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( )ABSTRACT: Artificial neural networks ANN recently gained attention as a fast and

flexible vehicle to microwave modeling and design. Fast neural models trained from

measured�����simulated microwave data can be used during microwave design to provide

instant answers to the task they have learned. We review two important aspects of

neural-network-based microwave modeling, namely, model development issues and nonlin-

ear modeling. A systematic description of key issues in neural modeling approach such as

data generation, range and distribution of samples in model input parameter space, data

scaling, etc., is presented. Techniques that pave the way for automation of neural model

development could be of immense interest to microwave engineers, whose knowledge about

ANN is limited. As such, recent techniques that could lead to automatic neural model

development, e.g., adaptive controller and adaptive sampling, are discussed. Neural model-

ing of nonlinear device�����circuit characteristics has emerged as an important research area.

An overview of nonlinear techniques including small�����large signal neural modeling of
( )transistors and dynamic recurrent neural network RNN modeling of circuits is presented.

Practical microwave examples are used to illustrate the reviewed techniques. � 2001 John

Wiley & Sons, Inc. Int J RF and Microwave CAE 11: 4�21, 2001.

Keywords: neural networks; microwave; model development issues; Huber quasi-Newton;

nonlinear modeling

INTRODUCTION

In the recent years, a computer-aided design
Ž .CAD approach based on neural networks has
been introduced for microwave modeling, simula-
tion, and optimization. Fast, accurate, and reli-
able neural network models can be developed
from measured�simulated microwave data. Once
developed, these neural models can be used in
place of computationally intensive physics�EM
models of active�passive devices to speed up mi-

� �crowave design 1, 2 . Neural network techniques

Correspondence to: Q. J. Zhang; e-mail: qjz@doe.carle
ton.ca.

have been used to model a wide variety of mi-
crowave devices�circuits such as transmission line

� � � � � �components 3�16 , bends 17, 18 , vias 19�23 ,
� �CPW components 22, 24, 25 , spiral inductors

� � � � �26, 27 , FET 1, 3, 4, 9, 11, 15, 28�38 , HBT 30,
� � � � �39, 40 , HEMT 36, 41, 42 , waveguides 22, 43 ,

� � � �laser diodes 44 , filters 16, 24, 30, 45�51 , ampli-
� � � �fiers 11, 29, 31, 35, 37, 52�54 , mixers 54 , anten-
� � � �nas 25, 55�66 , and embedded resistors 51 .

Neural networks have also been used in object
� � � �recognition 64, 67, 68 , wave propagation 69, 70 ,

� �impedance matching 71�73 , electronic packag-
� � � �ing 10 , inverse modeling 33, 43, 68, 74�76 ,

�circuit design and optimization 7, 8, 10, 11, 14,
�16, 18, 24, 29, 31, 35, 45, 47�49, 52, 72, 77 ,

� 2001 John Wiley & Sons, Inc.
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Neural Networks for Microwa�e Modeling 5

� � � �synthesis 16, 52, 77 , and yield prediction 33, 38 .

Neural models are much faster than original de-
� �tailed physics�EM models 1, 35 , more accurate

� �than polynomial and empirical models 78 , allow
� �more dimensions than table lookup models 79 ,

and are easier to develop when a new device�
� �technology is introduced 7 .

The process of neural model development is

not trivial and involves many critical issues such
as data generation, scaling, neural network train-

� �ing, etc. 1 . As neural network techniques are

relatively new to the microwave community, it is
often not easy for the microwave engineers to

make decisions regarding these issues. For exam-

ple, the range and the distribution of training
data in the model input parameter space where

training data needs to be generated, methods of

input�output scaling to be performed, technique
for neural network weights initialization to be

employed, etc., are not obvious. Some of these

issues are either briefly discussed or implied in
� �the existing literature 27, 50, 80 , while others are

not. In this work, we present a detailed descrip-

tion of the key and fundamental issues in mi-
crowave neural modeling.

To begin with, a neural network does not know

any information about the microwave device�cir-

cuit problem. In order to represent the device�
circuit behavior, the neural network has to be

trained with the corresponding data. As such,

neural network training is the most crucial step in
model development. One of the frequently en-

countered problems is the presence of measure-

ment�simulation errors in the microwave data. A
novel training algorithm known as the Huber

Ž .quasi-Newton HQN has been recently proposed
� �30, 81 . The HQN training algorithm is robust
against small�large measurement�simulation er-

rors in training data and is capable of producing
reliable neural network models in the presence

of such errors. We describe the HQN algorithm
followed by an illustration through a MESFET
example.

