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Abstract —Neural networks used as content-addressable memories show

unequaled retrieval and speed capabilities in problems srreh as vision and

pattern recognition. We propose a new implementation of a VLSI fully

interconnected neural network with only two binary memory points per

synapse. The small area of single synaptic cells allows implementation of

neural networks with hundreds of neurons. Classical learning algorithms

like the Hebb’s rule show a poor storage capacity, especially in VLSI

neural networks where the range of the synapse weights is limited by the

number of memory points contained in each connectiorq we propose a new

algorithm for programming a Hopfield neuraf network as a high-storage

content-addressable memory. The storage capacity obtained with this

algorithm is very promising for pattern recognition applications.

I. INTRODUCTION

A
RTIFICIAL neural networks have been studied for

several years. These studies have sought to achieve

the fabrication of machines that share some of the abilities

of the human brain. In 1943, MacCullogh and Pitts [1]

introduced a new mathematical model of the brain’s struc-

ture. Many researchers tried to use this model in order to

build machines that could learn from experience.
The new concept has been studied from both a theoreti-

cal and an experimental point of view. One of the best

known achievements was the perception [2]. This multi-

stage learning machine showed some interesting features,

but Minsky and Papert pointed out some drawbacks and

limitations [3]. At the same time, new interest in the study

of artificial intelligence trapped many researchers as well

as available funds; hence, the study of artificial neural net

models was almost forsaken. In our opinion, this was

foreseeable. Although artificial intelligence seemed to offer

very promising short-term applications, the lack of simula-

tion tools and appropriate mathematical background in
the field of neural networks appeared to be a major

obstacle for further developments.

When, in 1982, Hopfield proposed his new simplified

model of a biological neural network [4], computer algo-

Manuscript received September 23, 1988; revised January 12, 1989, M.
Verleysen and B. Sirletti were supported by IRSIA, A, M.
Vandemeulebroecke was supported by FNRS.

The authors are with the Laboratory of Microelectronics, Universit6
Catholique de Louvain, Louvain-la-Neuve, Belgium,

IEEE Log Number 8927704.

rithms and nonlinear systems mathematics were ready to

find interesting applications. Hopfield’s model of a neural

network consists of a massive parallel array of simple

processing elements (neurons) connected through a cou-

pling network that allows each neuron to be connected to

the others through a set of connections called synapses.

The information contained in the neural network is stored

in the actual connection weights, and thus, it is distributed

within the whole system. Every single neuron computes a

weighted sum of the values of the other neurons, including

sign discriminations through the synapses [5]. Hence,

Hopfield’s model is fully asynchronous: the system is set

first to its initial state by turning appropriate neurons on

or off and it is then left free until it reaches a stable

state [4].

II. ADVANTAGESOFANANALOGVLSI

IMPLEMENTATIONFORNEURALNETWORKS

In this section, we will compare the strengths and weak-

nesses of several realizations of neural networks: digital as

well as analog VLSI implementations are contrasted to

point out some of the advantages of analog VLSI circuits

for synthetic neural networks.

A. Continuous Synaptic Weights

First, we will suppose that each synaptic weight can take

any value between two predefine bounds. Several solu-

tions have been proposed to realize such networks: special-

ized hardware or software to interface with conventional

computers is available (HNC, Neural Ware, Neuronics,
etc. [6]). Even though this is very attractive for simulation

and experimentation tasks, the sequential algorithms pro-

grammed on classical Von Neumann machines completely

ruin the speed properties of neural networks.

Dedicated processors, both analog and digital, also exist.

In analog solutions, synaptic weights can be stored on a

floating-gate structure, but slow charge variation on these

capacitors represents a major drawback. In digital solu-

tions, many bits are necessary to keep the accuracy needed

for synaptic coefficients; the area occupied by synapses
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and neurons rapidly becomes too large to realize neural

networks with a great number of neurons.

