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Neural networks for nonlinear dynamic system modelling and
identification

S. CHENt and S. A. BILLINGS*

Many real-world systems exhibit complex nonlinear characteristics and cannot
be treated satisfactorily using linear systems theory. A neural network which
has the ability to learn sophisticated nonlinear relationships provides an ideal
means of modelling complicated nonlinear systems. This paper addresses the
issues related to the identification of nonlinear discrete-time dynamic systems
using neural networks. Three network architectures, namely the multi-layer
perceptron, the radial basis function network and the functional-link network,
are presented and several learning or identification algorithms are derived.
Advantages and disadvantages of these structures are discussed and illustrated
using simulated and real data. Particular attention is given to the connections
between existing techniques for nonlinear systems identification and some
aspects of neural network methodology, and this demonstrates that certain
techniques employed in the neural network context have long been developed
by the control engineering community.

1. Introduction
In the past decade there has been a strong resurgence in the field of artificial

neural networks involving researchers from many diverse disciplines. This
renewed interest in neural networks is fuelled by new network topologies,
improved learning algorithms, and by emerging analogue VLSI implementation
techniques. An introduction to various neural network models and learning
strategies can be found, for example, in the article by Lippmann (1987) and in
the books by Pao (1989), Beale and Jackson (1990), and Hecht-Nielsen (1990).
Mead (1989) gives an up-to-date overview of analogue VLSI techniques for
implementing neural networks.

A neural network typically consists of many simple computational elements or
nodes arranged in layers and operating in parallel. The weights which define the
strength of connection between the nodes are adapted during use to yield good
performance. Neural networks are therefore specified by the network architec
tures, node characteristics and learning rules. A class of neural networks, where
the input feeds forward through the network layers to the output, is referred to
as the feedforward network. This kind of network is known to be capable of
learning complex input-output mappings. That is, given a set of inputs and
desired outputs or targets, an adequately chosen neural network can emulate the
mechanism which produced the data set through learning. This scenario can
obviously be included in the framework of system identification and signal
prediction and, therefore, it is not surprising that many applications of neural
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320 S. Chen and S. A. Billings

networks to non-linear system identification and prediction have been reported
(e.g. Lapedes and Farber 1988, Chen et al. 1990 a, 1990 c, Narendra and
Parthasarathy 1990, Weigend et al. 1990).

The present study is concerned with the modelling and identification of
nonlinear discrete-time systems based on the neural network approach. Three
different network architectures are considered, namely the multi-layer percep
tron (MLP), the radial basis function network (RBF) and the functional-link
network (FLN). The modelling capabilities of these network structures are
analysed, and both block-data and recursive identification algorithms are derived
for each of these neural network models. Convergence properties of the learning
algorithms are compared, and the advantages and disadvantages are discussed.
The results are illustrated using data generated from both simulated and real
systems.

Feedforward neural networks can, of course, be viewed as nonlinear input
output models. Researchers working in the area of system modelling and
identification have being actively investigating various nonlinear models (e.g.
Billings 1980, Billings and Leontaritis 1981, Billings et al. 1984, Billings and
Chen 1989 b, Chen and Billings 1989 b, 1989 c, Leontaritis and Billings 1985,
Ozaki 1985, Priestley 1980). Many techniques employed in the field of neural
networks have naturally also been developed by the control community and
others. The famous back propagation algorithm (Rumelhart et al. 1986), for
instance, is a simple version of the smoothed stochastic gradient algorithm
widely used in system identification and adaptive control. The so-called FLN is
identical to the concept of the extended model set (Billings and Chen 1989 b).
These similarities between the neural network and more conventional methods
are emphasized in the current study. Hopefully, this will help to remove some of
the myths of neural networks and to encourage a wider application of the neural
network approach.

2. Problem formulation
Consider dynamic systems which are governed by the following nonlinear

relationship:

y(t) '" f(y(t - 1), ... , y(t - ny), u(t - 1), ... , u(t - nu» + e(t) (1)

where

y(t) '" [y\(t) Ym(tW

u(t) = [u\(t) u,(tW

e(t) = [e\(t) em(tW

(2)

(3)

(4)

are the system output, input and noise vectors respectively; ny and nu are the
corresponding lags in the output and input; and f() is some vector-valued
nonlinear function. The aim is to realize or to approximate the underlying
dynamics f( ) using neural networks. Introduce the network input vector

x(t) = [yT(t - 1) ... yT(t - ny)uT(t - 1) ... uT(t - nuW (5)

with a dimension

(6)
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Neural networks for modelling and identification 321

The modelling and identification task can then be formulated as one of using the
neural network input-output response

yet) = !(x(t» (7)

as the one-step-ahead predictor for y (r).
The system representation (1) is a simplified case of the general nonlinear

system known as the NARMAX model (Billings and Leontaritis 1981, Leon
taritis and Billings 1985, Chen and Billings 1989b):

yet) = [(yet - 1), , yet - ny ) , u(t - 1), ... , u(t - nu ) ,

e(t - 1), , e(t - ne»+ e(t) (8)

Although analysis for (8) in terms of stability and convergence is generally more
difficult than that for (1), the techniques developed based on the simpler system
(1) can readily be extended to the general case (8). Since the aim is to present a
coherent structure of the neural network approach to system modelling and
identification and to highlight the basic principles and concepts, all the discus
sions will be based on the system representation (1).

3. The multi-layer perceptron
The MLP is a layered network and each layer of the network consists of

computing nodes. All the nodes in a layer are fully connected to the nodes in
adjacent layers but there is no connection between the nodes within the same
layer and no bridging layer connections. The topology of the MLP is shown in
Fig. 1. Inputs to the network are passed to each node in the first layer. The
outputs of the first-layer nodes then become inputs to the second layer and so
on. The last layer therefore acts as the network output layer and all the other
layers below it are called hidden layers. The architecture of a MLP can

Network Output

n/ nodes

nl_] nodes

nz nodes

n] nodes

no inputs

Network Input
Figure 1. Topology of multi-layer perceptron.
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322 S. Chen and S. A. Billings

conveniently be summarized as no - nl - ... - ru, where no is the network
input dimension and n., 1,,;; i,,;; l , are the numbers of nodes in the respective
layers. The input-output relationship of a generic node, the ith node in the kth
layer, is depicted in Fig. 2. From Fig. 2,

(9)

(10)

where TI\;) and !J..\k) are the node connection weights and the threshold
respectively; and a() is called the node activation function.