There are other critical issues involved in de-
veloping neural models for practical and com-

plicated microwave problems. For example, the
Žstructure of the model i.e., the number of hidden

.layer neurons cannot be deterministically deter-
� �mined 76 . The problems of overlearning and

underlearning have to be dealt with. It is not easy

to determine or predict the number of data sam-

ples needed to develop a reasonably accurate
model. These problems led to examination of

techniques that could lead to automation of neu-

ral model development. Recent techniques dis-
cussed in this work include the multilayer per-

Ž . � �ceptron neural network MLPNN process 27 ,
� �adaptive controller 30 , and neural network train-

� �ing-driven adaptive sampling algorithm 9 .
Neural modeling of nonlinear devices�circuits

and their dynamic behaviors is one of the most
important areas of microwave CAD. First, let us
consider transistor modeling. In general, existing
approaches for transistor modeling are based on

� �lumped equivalent circuits, e.g., 82�85 . The
equivalent circuit approach involves determina-
tion of an equivalent circuit topology and formu-
lation of the circuit elements. Such an approach
not only requires experience but also a difficult
trial-and-error process. As a result of rapid
changes in semiconductor technology, develop-
ment of models to represent the new transistor
behaviors has become a continuous activity. Re-
cently, researchers started investigating neural

�network approaches to model transistor DC 1, 3,
� � � �15, 32 , small-signal 4, 39 , and large-signal 29,

�35, 41, 42, 53 behaviors. Neural network transis-
tor models can be developed through a computer-
ized training process, and the models for a new
semiconductor device can be developed even if
the device theory�equations are unavailable. We
review various existing transistor modeling ap-
proaches in this study. Second, consider modeling
of dynamic characteristics of nonlinear circuits.
Conventional neural network structures, e.g., an
MLP, are not suitable for modeling the dynamic
characteristics. We review a recent work in this

� �direction 54 that advocates the use of recurrent
� �neural networks 76 for dynamic modeling.

In the following section, the problem of mi-
crowave neural network modeling is defined. Key
issues in neural model development are described
in the third section. Techniques that could lead to
automation of neural model development are
presented in the fourth section. In the fifth sec-
tion, neural network modeling of nonlinear de-
vices and dynamic behaviors of nonlinear circuits
is described. The final section contains the con-
clusions. Several illustration examples are pre-
sented throughout the work.

MICROWAVE NEURAL MODELING:
PROBLEM STATEMENT

Let x represent an N vector containing physi-x

cal�geometrical parameters of a microwave de-
vice�circuit, e.g., gate length and gate width of an



De�abhaktuni et al.6

FET or width and spacing of transmission lines.
Let y represent an N vector containing the re-y

sponses of the device�circuit under considera-
tion, e.g., drain current of an FET or mutual
inductance between transmission lines. The phys-
ics�EM relationship between y and x can be
represented as

Ž . Ž .y � y x . 1

This relation can be highly nonlinear and mul-
tidimensional. The theoretical model for this

Žrelationship may not be available e.g., a new
.semiconductor device , or theory may be too com-

plicated to implement, or the theoretical model
may be computationally too intensive for online

�microwave design and repetitive optimization e.g.,
Ž .three-dimensional 3D full-wave EM analysis in-

�side a Monte Carlo statistical design loop . We
aim to develop a fast and accurate neural model
by teaching�training a neural network to learn
the microwave problem through a set of mea-
sured�simulated sample pairs called training data
�Ž . 4x , d , p � T , where d represents the mea-p p R p

sured�simulated output y for the sample input
x , and T represents the index set of trainingp R

data. Let the neural network model be defined as

Ž . Ž .y � y x, w , 2˜ ˜

where w represents the parameters inside the
neural network also called the weight vector. For
training purpose, we define an error function
Ž .E w as

q
Ž . Ž . Ž .E w � e w , 3Ž .Ý p

p�TR

Ž .where q represents the qth norm and e w is thep

error due to pth sample given by

1�qNy1 q
Ž . Ž . Ž .e w � y x , w � d , 4˜Ýp k p pk

q k�1

Ž .where d is the k th element of d and y x , w˜pk p k p

is the k th output of the neural network for input
sample x . The objective of neural network train-p

� Ž .ing is to find w such that E w is minimized. The
definition of w and the approach by which y is˜
computed through x and w determine the struc-
ture of the neural network. Some of the neural
network structures that have been used for mi-

crowave modeling are multilayer perceptrons
Ž . � �MLP 1, 4, 19, 20, 27, 28, 53, 76, 86 , radial basis

Ž . � �function RBF networks 28, 36, 56, 80, 86 ,
� �wavelet networks 28, 48, 49, 53 , and knowledge-