B. Discrete Synaptic Weights

We now examine the case of a neural network in which

the synaptic weights can take only a restricted number of

values. Although this restriction limits the performances of

neural networks, it allows the realization of much larger

networks, which compensates for other drawbacks. Fur-

thermore, at the end of this paper, we will show that it is

possible to find learning rules that are well adapted to this

kind of circuit with almost the same properties as if the

synaptic weights had been continuous. We will suppose

that each synaptic weight can take only three different

values: +1, O, and – 1.

One of the advantages of digital realizations of neural

networks stems from well-established state-of-the-art digi-

tal VLSI design tools. A digital VLSI chip can be designed

with available CAD tools; standard cells and libraries can

be used, and digital chips are tolerant to parameter disper-

sion and noise. However, as mentioned above, a fully

digital neural network must be synchronous in practice.

Moreover, synapses and neurons occupy a large chip area

due to the arithmetic processors. Finally, a large amount of

memory is necessary to store the weights of synapses as

well as neuron values with an additional area penalty.

The asynchronism of natural neural networks can be

kept in analog neural networks. For the same functional-

isty, basic cells (neurons and synapses) are much smaller

than those of digital neural networks. In Table I, we show

the approximate synapse density that has been achieved

for some recent VLSI realizations (the synapse density is

defined as the number of synapses per square millimeter).

Although it is very difficult to compare realizations for

connection processes that can differ substantially, one may

conclude from this nonexhaustive table that analog cells

are indeed smaller than their digital counterparts. More-

over, one of the unique features of neural nets— they are

fault-tolerant— is lost to some extent because digital im-

plementations consume a lot of area for an accuracy which

is not always needed.

It seems obvious that the smaller area of analog realiza-

tions is an important advantage for the implementation of

large neural networks. To realize large digital networks,

one solution, however, could be to replace spatial complex-

ity by temporal complexity (clocks, phases, multiplexors,

etc.); but the introduction of synchronism and multiplex-

ing in a neural network has a severe drawback on the

computation speed. In the next section, we will examine

analog asynchronous networks, which are more appropri-

ate and much faster than conventional computers for

solving, for instance, optimization and vision problems.

Since only three different synaptic weights are required for

each synapse, digital memory points will be preferred to

floating-gate structures; the problems encountered in ana-

log memories are consequently suppressed, and the area

loss is not very significant. Another interesting approach

TABLE I

SYNAPSEDENSITY

Mumiy [7] 12.5 dsgml (ptdse-ssrtarn) (2II meta12)
Blayo [8] digital (2AOletaU)
WeinfeId [9] ;.:7 digital (2)Imetai2)
Graf [10] 67 analog (2Wmeta12)
Verleysen[11] 33 analog (3y metal1)

could be the use of digital EEPROMS, but because such

circuits need dedicated technological processes, they will

not be studied in this paper.

III. HOPFIELD’SNETWORK

A. Description of the Network

Neural networks can solve a wide variety of problems;

they can be used in vision (i.e., pattern recognition), in

optimization (i.e., traveling salesman problem), in CAD

(placing, routing), and in any other problem where percep-

tion is more important than a huge amount of accurate

computation [12]. For pattern recognition and associative

memories, an excellent trade-off between silicon area and

computation efficiency is offered by Hopfield’s model.

Hopfield’s network consists of an array of fully inter-

connected synapses and neurons connected to each other

through programmable connections (Fig. 1). The output of

each neuron is fed back into the network; each synapse

computes a new output value according to the output of

the control neuron and the connection weights stored in

the synapses. The outputs of all the synapses connected to

the same neuron input are then summed; this sum deter-

mines the neuron activity and fixes the neuron output

through its nonlinear transfer function.

We define:

~ value of neuron i, i.e., its state after the nonlinear

activation function of the neuron has taken place,

xi neuron activity, i.e., the input of the neuron prior to

the activation function,

~, synaptic weight, i.e., the strength of the connection

between neurons i and j,

N number of neurons in the network, and

I, input of neuron i.

Further, let us assume

The equations of the network are then

with

y=qx,)

where F is the activation function.