In applications to modelling nonlinear dynamic system (1), the network input
is given by x(t) defined in (5) with no = nf, andthe number of output nodes is
n, = m. The activation function of hidden nodes is typically chosen as

or

1
a(z)----

- 1 + exp(-z)
(11)

(12)
1 - exp(-2z)

a(z) = tanh(z) = ( 2 )
1 + exp - z

Other choices of a() can also be employed. The output nodes usually do not
contain a threshold parameter and the associated activation functions are linear;
that is, .

111_\

~ _ <I) _" (/) (/-1)
Yi-X i - LJ Tljj x j ,

J=I

The overall input-output mapping of the network is 1: R nf --> R'":

(k)
'T\/""_I

(13)

1 X I(k -1) .. , X (k -I)
"'-1

Figure 2. Structure of a node.
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Neural networks for modelling and identification 323

3.1. Approximation capabilities of MLP

The approximation capabilities of MLP have been investigated by many
authors (e.g. Cybenko 1989, Funahashi 1989, Hecht-Nielsen 1990, Hornik 1991).
Basically, any continuous function f: Df C Rnl~-+ R'" can be uniformly approxi
mated to within an arbitrary accuracy by an f on Df , where Df is a compact
subset of R n/, provided that there are a sufficient number of hidden nodes in
the network. This result is valid even for networks with only one hidden layer.
Typical assumptions on the activation function for hidden nodes are that a() is
continuous, bounded and non-constant. These are very mild requirements, and
the sigmoid function (11) is just one example of many possible choices of
activation function. This theoretical result provides a sound foundation for
modelling nonlinear systems using MLP.

These mathematical results prove that the MLP is a general function approxi
mator and guarantee that a one-hidden-Iayer network will always be sufficient to
represent any arbitrary continuous function. But this does not say how many
hidden nodes will be necessary to achieve the task. For some practical problems,
networks with two or more hidden layers may be more efficient in terms of the
total hidden nodes required. It is also worth emphasizing that the proof of the
approximation capabilities of MLP assumes that the weights have been correctly
assigned. Whether or not these appropriate weights can be determined using any
existing learning algorithm is an open question.

3.2. Prediction error learning algorithms

Estimation of the parameters in nonlinear models is generally based on
nonlinear optimization techniques (Goodwin and Payne 1977, Ljung and Soder
strom 1983, Billings and Chen 1989 a, Chen and Billings 1989 a). A class of
learning algorithms, known as the prediction error algorithms, can be derived
for MLP by adopting ideas from nonlinear system identification (Chen et al.
1990 a, 1990 b). Both the batch and recursive versions of the prediction error
algorithm are briefly summarized below.

Assume that all the weights and thresholds of the MLP have been arranged
into an ne-dimensional parameter vector

where
/-2

ne = L(ni + l)ni+1 + nt-Int; no = ni, n, = m
i=O

The input-output equation of the nrinput m-output MLP is defined by

yet, EJ) = l(x(t); EJ)

(14)

(15)

(16)

In the terminology of system identification, the discrepancy between the system
output yet) and yet, EJ)

e(t, EJ) = yet) - Y(t, EJ) (17)

is called the prediction error. The gradient of Y(t • EJ) with respect to EJ is an
ne X m matrix
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324 S. Chen and S. A. Billings

l[I(t, e) = G(x(t); e) = [dy~t~e)r

and this plays a vital role during learning. The combination of (16) and (18)

[
N t , e)] = [[(X(t); e)]
l[I(t, e) G(x(t); e)

(18)

(19)

(20)

will be referred to as the extended network model. The gradient of y(t, e) with
respect to (Jj is a 1 x m row vector and is denoted as 1/1j( t, e), where
1 os; i os; ne. I[I( t, e) can therefore be written as

[

1J!\ (r, e) ]
l[I(t, e) = :

1/1ne( t , e)

Assume that the network has q nodes and the weights and threshold of the ith
node are arranged in an ne,-dimensional vector ej , 1 os; i os; q. e and l[I(t, e)
can therefore be represented as

(21)

where I[Ij(t, e), an ne. x m matrix, is the gradient of Nt, e) with respect to
e..
3.2.1. Batch identification algorithms. The batch prediction error learning
algorithms for training the networks are a class of optimization algorithms (Chen
et al. 1990a, 1990 b). The optimization criterion or loss function is typically
chosen as

(22)

where N is the length of the training data. Learning is achieved by minimizing
(22) subject to e and is usually done iteratively according to

e(k) = e(k - 1) + aE'(e(k - 1»

where k denotes the iteration step in the minimization procedure,

S(e(k - 1» = [5t(e(k - 1» ... 5ne(e(k - l))r

(23)

(24)

is a search direction based on information about I N(e) acquired at a previous
iteration, and a is a positive constant which is chosen appropriately to guarantee
convergence of the iterative procedure. The most commonly used search
direction is the modified negative gradient direction defined by

See) = M(e)(-VIN(e»

where M(e) is a positive definite ne x ne matrix and

1 N
VINce) = -- 2: l[I(t, e)f(t, e)

N 1=\

is the gradient of I N(e) with respect to e.

(25)

(26)
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Neural networks for modelling and identification 325

(29)

The Gauss-Newton search direction is obtained by choosing M(e) as the
inverse of the approximate hessian of (22), that is,

1 N
M-1(e) = H(e) = - 2: lJI(t, e)lJIT(t, e) (27)

N 1=1

This gives rise to the full prediction error (also called the Gauss-Newton)
algorithm.