Ž . � �based neural networks KBNN 1, 3, 13, 86 .
As an example, for the MLP structure shown

in Figure 1, y is computed starting with the input˜
layer z 0 � x , and then proceeding through thei i

hidden layers,

Nl�1

l l l�1 lz � � w z � w ,Ýi i j j i0ž /
j�1

Ž .i � 1, 2, . . . , N , l � 1, 2, . . . , L � 1, 5l

and finally y � z L�1, where input and outputk̃ k

layers are denoted as hidden layer 0 and hidden
layer L � 1, x is the ith input to the neurali

network, N is the number of neurons in hiddenl

layer l, z l is the output of ith neuron of lthi

hidden layer, w l represents weight of the linki j

between jth neuron of l � 1th hidden layer and
ith neuron of lth hidden layer, w l is the biasi0

parameter of ith neuron of lth hidden layer, and
L is the total number of actual hidden layers. In

Ž . Ž .eq. 5 , � � is the neuron activation function,

Ž .Figure 1. Multilayer perceptrons MLP as an exam-

ple of neural network structure. Typically, an MLP

consists of an input layer, one or more hidden layers,

and an output layer.
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which is usually a sigmoid function

1
Ž . Ž .� � � 6

��Ž .1 � e

for the hidden layers and a linear function for the
output layer.

NEURAL MODEL DEVELOPMENT:
KEY ISSUES

The process of developing neural models is not
trivial and involves critical issues such as data
generation, scaling, etc. Although some of these
aspects are either implied or described in the
existing neural network literature, their descrip-
tion is mainly from signal processing or pattern
recognition perspective. Since neural network
modeling is relatively new to microwave readers,
we gathered and translated these ideas into mi-
crowave language. Based on this information and
our own experiences, we provide in this section, a
systematic overview of the key and fundamental
issues of microwave-oriented neural model devel-
opment. A sequential flow diagram summarizing
various steps involved in neural model develop-
ment is shown in Figure 2.

Data Generation

The preliminary step in neural model develop-
ment is the identification of model inputs and
outputs. Once the inputs and outputs are identi-
fied, microwave device�circuit data needs to be
collected�generated. For microwave applications,
there are two types of data generators, namely
measurement and simulation. In general, data
generation means using a data generator to ob-
tain the output d , for each input sample x . Thep p

total number of samples to be generated for a
given microwave problem is chosen such that the
developed neural model accurately represents the
original problem. The choice of a data generator
depends on the application and the availability of
the data generator. Microwave neural model de-
velopment using data from measurement and data
from simulation are compared in Table 1.

Range and Distribution of Samples in
Model Input Parameter Space

Typically, neural model development requires
three sets of data, namely the training data, the

Figure 2. Sequential flowchart summarizing various

steps involved in neural model development.

validation data, and the test data. We define T ,R

V, and T as the index sets of training data,E

validation data, and test data, respectively. Train-
ing data is used to guide the training process, i.e.,
to update the neural network weights during
training. Validation data is used to monitor the
quality of the neural model during training, so as
to indicate when to terminate the training pro-
cess. Test data is used to examine the final quality
of the developed model.

Suppose the range of input parameters over
which the neural model would be used during

� �microwave design is x , x . Validation datamin max

and test data should be generated in the range
� �x , x . Training data could be generated inmin max

the same range as well. We suggest, where feasi-
ble, that the training data be sampled slightly

�beyond the model utilization range, e.g., x �min

��, x � � . This is to ensure good performancemax

of the neural model at the boundaries of input
parameter space.

Once the range of input parameters is decided,
the next step is to choose a sampling strategy.
Suggested sample distributions are uniform grid
distribution, nonuniform grid distribution, star
distribution, central-composite distribution, and
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TABLE 1. Comparison of Neural-Based Microwave Model Development Using Data from Two Types

of Data Generators, Namely Measurement and Simulation

Basis of Neural Model Development Neural Model Development

Comparison Using Measurement Data Using Simulation Data

Availability of problem Model can be developed even if Model can be developed only for

theory equations the theory�equations are not the problems that have theory

known or difficult to implement and implementation.

in CAD.

Assumptions No assumptions involved and the Often involves assumptions and

model could include all the effects the model will be limited by the

of the original problem, e.g., same assumptions as simulator,

3D-fullwave effects, fringing e.g., 2.5D EM.

effects, etc.

Input parameter sweep Data generation could either be Relatively easier to sweep any

expensive or infeasible, if a parameter in the simulator.

geometrical parameter, e.g.,

transistor gate-length needs to

be sampled.