564

I II I

I II I

I I II I

i II I

.-— — —

-—— ——1
Iout ~ Iout ‘2 I out ~ I ~“t

N

v neuron o synapse

Fig. 1. Hopfield’s network.

If the connection weights ~j are adequately chosen by

means of some appropriate “learning rule,” the conver-

gence process of the network can be predicted. This pro-

cess can be described as follows: the values of the neurons

are first set to an initial state; neuron activities are then

computed via the connection network; and the new neuron

values are determined by the activation function. This

process is repeated until a stable state is reached.

B. Learning Rules for Hopfield’s Network

Neural networks often are used in associative memories.

With adequate connection weights, the final neuron values

can be associated with initial input data. Of course, the

capacity of the network, i.e., the number of patterns that

can be memorized into the network as final neuron values

after convergence has taken place, is limited and depends

on the number of neurons in the network and on the

learning rule used. For example, consider the well-known

Hebb’s learning rule. It can be formulated by

where 1s k s p, p is the number of patterns to memorize,

~~ is the bit i of pattern k to memorize, and ~~ = 1 or

~~ = – 1. This learning rule is very simple: each weight ?J

is increased if bits i and j are equal in pattern k; it N

decreased in the opposite case. It has been shown that the

capacity of the network is limited to about O.15N arbitrary

patterns [4].

Other learning rules have been proposed, including the

projection rule [13], which seems more adapted to corre-

lated patterns; the storage capacity is increased, but a

higher accuracy is needed for the coefficients [14].
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Fig. 2, P-and n-type current sources.

IV. THE VLSI ANALOGNEURALNETWORK

A. Drawbacks of Conventional Implementations

Our goal was to realize an analog neural network with as

much storage capacity as possible. Because the capacity

increases with the number of neurons, the dimension of

the network is the most important factor; since the main

part of the circuit consists of synapses, we have tried to

reduce their complexity and their area as much as possible.

In digital implementations, the size of the circuit, i.e., the

number of neurons in the network, has no influence on the

synapse structure: the same design can be used in a

ten-neuron network as well as in a 500-neuron network.

We will see this is not true in analog implementations.

The basic idea underlying the proposed circuit was that

each synapse should be able to source or sink current to

the input line of the neuron to which it is connected,

depending on the value ~j~, i.e., the product of the

synapse strength times the output of the neuron to which

the synapse is connected. One realization, represented in

Fig. 2, was proposed by Graf [10].

The drawback of this architecture is that one can never

assume the excitatory and inhibitory currents to be exactly

the same; even with adjustments of the size of the p- and

n-type transistors, there is always a risk of mismatching

between the sourced and sunk currents because of the

technological mobility differences between the two types

of transistors. Since the function of each neuron is to

detect the sign of the weighted sum of the other neurons

values, the mismatch between sourced and sunk currents is

increased with larger numbers of synapses. In order to

make a neuron able to discriminate the sign of its input

even when the difference between excitatory and in-

hibitory currents equals only a single synaptic current, the

latter must exceed n times the difference between the p-

and n-t ype current sources; this considerably limits the

size of the network that can be implemented with the

principle shown in Fig. 2.

B. New Circuit Design

The problem can be

transistors to sink and

the neuron. To realize

avoided by using the same type of

source current on the input line of

this, we used two distinct lines to
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sum the currents: one for excitatory currents and the other

for inhibitory currents.

Each synapse is a programmable current source control-

ling a differential pair (see Fig. 3). Three connection values

are allowed in each synapse. If mend =1, current is deliv-

ered to one of the 1wo lines with the sign of the connection

determined by the product of mem 2 and the output of the

neuron to which the synapse is connected. If meml = O, no

connection exists between neurons i and j, and no current

flows to either excitatory or to inhibitory lines.

Depending on the state of the XORfunction, the current

may be sourced either on the line i + or on the line i –. In

the neuron, the comparison of the two total currents on

the lines i + and i – must be achieved. This is done by

means of the current reflector shown in Fig. 4. The cur-

rents on the lines are converted into voltages across tran-

sistors T3 and T4; these voltages themselves are compared

in the differential input reflector formed by transistors

T5– T9. Because of the two-stage architecture of the neu-

ron, the gain may be very large, and the output (out) is

either 5 V if the current in neuron i – is greater than the

one in neuron i +, or O V in the opposite case.