The hessian matrix H (e) can be partitioned into q x q sub-matrices
N

H;le) = ~ ~ lJI;(t, e)lJIj(t, e), 1,;;; i, j ,;;; q (28)

If M -I (e) is chosen as the following near-diagonal matrix

M-'(8) " lH'~~)H:J
a parallel prediction error algorithm is obtained which consists of q sub
algorithms

with

e;(k) = e;(k - 1) + cr8;(e(k - 1», 1,;;; i ,;;; q

N

8;(e) = Hi/(e)~ ~llJIj(t, e)E(t, e)

(30)

(31)

(33)

Each of these sub-algorithms corresponds to a node in the network.
The well-known steepest-descent algorithm can be derived by choosing the

search direction as the negative gradient of (22) and the algorithm can be
decomposed into ne scalar equations

8;(k) = 8 j(k - 1) + crS;(e(k - 1», 1,;;; i ,;;; ne (32)

with

1 N
;;(e) = N ~1J1j(t, e)E(t, e)

This algorithm is obtained by setting M (e) to be the identity matrix I.

3.2.2. Recursive identification algorithms. The batch prediction error algorithms
have recursive counterparts (Chen and Billings 1989a, Chen et al. 1990b).
Define a time-varying version of the extended network model (19)

[
H t ) ] = [l(x(t); E5t - 1» ]
lJI(t) G(x(t); e(t - 1» (34)

where 8(t) denotes the estimate of eat t, and an approximate prediction error

E(t) = y(t) - .9(t)

The full recursive prediction error algorithm is given as follows:

(35)
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326 s. Chen and S. A. Billings

~(t) = LYm~(t - 1) + LYglfI(t)li(t) (36)

pet) = [pet - 1) - pet - 1)IfI(t)(M + IfIT(t)p(t - 1)IfI(t»-IIflT(t)p(t - 1)]/),

(37)

e(t) = e(t - 1) + P(t)~(t) (38)

where LYg and LYm are the adaptive gain and momentum respectively, and), is the
forgetting factor.

Similarly, the recursive version of the parallel prediction error algorithm can
be written as

~;(t) = LYm~;(t - 1) + LYglfI;(t)li(t)}
1 :;;: i :;;: q

e;(t) = ei(t - 1) + P;(t)~;(t)

(39)

and the formula for updating each P;(t) is identical to that used for pet).
Finally, the recursive implementation of the steepest descent algorithm gives

rise to the following smoothed stochastic gradient algorithm

ai(t) = LYma;(t - 1) + LYg1Jl;(t)li(t)}
l:;;:i:;;:ne

Bi(t) = B;(t - 1) + a;(t)
(40)

(42)

(41)

~'1~7)(t) = LYm~'1~7)(t - 1) + LYgat)(t)X~k-l)(t)l

~f.L~k)(t) = LYm~f.L~k)(t - 1) + LYAk)(t)

and

with

The quantity 1Jl;(t)li(t) corresponds to the negative gradient of liT (1)Ii(t)/2 with
respect to 0; and is noisy or stochastic in nature. ai(t) is therefore a smoothed
stochastic gradient.

The back propagation algorithm for training MLP is in fact identical to the
smoothed stochastic gradient algorithm in (40). Using the generic equations (9)
and (10), it is a relatively simple task to formulate (40) as

'1~7)(t) = '1~7)(t - 1) + ~'1~?(I)}

f.L~k)(t) = f.L~k)(t - 1) + ~f.L~k)(t)

(43)

at)(t) = a'(z~k)(t» LO~k+l)(I)'1~7+1)(t - 1), k = l - 1, ... , 2, 1 (44)
s

where a' (z) is the derivative of a(z). This is the usual form for the back
propagation algorithm (Rumelhart et at. 1986).

Many numerically robust versions of recursive prediction error algorithms can
be derived using modifications to the basic form (37) of computing pet) or Pj(l)
(e.g. Sripada and Fisher 1987, Salgado et at. 1988). For example a constant trace
version is given as
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Neural networks for modelling and identification 327

(46)

P(t) = P(t - 1) - P(t - 1)IJI(t)(AI + IJIT(t)p(t - 1)IJI(t»-IIJlT(t)p(t - 1) 1
K o -

P(t) = trace [P(t){(t), K o > 0

(45)

3.3. Convergence properties
The batch prediction error algorithms are gradient descent optimization

algorithms and are guaranteed to converge to a local minimum that contains the
initial parameter vector in its attractive basin. It can be shown that the recursive
prediction error algorithms have the same convergence properties as their batch
counterparts (Ljung and Soderstrom 1983, Chen et al. 1990 a). One of these
properties is that e(t) converges with probability one to a local minimum of

1 N
J",(e) = ~~'" 2N ~IE[fT(t, e)f(t, e)]

where E[] is the expectation operator.
The convergence of the back propagation algorithm can be very slow. The

advantages of this algorithm are the computational simplicity and parallel
structure. Because learning is distributed to each weight, the algorithm is
coherent with the massively parallel nature of the network. The full recursive
prediction error algorithm on the other hand has much better convergence
performance at the expense of increased complexity. It also requires a central
ized learning mechanism and thus violates the principle of distributed comput
ing. The parallel recursive prediction error algorithm represents a good com
promise between the two algorithms. It is computationally much simpler than
the full recursive prediction error algorithm and, like the back propagation
algorithm, learning is distributed to each individual node. Although the parallel
recursive prediction error algorithm is more complex than the back propagation
algorithm, the former is generally much more efficient in terms of convergence
than the latter. This can readily be demonstrated using a real-system identifica
tion application.