Sources of small and Due to equipment limitations and Due to accuracy limitations and

large�gross errors tolerances. nonconvergence of simulations.

Feasibility of getting Type of data is limited to Any response can be modeled as

desired output measurable responses only. For long as it can be computed in the

example, drain charge of a simulator.

transistor may not be easy to

measure.

� �random distribution 1 . In uniform grid distribu-

tion, each input parameter is sampled at equal

intervals, while in nonuniform grid distribution,

each input parameter is sampled at unequal inter-

vals. Uniform grid distribution could be a default

strategy. Nonuniform grid distribution is used

when we have a certain understanding of the

problem and deliberately choose dense samples

in subregions of the input space where problem

behavior is highly nonlinear. Total number of

samples for grid distribution is ŁNx n , where ni�1 i i

is the number of grids along ith axis, i.e., x axis.i

� �In the case of star distribution 18 , a middle

point of the input space x is first determined.mid

Samples are then obtained by perturbing one

element of x at a time, either toward its maxi-mid

mum value or toward its minimum value. Total

number of samples in star distribution is 2 N � 1.x

This sample distribution is used when data gener-

ation is very expensive, and model behavior is
� �assumed to be smooth within x , x . In cen-min max

tral-composite distribution, 2 Nx corner points are

generated in addition to the samples of star distri-
� �bution 19 . In random distribution, each input

sample x is a random variable between x andp min

x . Random distribution is used when inputmax

parameter space is of high dimension.

Data Scaling

Data scaling is an essential step to improve the
learning�training process of neural networks. The
order of magnitude of input�output parameter
values in microwave applications can be very dif-
ferent even for the same parameter, in contrast to
binary ‘‘0’’ and ‘‘1’’ situation in typical pattern
recognition applications. As such, scaling of train-
ing data is suggested for efficient microwave neu-
ral model training. Scaling of the data samples
can be performed on their input and�or output
parameters. Input�output scaling and descaling
in neural model development and in neural model
usage are shown in Figure 3. Commonly sug-
gested scaling schemes are linear scaling, log scal-
ing, and two-sided log scaling. Let x, x , x ,min mid

and x represent a generic element in themax

vectors x, x , x , and x of original data,min mid max

respectively. Let x, x , and x represent amin max

generic element in the vectors x, x , and x ofmin max

� �scaled data, respectively, where x , x is themin max

input parameter range after scaling. Linear scal-
ing is given by

x � xmin
Ž . Ž .x � x � x � x . 7min max min

x � xmax min
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Ž .Figure 3. Input�output scaling and descaling a in
Ž .neural model development and b in neural model

usage.

The log scaling is given by

Ž . Ž .x � ln x � x � 1 , 8min

and two-sided log scaling is defined as

� �x � x �mid
ln 1 � xmaxŽ .x � xmax mid

Ž .x � sgn x � x ,mid Ž .ln 1 � �

Ž .9

Ž .where sgn � is a sign function and � is a con-
stant.

The same formulas hold good for scaling the
output values of data samples. Linear scaling of
data balances the ranges of different inputs or
outputs. Applying log scale to outputs with large
variations balances large and small magnitudes of
the same output in different regions of the model.
Two-sided log scale is similar to log scale except
that it is used to avoid the overshadowing of
midrange values of the response by large increas-
ing and large decreasing trends. In general, the
input�output scaling makes the problem better
conditioned for training, thereby facilitating eas-
ier learning process.

Initialization of Neural Model
Weight Parameters

In order to provide a good starting point for
Ž .training optimization , the neural network

weights need to be initialized. The random-
weights method is the most widely used strategy

for MLP weight initialization in which the weights
are initialized with small random values, e.g., in

� �the range �0.5, 0.5 . RBF and wavelet networks
can be initialized by estimating the parameters of
hidden neuron activation functions, i.e., centers
and radii of RBF and translation and dilation of
wavelets, with the help of an unsupervised learn-
ing process based on training data. The physical�
electrical experience or existing knowledge of the
problem can be utilized to provide a good starting
point for KBNN.

Overlearning and Underlearning

After initializing the weight parameters, a train-
ing algorithm can be used to train the neural
network. Ability of a neural network to estimate
output y accurately when presented with input x

never seen during training is called generalization
ability. Overlearning is observed when the neural
network memorizes the training data, but cannot
generalize well. We denote the error defined in

Ž .eq. 3 as the training error E . The validationTR

error E is similarly defined, except that theV

index set T is replaced by index set V. Over-R

learning is detected when E �N is small andT TR R

E �N � E �N , where N and N are theV V T T T VR R R

number of samples in training and validation data
sets, respectively. Possible reasons are too many
hidden neurons or insufficient training data. To
remedy the situation, a certain number of hidden
neurons can be deleted from the neural network,
and�or more samples can be added to the train-
ing data.