With increasing numbers of synapses connected to the

same neuron, voltage drops V + and V – across T3 and

T4 tend to increase. Because P’+ and V – are in fact the

drain voltages of transistors T1 and T2 (see Fig. 3),

saturation of the synaptic transistors must be ayoided. A

feedback loop was introduced to keep the voltage V* (see

Fig. 5) fixed to V,ef.Because no high gain is needed for the

feedback loop, the amplifier shown in Fig. 5 can be very

simple (even a single transistor can be used).
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Fig. 6. Neuron output.

C. Experimental Results

Fig. 6 shows the output characteristic of one neuron.

For this simulation, 512 active synapses are connected to

the neuron. The X-axis represents the number of synapses

(p) connected to the positive input line of the neuron; the
others (512-p ) are connected to the negative input line.

The diagram shows that the output of the neuron is always

saturated when there is a sufficient difference between the

two inputs; this voltage can thus be directly fed back to

the synapse inputs through the connectiofi network.

With a smaller difference between the two inputs, the

neuron output voltage varies between O and 5 V. This

situation is incompatible with the synapse structure that

needs a digital input. A buffer providing a binary output

has therefore been inserted between the neuron output and

the synapse inputs.

In order to determine the buffer characteristics and the

maximum number of synapses allowed in the network, we

measured the output voltage of the neuron (before the

buffer) with an increasing number of active connected

synapses. Fig. 7(a) and (b) shows the experimental results

without and with the feedback loop, respectively, described

previously (for this experience, a single-transistor feedback

loop was used). The X-axis represents the number N of

synapses connected to the neuron, and the Y-axis repre-

sents the neuron output voltage. This analysis has been
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made under worst-case conditions (i.e., when N/2 – 1

synapses are excitatory and N/2 + 1 inhibitory (i – > i +),

or the opposite (i + > z – )). We see in Fig. 7 that the

dynamic output range decreases with the increasing num-

ber of synapses. This is due to the common-mode voltage

of the neuron amplifier: if the two input currents increase

simultaneously, the amplifier gain will decrease, and the

output will no longer be saturated. It seems obvious that

the difference between the two curves must be large enough

to correctly turn the buffer on or off (a voltage difference

of 1 V is acceptable). With the feedback loop, a larger

number of synapses (more than 500) is obviously possible.

In our circuit, the single synaptic current equals 10 pA;

to achieve this, the synaptic transistor connected to meml

is long (W/L = 0.1), and the one connected to mem2 is

minimal (W/L = 1.5); such a current is acceptable in a

neural network with a restricted number of neurons, as

illustrated below. In larger networks, it has to be reduced

for power density reasons. For example, the power dissi-

pated by a 128-neuron network with synaptic currents

equal to 1 pA will be about 100 mW; such a circuit can be

made in a 64-mm2 chip with a CMOS 2-pm double-metal

technology (power density is about 1 mW/mm2).

Speed properties are one of the most interesting features

of neural networks. Experience showed that a change in a

synapse value introduces a change in the correspondent

neuron value and is fed back in the synapse in about 30 ns.

Practically, it means that it takes about 120–150 ns for a

128-neuron network to converge to a stable state.

In order to verify the performances of synaptic currents

and neuron response time, a small test chip was realized,

which contained 14 neurons and 196 synapses. In order to

make the circuit fully programmable and to exploit its

learning capability, two memory points were embedded in

each synapse. Figs. 8, 9, and 10, respectively, show a

micrograph of a synapse, a neuron, and the complete chip.
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In this part of this paper, we will consider an algorithm

that allows programming of the circuit as a content-

addressable memory. Since only three different connection

weights are allowed (O, 1, and – 1), the algorithm is

adapted to this restriction.