The data was generated from a liquid level system. The system consists of a
DC water pump feeding a conical flask which, in turn, feeds a square tank. The
system input is the voltage to the pump motor and the system output is the
water level in the conical flask. This is a single-input single-output (r = m = 1)
process. A one-hidden-layer network was employed to model this real process.
The network structure was specified by nJ = ny + nu = 3 + 5, nl = 5 and n2 = 1,
giving rise to ne = 50. The hidden node activation function was chosen as (11).
Initial weights and thresholds were set randomly between -0·3 to 0·3. After
several trial runs, it was found that (l'g =0·01 and (I'm =0·8 were appropriate for
the back propagation algorithm. For the parallel recursive prediction error
algorithm, the constant-trace technique (45) was used to update Pj(t), and the
parameters of the algorithm were given by (l'g = 1·0, (I'm = 0·0, A= 0·99,
K 0 = 60·0 and Pj(O) = 1000·0/. The evolutions of the mean square error in dB,
obtained by the back propagation algorithm (BPA) and the parallel recursive
prediction error algorithm (PRPE), are depicted in Fig. 3. This clearly demon-
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Figure 3. Evolution of mean square error. Liquid level system.
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strates the improved convergence performance of the parallel recursive predic
tion error algorithm compared with the back propagation algorithm.

Because the MLP is highly nonlinear in parameters, the mean square error
surface (46) is very complicated. It typically has a large number of global
minima which may lie at infinity for some problems. Thus, the error surfaces are
often highly degenerate and have numerous troughs. The error surfaces also
generally contain many local minima and may have flat areas where the
gradients almost vanish. When the weights fall into these flat regions; learning
becomes extremely slow and it can take a long time for the algorithm to escape.
The following simple example provides some illustration of the complexity of the
error surfaces. The example is a simple classifier, the input of which is a scaler x
uniformly distributed in the interval [-1, 1]. The desired output is defined as

= x = { 1 x E [0, 0·5]
y f() -1 otherwise

The classifier

Y = l(x) = tanh (17JX + 1J2x 2)

consists of a single node with two inputs x and x 2 , and no threshold. The error
surface

is the three-dimensional surface depicted in Fig. 4. Notice that there is a trough
along the direction of 1JI > 0 and 1J2 = -21JI, and the global minimum is
achieved when 1Jl- + 00 along this direction. There clearly exists a flat region
where the gradients are almost zero. Despite the possible pitfalls of gradient
learning methods, the MLP proves to be a popular network architecture and has
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Figure 4. Error surface of a simple classifier.

been widely used in many different disciplines as a universal mapping approxi
mator.

4. The radial basis function network
An alternative network architecture to the MLP is the RBF network (Broom

head and Lowe 1988, Moody and Darken 1989, Chen et al. 1990c, 1991a,
1991b). The RBF network is a two-layer processing structure. The hidden layer
consists of an array of nodes. Each node contains a parameter vector called a
centre. The node calculates the euclidean distance between the centre and the
network input vector, and passes the result through a nonlinear function. The
output layer is essentially a set of linear combiners. The architecture of the RBF
network is shown in Fig. 5. The overall input-output response of the RBF
network is a mapping [: R"'~ R'"; that is,

nh nh

[i(X) = 2. I'Jji<Pj = 2. I'Jji<P(llx - cjll, Pj), 1,;;; i ,;;; m (47)
j=\ j~\

where I'Jji are the weights of the linear combiners, 11·11 denotes the euclidean
norm, Pj are some positive scalers called widths, <PC p) is a function from
R + ~ R, Cj are known as the RBF centres, and nh is the number of nodes in
the hidden layer. Some typical choices of <P( ) are the thin-plate-spline function

<P(z, 1) = z 2 10 g (z ) (48)

the multiquadric function

(49)
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Output Layer

Hidden Layer

nh Units

Figure 5. Schematic of radial basis function network.

the inverse multiquadric function

(50)

and the gaussian function

(51)

The topology of the RBF network is obviously similar to that of the two-layer
perceptron, and the differences lie in the characteristics of the hidden nodes.

4.1. Approximation capabilities of RBF
Because of the similarities between the RBF network and the two-layer

perceptron, it is expected that the former has the same approximation ability as
the latter. This has, in fact, been proved (Cybenko 1989, Park and Sanberg
1991). Thus, under very mild assumptions on the non-linearity cp(), any
continuous function f: Dr C R'" ~ R'" can ~e uniformly approximated to within
an arbitrary accuracy by a RBF network f on Dr' provided that there are a
sufficient number of hidden nodes.

In the proofs of the universal approximation ability of the RBF network, it is
often assumed that cp() is continuous and bounded (Park and Sandberg 1991).
This is, of course, a very mild assumption, and the nonlinear functions (50) and
(51) satisfy this requirement. The nonlinearities (48) and (49) do not belong to
this class of functions because cp(z, p)~ 00 as z~ 00. According to Powell
(1987), however, this kind of RBF network also has good approximation
capabilities. In fact, the success of approximation is easier to achieve if cp(z, p)
~ 00 as z~ 00 than if cp(z, p)~ 0 as z~ 00. These theoretical results suggest
that the selection of the non-linearity cp() is not crucial for performance.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

17
:5

5 
5 

S
ep

te
m

be
r 2

00
7 

Neural networks for modelling and identification 331

(52)

Although the width in each node can have a different value, the same width for
every node is sufficient for universal approximation (Park and Sandberg 1991).
This means that all the widths Pj can be fixed to a value P to provide a simpler
training strategy. In practice, the value of P may have some effects on the
numerical properties of the learning algorithms but not on the general approxi
mation ability of the RBF network. Some choices of the nonlinearity such as the
nonlinear function (48) do not require the specification of a width parameter.
Finally, as in the case of the MLP, although the theory guarantees the ability of
a RBF network with correct weights '1ji and centres C j to represent accurately an
arbitrary continuous function, it does not provide information on whether or not
these parameters can actually be learned using any existing learning law.

4.2. The orthogonal least squares algorithm
In the case of batch identification, a block of data is available. The

parameters of a RBF network can then be estimated using the prediction error
estimation method. The prediction error method, however, results in a nonlinear
learning rule just as in the case of the MLP and advantages can be gained by
exploiting the structure of the RBF network and developing a linear learning
rule. A common strategy is to select some data points as the RBF centres. Once
this has been done, the weights can be learned using the least squares (LS)
method. This learning strategy has its roots in the strict interpolation of data in
multidimensional space (Broomhead and Lowe 1988). The problem can also be
formulated as one of selecting subset models (Chen et al. 1990c), and the
existing subset selection methods developed for nonlinear NARMAX models
(Billings et al. 1989, Chen et al. 1989, Leontaritis and Billings 1987) can readily
be applied. This is the approach adopted in the present study and an orthogonal
least squares (OLS) learning algorithm for RBF networks (Chen et at. 1990c,
1991a, b) is described. The main advantage of this approach is that an
appropriate set of RBF centres can be identified from the data set and estimates
of the corresponding weights can be simultaneously determined in a very
efficient manner.