Underlearning is a situation where the neural
network has difficulties even to learn the training
data itself, i.e., E �N � 0. Possible reasons forT TR R

underlearning are insufficient hidden neurons, or
insufficient training, or training gets stuck in a
local minimum. The suggested remedies are add-
ing more hidden neurons, or continuing training,
or perturbing the current solution w to escape
from the local minimum and then continue train-
ing. Good training of a neural network is ob-
served when E �N and E �N are close toT T V VR R

each other and both are small.

Quality Measures for a Developed
Neural Model

There are various quality measures that can be
used to evaluate the final performance of a trained
neural model. For this purpose, an independent
set of data, i.e., the test data is used. We define a
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quantity � aspk

Ž .y x , w � dk̃ p pk
� � ,pk

d � dk , max k , min

Ž .k � 1, 2, . . . , N , p � T . 10y E

A quality criterion based on the qth-norm mea-
sure is then defined as

1�qNy

1� � Ž .M � � . 11Ý Ýq pk

p�T k�1E

When q � 1, the average test error can be calcu-
lated directly from M as1

M1
Ž .Average test error � , 12

N NT yE

where N is the number of samples in test dataTE

set, and N is the number of neural model out-y

puts. When q � 2, the qth-norm measure is the
Euclidean distance between neural model predic-
tion and test data. When q � �, the qth-norm
measure is the maximum test error, which is also
called the worst-case error among entire test data
and all model outputs. Statistical measures such
as error mean and correlation coefficient can also
be used.

Neural Network Structures and
Training Algorithms

Appropriate neural network structure and suit-
able training algorithm are two major issues in

� �developing neural models 80 . Commonly used
neural network structures are MLP, RBF, KBNN,
wavelet networks, and recurrent neural network
Ž . � �RNN 1 . The most important and time-consum-
ing step in model development is neural network
training. Learning the microwave behavior, how-
ever difficult it is, is ultimately achieved through
this process. The neural network would be taught
with measured�simulated samples from the train-
ing set. Training of neural networks is an op-
timization process in the weight space and is
often done using optimization-based training al-

Ž . � �gorithms such as backpropagation BP 87, 88 ,
� � � �conjugate-gradient 89 , quasi-Newton 90 , Lev-
� �enberg�Marquardt 91 , etc. However, global op-

� �timization algorithms, e.g., genetic algorithm 41 ,
can also be used for neural network training. In
this study, we review an advanced training algo-
rithm called Huber quasi-Newton.

Huber quasi-Newton Technique. One of the most
frequently encountered challenges in developing
microwave neural models is the presence of small

Ž .and large gross errors in training data. We,
therefore, need a training technique that can
yield accurate neural models in the presence of
such unavoidable errors. The objective functions
of conventional neural network training algo-
rithms are formulated in l sense with q set as 22

Ž . Ž .in eqs. 3 and 4 . Although l -norm-based train-2

ing can handle small errors in training data, it can
Ž .be misled by large gross errors resulting in non-

reliable neural models. On the other hand, l -1

norm-based training is robust against large errors
but is not very effective in dealing with small

� �errors 92 . In summary, neither of the l - and the1

l -norm-based training can discriminate and treat2

small and large errors differently. Huber function
� �93, 94 is a smooth combination of l and l1 2

norms and has been recently applied to circuit
� �modeling and optimization 95, 96 . The Huber

� �quasi-Newton training technique 30, 81 utilizes
the Huber norm along with quasi-Newton update

� �formulas 1, 80 .
As an illustration, a MESFET was modeled

using the HQN training algorithm. The MESFET
model has four inputs, namely frequency, drain
voltage, gate voltage, and channel thickness. There
are eight outputs, i.e., real and imaginary parts of
two-port S parameters S , S , S , and S .11 12 21 22

Data was generated from simulation using OSA90
� �97 . There were a few obvious large errors in
data that can be attributed to nonconvergence of
the simulation due to input samples in extreme
locations. A three-layer MLP neural network with
15 hidden neurons was used. A comparison of
neural models developed using l -based training2

method and the HQN can be seen in Figure 4.
HQN technique yields accurate neural models of
MESFET as compared to standard l technique2

in the presence of large data errors. Neural mod-
els in this example and all the subsequent exam-
ples in the study were developed using Neuro-

� �Modeler 98 .

