2 (bigrams of amino acids), and 

e2 (bigrams of exchange groups). The vector has 462 units, which is the sum of the four 

vector sizes (i.e., 20 + 6 + 400 + 36). The neural network architecture for each individual 

module, thus, is 462 x 50 x n, where n is the number of protein classes in the module, 

which ranges from 167 to 416 (Table 1). 

The training of the thirteen networks took a total of about 10 CPU hours on the Cray. 

(The time has been reduced to less than two Cray CPU hours recently by using a new 

pattern selection strategy (Wu & Shivakumar, in press) to train back-propagation networks). 

Among the 8695 training patterns, 8374 (96.31%) are trained after 800 iterations. Majority 

of the remaining "untrainable patterns" belong to single-membered or double-membered 

superfamilies/families, as one would expect. The prediction of the 2557 entries on all 

thirteen networks took less than 2 CPU minutes on the Cray, which averaged to less than 

0.05 CPU seconds per sequence. At a threshold of 0.1, 2099 (82.09%) patterns are correctly 

classified as first-fit, and 83, 31, 37, and 19 patterns are correctly classified as second-fit, 

third-fit, fourth-fit, and fifth-fit. Thus, if we consider the top five fits (among a total of 3311 

possible classes) as correct classification, then the predictive accuracy of the full-scale 

system is 88.74% (Table 3, Data Set 1). However, the remaining 288 (11.26%) patterns 

are incorrectly classified (i.e., they are false positives). To make the "mega-classification" 

helpful, one can use a much higher threshold to reduce the number of false positives. 

At a threshold of 0.9, although only 1755 (68.63%) patterns are correctly classified, the 

incorrectly classified entries have reduced to 25 (0.98%). The remaining 30.39% entries are 

not classified at this threshold. Again, most of the entries failed to be classified (correctly 

predicted) by the neural nets are those that belong to single-membered or double-membered 

superfamilies. 

It was observed in previous study (Wu, 1993) that the superfamily size is inversely 

correlated with the misclassification rate. Indeed, when only the fifty largest superfamilies 

are used, more then 98% of the sequences are correctly classified as the first-fit at a threshold 

of 0.1; and close to 90% of the entries are classified with a classification score of more than 

0.9, with no false positives (Table 3, Data Set 2). 
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Table 3. The predictive accuracy of the protein classification system. 

Patterns Accuracy at 0.1 (%) Accuracy at 0.9 (%) 
Data Encoding Network trained 
set m e t h o d  configuration (%) Correct I Incorr Unid  Correct 2 Incorr Unid 

N-gram 462 x 50 x n 96.31 88.74 11.26 0 . 0 0  68.63 0.98 30.39 

N-gram 462 x 30 x 50 99.95 98.17 1.73 0 . 1 0  89.74 0.00 10.26 

N-gram 462 x 30 x 50 100.00 95.60 4.40 0 . 0 0  89.01 0.00 10.99 

SVD 100 x 30 x 50 99.97 96.70 2.75 0 . 5 5  90.66 0.00 9.34 

Combined 482 x 30 x 50 99.97 96.70 3.30 0 . 0 0  89.56 0.00 10.44 

Average 3 (SVD, N-gram) 97.80 2.20 0 . 0 0  93.96 0.00 6.04 

Average (SVD, combined) 99.45 0.55 0 . 0 0  94.51 0.00 5.49 

N-gram 462 x 30 x 34 99.79 94.94 3.93 1.12 81.46 0.00 18.5z[ 

SVD 100 x 30 x 34 100.00 96.63 3.37 0 . 0 0  82.02 0.00 17.98 

Combined 482 x 30 x 34 99.79 95.51 4.49 0 . 0 0  80.34 0,00 19.66 

Average (SVD, N-gram) 96.63 3.37 0 . 0 0  87.64 0.00 12.36 

Average (SVD, combined) 96.63 3.37 0 . 0 0  89.32 0.00 10.67 

1The number of correct patterns are measured at a cut-off classification score of 0.1, counting the first five-fits 

for the full-scale system (data set 1) and first-fit only for single-module systems (data sets 2--4). 