Assume that a nonlinearity eP() is chosen, a fixed width P is given, and the
centres are formed from the data points x(t), 1,,;; t,,;; N. The RBF network is a
special case of the following linear regression model:

M

Yi(t) = '2,ePj(t)eji + ei(t), 1,,;; i,,;; m
j=l

where ePj( t) are known as the regressors which are some fixed functions of the
input x(t), (}ji are the parameters to be estimated, and Yi(t) and ei(t) are the ith
desired output and the ith error signal respectively. This model can now be
interpreted as a subset NARMAX model (Billings and Leontaritis 1981, Chen
and Billings 1989 b). Define

Y; = [Yi(l) Yi(NW, 1,,;; i ,,;; m (53)

e, = [e;(l) ei(NW, 1,,;; i e; m (54)

<Pj = [ePj(l) ePj(NW, 1,,;; j ,,;; M (55)

Then, for 1 ,,;; t ,,;; N, (52) can be collectively arranged as
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or more concisely in the following matrix form

Y = (/Je + E

(56)

(57)

The well-known LS method can be used to obtain the parameter estimate e.
The LS solution has a clear geometric interp!etation. The regressor vectors~(/Jj

form a set of basis vectors, and the solution e satisfies the condition that (/Je is
the projection of Y onto the space spanned by these basis vectors. In other
words, the trace of the square of the projection (/Je is part of the desired output
energy that can be counted by the regressors. Because different regressors are
generally correlated, it is not clear how each individual regressor contributes to
this desired output energy.

The OLS method involves the transformation of the set of (/Jj into a set of
orthogonal basis vectors, and thus makes it possible to calculate the individual
contribution to the desired output energy from each basis vector. The regression
matrix (/J can be decomposed into

(/J = WB

where

W = [WI . . . WM)

with orthogonal columns W j' 1 "" j "" M, that satisfy
T O·f . -L •

Wi w , = , I l or J,

and

(58)

(59)

(60)

B=

1. 1312

0.:::::::::::::::: .....

o
. 1 . 13M-1M

·0 1

(61)

The space spanned by the set of Wj is the same space spanned by the set of (/Jj,

and (57) can be rewritten as

The OLS solution

is given by

Y = WT+ E (62)

(63)

or

(64)
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T
A Wj YI
Yii=-(T )' l,;;;,j,;;;,M, l,;;;,i';;;'m (65)

WjWj

The OLS solution i:and the ordinary LS solution e satisfy the triangular system

(66)

The classical and modified Gram-Schmidt methods (Bjorck 1967) can be
employed to derive Band r and thus to solve for e from (66). The
Householder transformation method (Golub 1965) can alternatively be used to
obtain a similar orthogonal decomposition. As an illustration, the well-known
classical Gram-Schmidt method computes one column of B at a time and
orthogonalizes tP as follows: at the kth stage make the kth column orthogonal
to each of the k - 1 previously orthogonalized columns and repeat the operation
for k = 2, ... , M. The computational procedure can be represented as:

WI = tPl

f3ik = wTtPk/(wTwi),
k-I

Wk = tPk - 2: f3ik wi
i=l

1 ,;;;, i ,;;;, k'} k = 2, ... , M

(67)

(68)

The OLS method has superior numerical properties compared with the ordinary
LS method. It can also be utilized for subset selection (Chen et ai. 1989, Billings
et at. 1989) which is very important in nonlinear system identification.

In the case of RBF networks, the number of data points x(t) is often very
large and centres are to be chosen as a subset of the data set. In general the
number of all the candidate regressors, M, can also be very large but an
adequate model may only require M s(<< M) significant regressors. These
significant regressors can be selected using the OLS algorithm operating in a
forward regression manner (Chen et ai. 1989). Because the error matrix E is
orthogonal to W, after some simple calculations, it can be shown that the trace
of the covariance of y (r) is given by

trace(~ yTy) = ~ i~1(~Y7i)wjWi + trace(~ ETE) (69)

The first term in the right-hand side of (69) is the part of the trace of the
desired output covariance which can be explained by the regressors and the
second term is the unexplained trace of the desired output covariance. Thus

~ (~ Y7i)wjWi (70)

is the increment to the explained trace introduced by Wi' and the error reduction
ratio due to Wi can be defined as (Chen et ai. 1991b)

(f. Y7i)W j Wi
1=1

[err]i = , 1,;;;, j ,;;;, M (71)
trace (yTy)

Based on this ratio, a simple and effective procedure can be derived for
selecting a subset of significant regressors in a forward-regression manner. The
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classical Gram-Schmidt scheme will again be used as an example, and with the
regressor selection procedure attached the algorithm is summarized as follows.

At the 1st step, for 1 .;;; i .;;; M, compute

wli ) = <Pi

y~~ = (w<;» TYq/« w~» T wli», 1.;;; q .;;; m

[err]~) = (i (yn)2)( w~» T wli )/trace (yTy)
q=1

Find

and select
W = W(il) = <p.i 1 (I·

At the kth step where k;;. 2, for 1.;;; i.;;; M, i *" ii, ... , i *" ik-l> compute
a(i) _ T T
Pjk- Wj<P;/(wjwj),I.;;;j.;;;k

k-I
(i) _ "" di)wk - <Pi - L..PjkWj

j=l

y~~ = (w~»TYq/«w~»T w~), 1.;;; q .;;; m

[err]~ = (~I (y~~)2)(W~» Tw~)/trace (yTy)

Find

[err], = [err]~,) = max{[err]~, 1.;;; i.;;; M, i *" iJ, ... , i *" ik-d

and select k-I

Wk = w~,) = <Pi, - L {3jkWj
j=l

(72)

where {3jk = tij:), 1.;;; j < k.