NEURAL MODEL DEVELOPMENT:
TOWARD AUTOMATION

As mentioned earlier, the process of developing
neural models involves critical issues. For exam-
ple, identifying or choosing the structure of the

Žmodel i.e., number of hidden layers, number of
.neurons in each hidden layer , estimating the
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Figure 4. Example of comparison between neural

model prediction and training data for a MESFET. The
Ž .training data has a few large�gross errors. a Neural

model trained by standard l method is affected by2

Ž .large errors. b Neural model trained by HQN tech-

nique is not affected by large errors.

number of samples needed for training and vali-

dation, detecting the situations of overlearning

and underlearning during the training process,

etc. There has been significant work in the neural

network research area to determine proper net-
� �work size, e.g., constructive algorithm 99 , net-

� � � �work pruning 100 , and regularization 101 . In

this section, we review the new techniques in the
Ž .microwave�artificial neural networks ANN area

that are aimed at addressing the above-men-

tioned issues to some extent. In future, these

techniques could either directly or indirectly lead
to automation of neural model development.

MLPNN Process

� �In 27 , fast and accurate neural network models

of a spiral inductor were developed. The neural

network structure used was the conventional MLP

network, and the model development process was

termed the MLPNN process. The flow diagram of
ŽMLPNN process presented in this work see Fig.

.5 is noteworthy. The MLPNN process is an algo-

rithm, however, human interaction is necessary in

several steps. Although it is not a completely

automated methodology, it gives an insight to the

subject of neural modeling automation. The flow

diagram indicates that there is a scope for au-

tomation of the actions such as selection of num-

ber of hidden layer neurons and addition of more
samples to the training data set.

Multistage Training with
Adaptive Controller

Recently, a multistage training algorithm to ad-

dress highly nonlinear and nonsmooth modeling
� �problems, e.g., microwave filters 49 , was pro-

� �posed 30 . The multistage algorithm decomposes

the original complicated microwave modeling
Žproblem i.e., microwave responses to be mod-

.eled into simpler subtasks. In each training stage,

different neural network structure and training

algorithms are suitably used to model a particular

subtask, resulting in a subneural model. In the

end, the submodels from various stages are com-

Figure 5. Flow diagram of the MLPNN model devel-
� �opment process 27 .
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bined to produce the final neural model that
represents the overall behavior. The multistage
algorithm has a built-in adaptive controller sub-
routine, the flowchart of which is shown in Figure
6. The adaptive controller is an automation tech-
nique that reduces human interaction in each
stage of training. It offers a robust start when far
from solution, faster convergence when closer to
solution, reasonable judgment for neural network
size, and detection and escape from traps of local
minimum.

How does the adaptive controller work? The
training process starts with a three-layer MLP
neural network and an initial estimate of number
of hidden neurons. During the training process,
the adaptive controller periodically taps the infor-
mation such as training error, validation error,
gradient of the training error, etc., and executes
one of the following actions as needed:

� continue training
� change from one training algorithm to an-

other
� escape traps of local minima by randomly

perturbing neural network weights
� add or delete neurons
� stop training

Figure 6. Flowchart of the adaptive controller subrou-
� �tine used in multistage training algorithm 30 .

Adaptive Sampling

Data generation is a crucial step toward develop-

ing accurate and reliable neural models. A large

set of training data ensures good model accuracy

but is expensive, while a smaller set yields a

nonreliable model. A conventional grid sampling

may lead to unnecessarily large number of sam-

ples in smooth portions and inadequate number

of samples in highly nonlinear portions of the

response to be modeled. Several data sampling
� � � �102, 103 and data exploration 104, 105 tech-
niques were previously studied.

Recently, a neural network training-driven
� �adaptive sampling algorithm 9 has been pro-

posed. The sampling algorithm starts with small

amounts of training and test data. A reasonable
neural network structure is trained and tested.
If the resulting neural model is not satisfactory,

the sampling algorithm determines the additional

number of training and test samples required and

the values of the input parameters at which these

additional samples need to be generated. The

algorithm dynamically drives simulator or mea-
surement setup to generate these additional sam-
ples.

A MESFET neural model was developed using
� �the sampling algorithm 9 . The input space x

contains gate-length, gate-source voltage, and

drain-source voltage. Drain current was the only

neural network output y. A three-layer MLP with

18 hidden layer neurons was used. The algorithm
� �dynamically drives the OSA90 simulator 97 dur-

ing the neural model development. Table 2 shows

that the accuracy of the models from the adaptive

sampling algorithm is better as compared to mod-

els trained from the same amount of training data

using conventional grid sampling. Contrary to the

conventional grid sampling, the adaptive sampling

algorithm generates more samples in nonlinear

regions and fewer samples in smooth regions of
the input space as shown in Figure 7.