2The number of correct patterns are measured, counting first-fit only, at a threshold of 0.9 for n-gram, SVD, and 

combined results, and at a threshold of 0.5 for the average results. 

3The average results are obtained by averaging the classification scores of the designated encoding methods 

shown in parentheses. 

Performance of  SVD Method 

Several studies have been conducted to compare the n-gram and SVD sequence encoding 

methods. The SVD method was evaluated using many different n-gram vectors. Among 

more than ten n-gram vectors tested, a23e4 gave the best SVD result. The a23e4 n-gram 

vector concatenates a2 (bigram of amino acids), a3 (trigram of amino acids), and e4 (tetra- 

gram of exchange groups) vectors, and has a size of 9696 (i.e., 400 + 8000 + 1296). The 

SVD method is used to compute reduced models of 20 to 200 dimensions and decrease the 

size of the input vector from 9696 to 20-200. The 100-dimensional representation appears 

to be optimal, and is used for the results presented in Table 3. 

The comparativeresults  of the ae l2  n-gram encoding and the a23e4 SVD encoding 

show that, for both Data Sets 3 and 4, the predictive accuracy is improved with the SVD 

method, even though the sizes of the input vectors and the weight matrices are reduced. One 

can also combine the n-gram vector with the SVD vector to improve predictive accuracy. 

The method shown in Table 3 combines the ael2 n-gram vector with a 20-dimensional 

SVD vector of a23e4, and has an input vector size of 482 (i.e., 462 + 20). Since the 

classification results of these different methods are complementary, one can also average 

the classification scores from different methods. The average of the SVD method and 

combined method provides the best result of all (Table 3): not only the sensitivity of the 

prediction is increased with the average, the specificity is also improved. Similar results 

(i .e,  average is better than SVD alone, and SVD is better n-gram) are observed in many 

other data sets (not shown). Analysis of patterns correctly classified with the SVD method, 

but missed by the n-gram method, seems to indicate that SVD is particularly robust for 

fragmentary sequences. 
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The improved classification accuracy of the SVD method may result from the represen- 

tation of high-order structure (semantics) of the n-gram words (Deerwester, et al., 1990). 

It may also be attributed to additional sequence information embedded in the a3 and e4 

n-grams. It would be difficult to input the a3 and/or e4 n-gram vectors directly to the neural 

network without a reduction: it would be too large (with 8000 and/or 1296 input units), 

and the vector would be too sparse (too many zeros) for the neural network to be trained 

effectively. 

While the SVD encoding of training sequences requires a computationally intensive 

and iterafive processing, the folding of unknown sequences involves only simple matrix 

multiplications and runs very fast. Furthermore, the SVD computation time for unknown 

sequences is determined by the size of n-gram vectors (t in Fig. 3), and independent of 

the number of training sequences (p in Fig. 3). Thus, the speed of our classification 

method would not be constrained by the rapid growth of database even with the SVD 

preprocessing. 

Analysis of the Neural Network Results 

To make the neural network a useful tool, further studies were conducted to evaluate the 

weakness of the system. It has been shown (Wu, 1993) that most sequences misclassi- 

fled: by the neural networks are fragmentary sequences, sequences of small superfamilies 

and/or distantly related sequences. A detailed analysis was performed for the globin su- 

perfamily using data set three (Table 2), which has 3004 training sequences including 

471 globins and has 182 globin sequences for prediction. The neural network results (us- 

ing the average of SVD and combined methods, Table 3) were compared with Blast and 

Fasta using the same data set (i.e., 182 query sequences were searched against 3004 li- 

brary sequences). All three methods miss one pattern, and have a overall sensitivity of 

99.45%. 