The procedure is terminated at the (Ms)th step when
M,

1 - L[errli < ~,
j=l

where 0 < ~ < 1 is a chosen tolerance. This gives rise to a subset model·
containing M, significant regressors.

In the above procedure each selected centre (regressor) maximizes the incre
ment to the explained trace of the desired output covariance. The selection of
centres is therefore directly linked to the reduction of the error covariance trace.
This is clearly superior to the random selection of centres proposed originally by
Broomhead and Lowe (1988). Similar selection procedures can be derived using
the modified Gram-Schmidt method and Householder transformation method
(Chen et al. 1989, Billings and Chen 1989b).

The tolerance ~ is an important instrument in balancing the accuracy and the
complexity of the final network. It is apparent from (69) that ~ should ideally be
slightly larger than the ratio trace (E TE)/trace (yTy). The desired value for ~
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can actually be learnt during the selection procedure (Billings and Chen 1989 b).
Trace (yTY) is known from the measured or desired outputs and, during the
selection procedure, an estimate of trace (E T E) can be computed. After a few
trials, an appropriate ~ can usually be found. The terminating criterion (72)
emphasizes only the performance of the network. Because a more accurate
performance is often achieved at the expense of using a larger network, a trade
off between the performance and complexity of the network is often desired. An
alternative terminating criterion can be employed based on an Akaike informa
tion criterion and this is discussed in (Chen et al. 1989, Billings and Chen
1989 b).

A simulated nonlinear time series process will be used to illustrate the OLS
algorithm. A total of 1000 observation samples were generated using the model

yet) = (o·g - 0'5exp(-y2(t - l)))y(t - 1)

- (0·3 + 0·9 exp (- y2(t - 1»)y(t - 2)

+ 0·1 sin (H415926y(t - 1» + e(t), (73)

where the noise e(t) was a gaussian white sequence with mean zero and variance
0·01. The inputs to the RBF network were given as x(t) = [yet - l)y(t - 2)]T,
and there were about 1000 candidate centres when the centres were chosen from
the data set. The nonlinearity cfJ() was selected as (48). The OLS algorithm
identified a RBF model with 30 centres. The distribution of the noisy observa
tions and the selected centres are depicted in Fig. 6. How accurately the
identified RBF network represents the system can best be illustrated by
examining the autonomous system response and the iterative network response
generated from

Y(t) = l(x(t», x(t) = Ly(t - 1).9(t - 2W

L5

(74)

0.5

, 0

-0.5

-1

;., .
[j '.,' '.' .

-L5

-2
, I I I , I ,

-2 -L5 -1 -0.5 0 0.5 1.5 2
yIt)

Figure 6. Distribution of system observations and RBF centres obtained using the OLS
Algorithm. 1000 samples, 0: position of RBF centre.
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336 S. Chen and S. A. Billings

It can easily be verified that without the noise e(t) the simulated system (73)
generates a stable limit cycle as shown in Fig. 7. The iterative network response
produces a similar limit cycle as can be seen from Fig. 8. Waveforms of the
autonomous system output and the iterative network output are illustrated in
Fig. 9. It is clear that, even though the RBF network was identified using the
noisy system observations, the iterative network response closely matches the

1.5 r--..---..,.---,---,---,----,

0.5

, 0

-0.5

-1

-1.5
-1.5 -I -0.5 0 0.5 1.5

yIII
Figure 7. Limit cycle generated by autonomous system response. 1500 samples, initial

condition: y(O) =y( -1) =0·1.

IIIII
1.5 r--..---..,.---,---,---,----,

0.5

, 0

-0.5

-1

1.5

II

0.5

II

-0.5-I

I

o
yIt)

Figure 8. Limit cycle generated by iterative network response. 1500 samples, initial condition:
NO) =»(-1) =0·1, the RBF network was obtained using the OLS algorithm.
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1.5 ,---,--,---.------.----,------,

960950910

-1

-1.5 L-_L-_...l...-_..-L-_.....L_--'-_--J

900

is.
~ 0.5

920 930 940
Salllj)les

Figure 9. Waveforms of autonomous system response and iterative network response. The
RBF network was obtained using the OLS algorithm.

response of the autonomous system. This demonstrates that the identified RBF
model does capture the underlying dynamics of the simulated nonlinear process.

4.3. The hybrid clustering and least squares algorithm
In general, the network input data can only exist in some regions of the input

space R"/. It is reasonable to allocate the RBF centres in these regions and to
reflect the data patterns by the positions of the centres. Moody and Darken
(1989) suggested using a x-means clustering technique to adjust the centres. The
K-means clustering algorithm partitions the input data set into K clusters and
yields K cluster centres by minimizing the total squared error incurred in
representing the data set by the K cluster centres (Duda and Hart 1973). The
K-means clustering is an unsupervised procedure using only the network input
data and it closely resembles the Kohonen self-organizing algorithm (Kohonen
1987). Because the response of the RBF network is linear with respect to the
network weights, it is natural to consider the LS method for adjusting the
weights. The LS algorithm is a supervised learning procedure requiring the
desired output response. Thus, learning can be achieved in a hybrid manner,
combining an unsupervised clustering sub-algorithm for adjusting the RBF
centres and a supervised LS sub-algorithm for updating the RBF weights. This
hybrid algorithm can be implemented in batch form. However, the advantage of
this hybrid approach is that it can naturally be implemented in recursive form
(Moody and Darken 1989, Chen et al. 1992). The recursive version of the hybrid
algorithm is described here.