NEURAL MODELS FOR NONLNIEAR
DEVICES/////CIRCUITS

Neural modeling of nonlinear devices and dy-

namic responses of microwave circuits is a recent

thrust in the microwave�ANN area. In this sec-

tion, we review the neural network approaches to

modeling of transistor DC, small-signal, and

large-signal behaviors. Neural modeling of non-
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TABLE 2. Model Accuracy Comparison Between Conventional Grid Distribution and the
aAdaptive Sampling Algorithm for the MESFET Example

Adaptive Sampling Algorithm Conventional Grid Distribution

User-Desired No. of Training Model Model

Accuracy Samples as Determined Accuracy No. of Training Accuracy
Ž . Ž . Ž . Ž . Ž . Ž .E % by the Algorithm E % Samples Used E %d t t

2.00 35 1.84 36 5.14

1.75 44 1.56 45 4.75

1.50 53 1.45 54 3.72

1.25 62 1.22 64 1.44

1.00 71 0.88 75 1.05

a
The advantage of the sampling algorithm is more significant when less training data is available.

linear circuit behaviors using recurrent neural
networks is also presented.

DC Models

DC characteristics of transistors can be obtained
either from simulation or measurement. Neural
networks, e.g., MLP, can be trained using such
data to produce fast and accurate DC neural

� �models 15 . The inputs to the neural network
Žinclude bias inputs e.g., gate voltage, drain volt-

. Žage , transistor geometrical parameters e.g.,
.gate-length, gate-width, channel thickness , phys-

Žical�material parameters e.g., doping density,
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Figure 7. MESFET sample distribution of the conven-

tional grid method and the adaptive sampling algo-

rithm at a certain stage of training. As can be seen, the

adaptive algorithm samples the nonlinear regions of

the input space densely.

.substrate permittivity , and frequency. In general,
the output of the DC neural models is drain

� � � �current. In 3 , existing empirical formulas 106
were used to develop DC models using the con-
cept of knowledge-based neural networks. The
empirical functions were used as hidden neuron
activation functions in place of conventional sig-
moid neurons. The KBNN training needs fewer
samples and lesser training time, and yet yields
accurate models with better extrapolation capa-
bility as compared to MLP models.

Small Signal S-Parameter Models

Neural networks can learn measured�simulated
small-signal data of transistors accurately. The
inputs to the neural network could include bias,
geometrical, physical parameters, and frequency.
The outputs of the neural models are the real�
imaginary parts or magnitude�phase of two-port
S or Y parameters. MLP neural networks have
been used to develop S-parameter transistor

� � � � � �models, e.g., MESFET 4 , HBT 39 . In 4 , a
library of MESFET S-parameter models was de-
veloped using both conventional MLP approach
and the hierarchical neural network approach. It

� �was shown that the hierarchical approach 4, 80
required fewer data and shorter training time as
compared to the MLP approach.

� �In 39 , small-signal HBT neural models were
developed. S-parameter data for a typical HBT
was measured for various input combinations of
bias current, bias voltage, and frequency, for five
different transistor sizes. Three-layer perceptron

Ž .neural networks MLP3 were trained for each
transistor size. The MLP3 networks take three

Žinputs collector bias current, bias voltage, and
. Žfrequency and give eight outputs magnitudes

.and phases of S , S , S and S . Average test11 12 21 22
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TABLE 3. Average Test Errors of S-Parameter Neural Models for Different

Transistor Sizes

Ž . Ž . Ž . Ž .MLP 3-12-8 MLP 3-15-8 MLP 3-20-8 MLP 3-25-8
Ž . Ž . Ž . Ž .HBT Size % % % %

1 1.98 1.95 1.82 1.86

2 1.40 1.34 1.16 1.23

3 1.30 1.18 1.08 1.15

4 1.29 1.12 1.06 1.11

5 1.23 1.07 1.04 1.07

errors of the resulting neural models were ob-
served to be well below 2% as shown in Table 3.

Ž .The MLP3 with 20 hidden neurons MLP 3�20�8
was found to give the best model accuracy for all
the five transistor sizes. A good agreement of the
neural model estimation of S magnitude with21

the measured data is shown in Figure 8.