V. A LEARNING ALGORITHM FOR

CONTENT-ADDRESSABLEMEMORIES

Many learning rules have been reported in the literature

[4], [13]. They all have respective advantages and draw-

backs, but few seem really suited for VLSI circuits. Indeed,

in such realizations, the number of possible connection

values is limited by the number of memory points con-

tained in each synapse: if one synapse contains two mem-

ory points, only three or four connection values will be

permitted (for example, – 1, 0, and 1). Synaptic coeffi-

cients computed by a classical learning algorithm like the

Hebb’s rule have a larger dynamic range (for example, if k

patterns are stored in an N-neuron network using Hebb’s

rule, each connection can take as much as 2 k + 1 different

values). To adapt these algorithms to VLSI circuits with

2-bit connections, the coefficients are simply truncated.

This causes an important decrease in the storage capacity

of the network.

The object of the second part of this paper is to describe

a new learning rule that allows a good storage capacity of

patterns with only three different connection weights. To

achieve this goal, the restriction regarding the number of

connection weights was included in the algorithm, rather

than truncating the values after computation. It is impor-

tant to note that the number of different connection values

(in this case, three) does not rely on the number of

recorded patterns. (This is not true for the Hebb’s rule,

which requires 2k + 1 possible values per synapse.)

We propose a new way to compute the connection

strengths using a linear algebra optimization method

(known as the simplex method) in order to maximize the

stability of the recorded patterns. Connections between

neurons in HopfieM’s model are therefore represented by a

(n x n) matrix in which element ~, is the value of the

connection between neuron i and neuron j (our algorithm

allows ~, to be different from ~i). If we make ~. the

Boolean state of the ith neuron and @ the threshold value,

the dynamic behavior of the network can be described by

The network reaches a stable state when

In order to program stable states into the network and

appropriate connection strengths, the following procedure

is used. Let us suppose we want to store k n-bit patterns in

a n-neuron Hopfield network and consider a single col-

umn (number one for instance) to illustrate the algorithm.

0/0

. . . . . . .

50 . . . .

0
1

01234567

Hamming distance

e conv ok % ❑ conv. falae % ● no converg %

Fig. 11. Hebb’s rule.

Let us call 1) ~ i the value of the ith neuron

8910

from the ,jth

pattern to me”rnorize (1s is n, 1s js k, KJ = 1or ~~ =

– 1); 2) T,l the value of the connection between neurons r

and 1 (1 < r < n); and 3)Sl~ = XTrlVr~the input of the first

neuron when the network outputs correspond to the train-

ing pattern k.

Assume that each neuron acts as a Boolean threshold

function whose output is 1 in the case of a positive input

and – 1 in the other cases (@ thus is set to O). The

problem is to choose the set T,l in order to maximize the

difference between Sl~ and the threshold of the neuron. If

the sign of Sl~ is forced to be the same as the one of Vl~,

we obtain the highest possible stability for bit 1 of pattern

k. To ensure the right sign to Sl~, the quantity to maximize

is actually Zl~ = Sl~Vl~. This has to be done simultane-

ously for all values of k. The equation to solve by the

simplex method is then

maximize M where M = min ( Zl~ ) for all values of k.

To avoid unbounded solutions (M ~ co), cl is bounded

by the inequalities:

–l<ql<l.’

Practical algorithms to solve such simplex problems are

described in the literature [15].

The linear algebra theory assumes that at least n – k

coefficients will take the maximum values – 1 or +1. In

addition, experience showed that statistically all the other

coefficient values were near – 1, 0, or +1. Hence, this

learning rule is well suited for such VLSI implementation

as the one considered in the first part. Simulations showed

that the results obtained with synaptic weights restricted

only to – 1, 0, and + 1 are practically the same as with

continuous values.

Let us now compare our results with those of the Hebb’s

rule. Experiments with 12-bit patterns were carried out in

order to compare the efficiency of both rules to discrimi-

nate several patterns. Three target patterns were taught to

the network using both Hebb’s rule and the new rule

respectively. The network was then run with the 212 possi-

ble different input patterns. Finally, the output of the
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