Given initial centres Cj(O), 1", j '" nh, and an initial learning rate for the
centres ll'c(O), at each sample t the recursive clustering algorithm consists of the
following computational steps.
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(75)

Compute distances and find a minimum distance

dj(t) = Ilx(t) - Cj(t - 1)11, 1 "" j "" nh

k =arg[min{dj(t), 1"" j "" nh}]

Update centres and re-compute the kth distance

Cjet) = Cjet - 1), 1 "" j "" nh and i » k

Ck(t) = Ck(t - 1) + aAt)(x(t) - Ck(t - 1))

dk(t) = Ilx(t) - ck(t)ll·

The initial centres are often chosen randomly. The learning rate should be
ll"c(t) < 1 and should slowly decrease to zero. One rule is

IXc(t - 1)
IX (r) - -----'-'----'---;::-

c - (1 + int[t/nhJ)1/2

where int [] denotes the integer part of the argument. The problem of finding a
minimum is equivalent to one of finding a maximum, and determining which
centre, closest to the input data vector x(t), can be implemented in a
sub-network called MAXNET (Lippmann 1987).

At the output layer, each node or linear combiner has its own recursive LS
(RLS) estimator. Define the hidden layer output vector at t as

;Pet) = [<PJ(t) ... <Pn.(tW = [<P(dj(t), p) ... <P(dnh(t), pW (76)

and the weight vector of the ith output node after adaptation at t as

1 "" i "" m (78)

ei(t) = [1)1i(t) ... I)nhi(tW, 1"" i "" m

The ith RLS estimator can be written as

£j(t) = Yi(t) - :V(t)ei(t - 1), 1
1 [ .P..:,.:(t_----=..:1)'-!.:;p~(t.!....);p!:....T~(t~),,-P(>..:..t..".-_1:.!..)]pet) - -- pet - 1) - -

- ).(t) A ).(t) + ;PT(t)p(t - 1);P(t) ,

ei(t) = ej(t - 1) + P(t)<p(t)ej(t),

The forgetting factor ).(t) is usually computed according to the rule

).(t) = .1.o).(t - 1) + 1 - .1.0.

(77)

(79)

Notice that a universal pet) is used in all the estimators. Numerically robust
versions of RLS can be used instead of (78), for example, a Givens LS
algorithm is described in (Chen et at. 1992).

For fixed centres at the hidden layer, the mean square error surface is
quadratic and the RLS sub-algorithm is therefore guaranteed to converge to the
single global minimum rapidly. The K-means cluster algorithm minimizes the
total squared error incurred in representing the input data set by the K cluster
centres. In general, only a local minimum of the total squared error is found in
this way. This is, however, sufficient because the value of the total squared error
is unimportant to system modelling. The ultimate performance criterion is the
(output) mean square error. The important thing is that, like the LS method,
the clustering algorithm is based on a linear learning rule which has a fast
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convergence rate. The overall learning procedure is therefore guaranteed to
converge rapidly. This is often an advantage of RBF networks compared with
the MLP in recursive identification applications. The liquid level system de
scribed above will be used to illustrate this aspect.

The structure of the RBF network employed to identify the liquid level system
was defined by ni = "» + nu = 3 + 5 and nh = 40. The nonlinearity ep() was
chosen as the thin-plate-spline function (48). The learning rate for the centres
and the forgetting factor were computed using (75) and (79) respectively. The
Givens version (Chen et al. 1992) was used for weight updating. The parameters
for the hybrid identification algorithm were chosen to be P(O) = 1000·0/,
Ao = 0·99, A(O) = 0·95 and £l"c(O) = 0·6. The initial centres were randomly set.
The evolution of the mean square error obtained by the recursive hybrid
clustering and LS algorithm (hyb.) is depicted in Fig. 3, where it is seen that the
reduction in the mean square error was faster compared with that of the
two-layer perceptron trained by the recursive prediction error method.

The same version of the hybrid algorithm with P(O) = 1000·0/, Ao = 0·99,
A(O) =0·95 and £l"c(O) =0·9 was also used to identify the nonlinear time series
process (73). A RBF network with a structure defined by n, = ny = 2 and
nh =30 was used. Random initial centres and the nonlinearity (48) were chosen.
A total of 1500 observation samples were used in the recursive identification,
and the distribution of the noisy observations and the final network centres are
plotted in Fig. 10. The identified RBF network was employed to produce
iteratively the network output in the way indicated by (74). The iterative
network response generated the limit cycle shown in Fig. 11. A comparison of
the waveform of the iterative network response with that of the autonomous
system response is given in Fig. 12.

I I I I I I I

1.5

0.5

, 0

-0.5

-1

-1.5

Figure 10.

I I I I I I I

1.5 2
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I,IJI1.5 r--.----,.----.--....,.-----.----,

0.5

, 0~

-0.5

-1

1.5

II

0.5

II

-0.5-1

I-1.5 L..-._-'---_---'---_----"-_---I.__.l...-_

-1.5 o
yIt)

Figure II. Limit cycle generated by iterative network response. 1500 samples, initial condi
tion: .9(0) = .N-I) =0,1, the RBF network was obtained using the hybrid algorithm.

1.5 r--.----,.----.--....,.-----.----,

tz
~ OIl-l+-Hf-t+H+t-I+-Hf-t+H+t-I-t-l
lC

8l
'" -0.5
~

-I

-1.5 L--_L-_...l-_...L..._-l..-_--'-_---J

300 310 320 330 340 350 360
Samples

Figure 12. Waveforms of autonomous system response and iterative network response. The
RBF network was obtained using the hybrid algorithm.

5. The functional-link network
In the MLP, inputs to a node are first linearly weighted before the sum is

passed through some nonlinear activation function. The network may have many
layers but it is this nonlinear activation function of nodes that ultimately gives
the network its nonlinear approximation ability. The same nonlinearity however
creates problems in learning the network weights. Nonlinear learning rules must
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be used, the learning rate is often unacceptably slow and local rmmma may
cause problems. One way of avoiding nonlinear learning is initially to perform
some nonlinear functional transform or expansion of the network inputs and
then to combine the resulting terms linearly. The structure would have a good
nonlinear approximation ability and yet learning of the weights is a linear
problem. Pao (1989) referred to such a structure as the functional-link network
(FLN).