Large-Signal Models

Neural network models to represent the large-sig-
nal behavior of transistors can be developed. In
� �35 , terminal currents and charges for different
configurations of MESFET were simulated at a

� �number of bias points using OSA90 97 with
� �Khatibzadeh and Trew models 107 . The neural

network model has six inputs, namely gate-length,
gate-width, channel thickness, doping density, gate
voltage, and drain voltage. The terminal currents
and charges on the drain, gate, and source elec-

Ž .trodes are the model outputs six outputs . Neural
networks were trained and the resulting large-sig-
nal neural models were plugged into a circuit
simulator as shown in Figure 9. The large-signal
neural model was used to satisfactorily perform

Ž .DC, small-signal, and harmonic balance HB
simulations.

Ž .Figure 8. Comparison of MLP 3�20�8 prediction

and measured S magnitude.21

Neural Modeling Using Known
Equivalent Circuit

As mentioned earlier, the commonly used transis-
tor modeling approach is the lumped equivalent
circuit approach. Developing such models re-
quires experience and involves a trial-and-error
process to determine the exact topology. More-
over, an equivalent model may not have any link
with the physical�geometrical parameters of the
device under consideration. Empirical formulas
for such relations exist, and these relations can be
easily learned by neural networks. A hybrid ap-
proach that utilizes exiting knowledge in the form
of known equivalent circuit and empirical for-
mulas, together with the powerful learning and
generalization abilities of neural networks was

� � �demonstrated for MESFET 37 and HEMT 41,
� � �42 . In 37 , MLP3 neural networks learned the

bias-dependent lumped elements of the MES-
FET. The neural models were then combined

Figure 9. Incorporating the large signal neural net-

work models of a transistor into harmonic balance
� �simulator 35 .
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with the FDTD marching time algorithm leading

to a first-order approximation of the device�wave
� �interaction and a large-signal analysis. In 41 ,

Ž .five-layer MLP neural networks MLP5 were

trained to learn the bias-dependent small-signal
equivalent circuit elements.

Volterra Series Approach

The Volterra series approach reduces to a first-

order kernel in case of short memory devices
� �108 . This significantly reduces the limitations of

the classical Volterra series and avoids tedious

task of measuring higher order kernels. Most

electron devices including transistors satisfy the
� �short memory condition. In 53 , DC characteris-

tics and small-signal S parameters of a transistor

were measured. A group of 10 neural networks

were trained to learn the drain-to-source current,

gate-to-source current, and the real and imagi-

nary parts of the two-port S parameters. The

resulting neural models were used following the

Volterra series approach to design a 13.6-GHz
amplifier.

Nonlinear Circuit Modeling Using
Recurrent Neural Networks

Conventional feed-forward neural networks are

well known for their learning and generalization

capabilities. However, they can only map input�

output relationships statically. To model nonlin-

ear circuit responses in time domain, a neural

network that can include temporal information is

necessary. Recurrent neural network has been

found to be a suitable candidate to accomplish

this job. In the past, RNN were successfully used
�in engineering applications such as control 109,

� � �110 , speech recognition 111 , etc.

The structure of a typical RNN is shown in

Figure 10. The input layer includes time-varying

inputs u and time-invariant inputs p. The neural

network outputs are denoted by y. The first hid-

den layer of RNN denoted by x contains buffered
Ž .time-delayed history of y fed back from the

output layer, buffered history of u, and p. The

second hidden layer z contains sigmoid neurons.

The RNN has to be trained to learn the dynamic

characteristics of the nonlinear microwave circuit.

The training data is a set of input and output

waveforms of the original nonlinear circuit. Since

the present outputs of the model not only depend

Figure 10. Structure of a typical recurrent neural
� �network model 54 .

upon the present inputs but also on previous

inputs and outputs, a novel BP training scheme

called backpropagation-through-time needs to be
� �used 54 .

An RFIC power amplifier was modeled using
� �the RNN approach 54 . The amplifier contains

eight NPN BJT’s modeled by two internal HP-
� �ADS 112 nonlinear models Q34 and Q37. Inputs

to RNN are the voltage waveform of the amplifier

input and the sampling cycle. Output of RNN is

the voltage waveform of the amplifier output. The

accuracy of the resulting RNN model can be seen

in Figure 11. The RNN model was found to be
much faster than the original simulation.

Figure 11. Comparison between output waveforms
Ž .from original amplifier simulation 	 and that from a

Ž .RNN model � .
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CONCLUSIONS

The state-of-the-art technology of neural-net-

work-based microwave modeling has been re-

viewed, with special attention to model develop-

ment issues. Automation techniques for neural

modeling that involve reduced human interven-
tion have been discussed. A brief overview of

the neural-network-based nonlinear device�cir-

cuit modeling has been presented. Practical mi-

crowave examples are used to illustrate the re-

viewed techniques. Research and development

efforts are required to extract the full potential of

neural networks, and there is a definite need for
automated neural modeling CAD tools.
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