Figure 6a plots the neural network classification scores of all 182 sequence patterns 

according to their degrees of sequence identity to globin training sequences. Sequence 

pattern 1 (S01815), the only pattern misclassified by the neural network, is a sequence 

fragment of 41 amino acids long and has 52% sequence identity to a single-member family 

of the globin superfamily. Pattern 2 (PN0117), the only pattern missed by b~th Blast and 

Fasta, is only 15 amino acids long and has a 68% identity to sequence in a large family. Note 

that if sequence similarity is high, then sequence as short as eight residues long (pattern 

3) can be correctly classified by the neural network. Also, full-length sequences can be 

classified correctly even if they share low sequence identities of less than 30% (patterns 

4 and 5), and less than 40% to single-member family (pattern 6). The neural network 

classification scores seem to correlate quite well with the Blast (Fig. 6b) and Fasta (not 

shown) scores. As expected, all give lower scores to shorter sequences and sequences of 

more distant relationship. The different results are mainly due to the family size. The 

neural network tends to give a higher score and better result when the sequence is in a 

large family (e.g., patterns 2 and 5, Fig. 6b), but worse result when the sequence belongs 

to a single-member family (e.g., pattern 1). The specificity (ability to distinguish true 

and false positives) of the neural network system is similar to that of the Blast and Fasta 

methods, when evaluated using a negative prediction set of non-globin sequences (not 

shown). 



190 c. wu  ET aL. 

(a) 
1 

0"9 1 0.8 

0.7 

0.6- 

0g- 

0.4 

0.3 

0.2 

0.1 

0 

_5 

• 6 • 

• • 

3 

2 

1 

10 20 30 40 50 60 70 80 90 100 

Sequence Identity (%) 

(b) 

0.9- • "  / s • 

0 .8 .  o 4 e ~ 6  o ~ s • •  
0.7. • 

7 w  0 6  • 

i 0.6. 
0.5- 

0.4. 

"~ 0.3. 

0.2. .3 

0.1. 

0 
0 

r -  

1 
' ' ' 1 • '  ' ' I . . . .  I ' ' ' ' 1 ' " ' ' 1 '  f ' ' l  . . . .  I ' ' ' '  

100 200 300 400 500 600 700 800 

Blast Score 

Figure 6. Analysis of neural network classification results for the globin superfamily. (a) Classification scores 

of 182 query (unknown) sequences (shown in dots) in relationship to their degrees of sequence identity to globin 

training sequences. The results of six sequence patterns (numbered in right upper comer of the respective dot) are 

discussed in the text. (b) Relationship of neural network and Blast scores. The same six patterns are numbered as 

in (a) for comparisons. 

D i s c u s s i o n  

This study extends our protein classification neural networks into a full-scale system. The 

system can classify unknown sequences into 3311 PIR superfamilies/families at a sensi- 

tivity of close to 90% and a speed of less than 0.05 Cray CPU second per sequence. The 

current speed of classification is about one to two orders of magnitude faster than other 

database search methods such as Fasta or Blast, and the rate gap will continue to widen. 

The overall classification accuracy of the neural network system, however, is slightly below 

that of Fasta or Blast, mainly due to sequences of small superfamilies. The continuing 
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accumulation of sequence entries available for training is expected to improve the sensi- 

tivity of the neural network system. Meanwhile, sequences from other protein databases, 

including the Swiss-Prot protein sequence database (Bairoch & Boeckmann, 1993) and 

Blocks database (Henikoff & Henikoff, 1991), are being used as additional training sets 

with good preliminary results. 

This paper also introduces SVD as a new sequence encoding method to compress long 

and sparse n-gram input vectors and capture semantics of n-gram words. The method has 

made it possible to adopt minimal network architecture for better generalization capability 

(Le Cun, et al., 1990). In our previous studies (Wu, 1993), the number of weights trained 

in the networks exceeds by one to two orders of magnitude the number of training samples. 

The SVD computation can reduce the size of the network (i.e., input vector and weight 

matrix) by tens and hundreds of fold, and indeed, has improved the classification accuracy 

of the network. The SVD method also applies to nucleic acid sequences with very good 

results (Wu & Shivakumar, in press). 

The major applications of the classification neural networks are rapid sequence annotation 

and automated family assignment. The full-scale PIR classification system can be used as 

a filter program for other database search methods to minimize the time required to find 

relatively close relationships. As with other search methods, the major task for superfamily 

identification is to distinguish true positives from false positives. With the present system, 

a close to 100% specificity can be achieved at a high threshold of 0.9, with a more than 50% 

sensitivity. Therefore, one can use the tool to screen a large number of unknown protein 

sequences and give true identifications to more than half of the query sequences quickly. 

The system can then be run at a lower threshold and classify another 30 to 40% unknown 

sequences into a reduced search space. The saving in search time will become increasingly 

significant due to the accelerating growth of the sequence databases. Unlike most other 

sequence comparison or database search methods in which search time depends strongly 

on database size, the neural network classification time is expected to remain low even if 

there is a 100 fold increase of sequence entries. 

The neural classification system can also be used to automate family assignment. An 

automated classification tool is especially important for the organization of database ac- 

cording to family relationships and for handling the influx of new data in a timely manner. 

Among all entries in the PIR database, only less than 20% of them are classified and placed 

in PIR1. The neural network system is currently being used by the PIR database for su- 

perfamily/family identification of the sequences in PIR2 and PIR3 (in collaboration with 

Winona Barker of NBRF-PIR). 

The neural network tool is generally applicable to any databases that are developed ac- 

cording to family relationships because the neural network employs a"supervised" learning 

algorithm. The designs of the neural system can be extended to classify other nucleic acid 

sequences. A ribosomal RNA classification system has been developed to classify query 

sequences into 109 phylogenetic classes with a 100% accuracy at a rate of less than 0.3 CPU 

second per sequence on a workstation (Wu & Shivakumar, in press). Preliminary studies 

have also been conducted to classify DNA sequences (containing both protein-encoding 

regions and intervening sequences) directly into protein superfamilies with satisfactory re- 

suits. It is, therefore, possible to develop a gene identification system that can classify 

indiscriminately sequenced DNA fragments. 

Presently, a distribution version of the neural network system has been developed and 

ported to several UNIX machines. The version, consisting of the prediction program and the 
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weight  files obtained from off-line training, can be used for speedy on-l ine sequence classi- 

fication. The system will  be  made available to the research communi ty  via an anonymous  

ftp (please contact  wu@jason.uthct .edu for details). 

Acknowledgments 

This  s tudy is supported in part by grant  number  R29 LM05524  from the Nat ional  Library of  

Medicine.  The  work is also supported by the Universi ty  Research and Development  Grant  

Program of  the Cray Research, Inc. Its contents are solely the responsibi l i ty of  the authors 

and do not  necessari ly represent  the official views of  the grant ing agencies. The authors 

wish to acknowledge the computer  system support  of  the Center  for High Performance 

Comput ing  of  the Univers i ty  of  Texas System. 

References 

Altschnl, S.E, Gish, W., Miller, W., Myers E.W., & Lipman, D.J. (1990). Basic local alignment search tool, 

Journal of Molecular Biology, 215:403-410. 

Bairoch, A., & Boeckmann, B. (1993). The Swiss-Prot protein sequence data bank, recent developments, Nucleic 

Acids Research, Database Issue, 21(13):3093-3096. 

Barker, W.C., George, D.G., Mewes, H.-W., Pfeiffer, F., & Tsugita, A. (1993). The PIR-international databases. 

Nucleic Acids Research, Database Issue, 21(13):3038-3092. 

Berry, M.W. (1992). Large-scale sparse singular value computations, International Journal of Supercomputer 

Applications, 6:13-49. 

Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Fredholm, H., Lautrup, B., & Peterson, S.B. (1990). A novel 

approach to prediction of the 3-dimensional structures of protein backbones by neural networks, FEBS Letters, 

261:43-46. 

Boswell, D.R., & Lesk, A.M. (1988). Sequence comparison and alignment: the measurement and interpretation of 

sequence similarity, in A.M. Lesk (Ed.), Computational Molecular Biology: Sources and Methods for Sequence 

Analysis. New York: Oxford University Press. 

Dayhoff, J. (1990). Neural Network Architectures, An Introduction. New York: Nostrand Reinhold. 

Deerwester, S., Dumais, S.T., Furnas, Landaur, T.K., & Harshman, R. (1990). Indexing by latent semantic analysis. 

Journal of American Society.for Information Science, 41:391-407. 

Demeler, B., & Zhou, G. (1991). Neural network optimization for E. coli promoter prediction. Nucleic Acids 

Research, 19:1593-1599. 

Doolittle, R.F. (1990). Searching through sequence databases, in R.E Doolittle (Ed.), Molecular Evolution: Com- 

puter Analysis of Proteins and Nucleic Acid Sequences, Methods in Enzymology, VoL 183, New York: Academic 
Press. 

Farber, R., Lapedes, A., & Sirotkin, K. (1992). Determination of eukaryotic protein coding regions using neural 

networks and information theory, Journal of Molecular Biology, 226:471-479. 

Ferran, E.A., Pflugfelder, B., & Ferrara, P. (1994). Self-organized neural maps of human protein sequences. Protein 

Science, 3:507-521. 

Gribskov, M., & Devereux, J. (Eds.) (1991). Sequence Analysis Primer. New York: Stockton Press. 

Harris, N., Hunter, L., & States, D. (1992). Megaclassification: discovering motifs in massive datastreams. 

Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA: AAAI Press. 

van Heel, M. (1991). A new family of powerful multivariant statistical sequence analysis techniques. Journal of 

Molecular Biology, 220:877-887. 

von Heijne, G. (1991). Computer analysis of DNA and protein sequences. European Journal of Biochemistry, 

199:253-256. 

Henikoff, S., & Henikoff, J.G. (I 991). Automated assembly of protein blocks for database searching. Nucleic Acid 

Research, 19:6565-6572. 



NEURAL NETWORK CLASSIFICATION 193 

Hirst, J.D., & Sternberg, M.J.E. (1992). Prediction of structural and functional features of protein and nucleic acid 

sequences by artificial neural networks. Biochemistry, 31:7211-7218. 

Holley, L.H., & Karplus, M. (1989). Protein secondary structure prediction with a neural network, Proceedings 

of the National Academy of Science, USA, 86:152-156. 

Horton, P.B., & Kanehisa, M. (1992). An assessment of neural network and statistical approaches for prediction 

of E. coli promoter sites, Nucleic Acid Research, 20:4331--4338. 

Kneller, D.G., Cohen, EE., & Langridge, R. (1990). Improvements in protein secondary structure prediction by 

an enhanced neural network, Journal of Molecular Biology, 214:171-182. 

Le Cun, Y., Denker, J., & Solla, S. (1990). Optimal brain damage. In Advances in Neural Information Processing 

Syste~ 2. San Mateo, CA: Morgan Kaufman. 

O'Neill, M.C. (1992). Escherichia coli promoters: neural networks develop distinct descriptions in learning to 

search for promoters of different spacing classes. Nucleic Acid Research, 20:3471-3477. 

Pearson, W.R., & Lipman, DJ. (1988). Improved tools for biological sequence comparisons, Proceedings of the 

National Academy of Science, USA, 85:2444-2448. 

Qian, N., & Sejnowski, T.L (1988). Predicting the secondary structure of globular proteins using neural network 

models, Journal of Molecular Biology, 202:865-884. 

Rumelhart, D.E., & McClelland, J.L. (Eds.) (1986). Parallel Distributed Processing: Explorations in the Mi- 

crostructure of Cognition, Volume 1: Foundations. Cambridge, MA: MIT Press. 

Stormo, G.D., Schneider, T.D., Gold, L., & Ehrenfeucht, A. (1982). Use of the 'Perceptron' algorithm to distinguish 

translation initiation sites in E. coli. Nucleic Acids Research, 10:2997-3011. 

Uberbacher, E.C., & Mural, R.J. (1991). Locating protein-coding regions in human DNA sequence s by a multiple 

sensor-neural network approach, Proceedings of the National Academy of Science, USA, 88:11261-11265. 

Webb, A.R., & Lowe, D. (1990). The optimized internal representation of multilayered classifier networks performs 

nonlinear discriminant analysis, Neural Networks, 3:367-375. 

Wu, C.H. (1993). Classification neural networks for rapid sequence annotation and automated database organiza- 

tion, Computers & Chemistry, 17:219-227. 

Wu, C.H., Whitson,G., McLarty, J., Ermongkonchai, A., & Chang, T. (1992). Protein classification artificial neural 

system, Protein Science, 1:667-677. 

Wu, C.H., & Shivakumar, S. (in press). Back-propagation and counter-propagation neural networks for phyloge- 

netic classification of ribosomal RNA sequences, Nucleic Acids Research. 

Received October 12, 1993 

Accepted July 27, 1994 

Final Manuscript August 18, 1994 