The general architecture of the FLN is shown in Fig. 13. The hidden layer
enhances the network inputs by performing a certain functional expansion on
the inputs. This maps the input space R'" onto a new space of increased
dimension n, that is,

(80)

(81)

where n/ < n. The set of hj(x) can be viewed as a new basis set. The output
layer consists of m nodes, each node is, in fact, a linear combiner. The overall
input-output mapping of the FLN 1: R"! ~ R'" is defined as

n

l;(x) = 2: TJjjhj(x), 1 '" i '" m
j=1

Generally the value of a new basis function hj(x) depends only on the input x
and a given functional expansion contains no other free parameters. In this
sense the RBF network is different because centres and widths are free
parameters. Only when the centres and widths are all fixed can a RBF network
be regarded as a FLN.

The FLN is mostly relevant to a conventional view on nonlinear system
modelling. In fact the concept of FLN is exactly the same as the extended model
set introduced by Billings and Chen (1989 b). There are numerous ways of
forming the set of model bases {hj(x), 1 '" i '" n}. The simplest and most
well-known one is perhaps the polynomial expansion. In this representaion, the

fj(x)

Output Layer

l:s;sm

Hidden Layer

Figure 13. Schematic of functional-link network.
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set of model bases is the set of monomials of x. A order-J polynomial
expansion, for example, is defined as

{Xi' 1 "" i "" nl} ..... {Xi, x.x], XiXjXb 1 "" i "" j "" k "" nl} (82)

Many other functions, such as the absolute value, exponential, logarithmic,
hyperbolic, trigonometric, Coulomb friction and saturation functions, can cer
tainly be employed to create an extended model set. For exam;le, {hi(x)} may
contain model bases like Ix; - xjl, sin1Txj, cos 21TX;, exp(-x;), tanh (x;), exp
(-x;)Xj and so on (Billings and Chen 1989b). The list of potential choices is
endless. Such an extended model set can give a very rich description to
nonlinear systems and can provide an effective modelling framework. In
practice, physical knowledge of the system to be identified can often be used to
help in the selection of the model bases.

5.1. Approximation capabilities of FLN

The approximation ability of an FLN obviously relies on the model bases.
Provided that the set of model bases is sufficiently rich or contains sufficient
'higher-order' terms, it can be confidently said that any continuous function f:
Df C R"' .....~Rm can be uniformly approximated to within an arbitrary accuracy
by a FLN f on Df . Consider the simplest case where the extended model set
contains only monomials of the network inputs. The use of a polynomial
function to approximate a continuous function is an old but effective technique.
Based on the Stone-Weierstrass theorem (e.g. Simmons 1963), it can be shown
that any continuous function can. be approximated to within an arbitrary
accuracy by a polynomial function with a sufficient order. In any case an
extended model set can contain components richer than monomials, and a more
effective approximation can be achieved.

The FLN is truly linear in the parameters. Approximation theory not only
says that a sufficient FLN with the correct weights can accurately implement an
arbitrary continuous function but also guarantees that these parameters can
always be learnt at least in the least squares sense. This second property is an
advantage of using the extended model set concept or the FLN to model
nonlinear systems.

5.2. Identification algorithms

The FLN is a very flexible and rich structure. Too flexible some may argue.
How to specify an extended model set can become a problem since potential
choices are so numerous and a dimensional explosion can easily occur. Consider
modelling a nonlinear system with a scalar output and 20 inputs for instance.
Using the order-3 polynomial expansion alone produces an extended model set
of dimension n = 1270. Adding other numerous choices of model bases, it soon
becomes impossible to construct such a large FLN. Subset model selection is
therefore crucial for the FLN and this was solved by Billings and Chen (1989 b)
based on the extended model set idea. The OLS algorithm described above
provides an efficient solution for subset model selection. A full extended model
set is first specified. In order to cover the nonlinear system to be identified well,
the full model set may have a huge dimension, containing several thousands of
terms for example. The OLS algorithm is used to identify a subset that achieves
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the desired accuracy. For many practical systems, the selected subset may only
have 20 or so significant terms. Once the structure of the FLN or the set of
model bases is given, the RLS algorithm provides an efficient means for
real-time adaptation of the network weights. The convergence properties of the
RLS algorithm are well established (Ljung and Soderstrom 1983).

To demonstrate the idea of FLN, a polynomial expansion was used to model
the nonlinear time series (73). The input dimension was set to n/ = n y = 2 and
the polynomial order was chosen to be 7. This gave rise to a full extended
model set of 35 monomials, a polynomial NARMAX model in fact (Leontaritis
and Billings 1985). The OLS algorithm selected a subset of nine monomials
based on 1000 samples of noisy observation and the final model was

[(y(t - 1), yet - 2» = -1'17059y(t - 2) + 0'606861y(t - 1)

+ 0·679190y2(t - l)y(t - 2)

-0·136235y4(t - l)y(t - 2)

+ 0·165646y\t - l)y(t - 2)

- 0·00711966y6(t - 2)

-O·114719y\t - l)y(t - 2)

- 0'0314354y(t - l)y(t - 2)

+ 0·0134682y3(t - 1)
Notice that the highest-order of the selected model bases was 6. This subset
model was then used to generate iteratively the model response

yet) = tss« - 1), yet - 2»

IIIII
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Figure 14. Limit cycle generated by iterative subset polynomial model. 1500 samples. initial
condition: .9(0) = 9( -1) '" 0·1.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

17
:5

5 
5 

S
ep

te
m

be
r 2

00
7 
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which produced a limit cycle depicted in Fig. 14. Excellent agreement was
obtained between the iterative model output and the autonomous system output
as can be seen from Fig. 15. Alternative extended model set terms could also be
used to provide different functional model forms.

6. Conclusions
The artificial neural network approach has been shown to be a general scheme

for nonlinear dynamic system modelling and identification. Several feedforward
network architectures have been considered as nonlinear models and it has been
demonstrated that they all have good capabilities for representing complex
nonlinear systems. Identification or learning algorithms for these network
structures have been presented and the advantages and disadvantages of these
network models have been discussed.

The multi-layer perceptron proves to be a universal model for non-linear
systems and the prediction error method developed for system identification
offers a class of batch and recursive algorithms for multi-layer perceptron
models. The back propagation algorithm for example is just a special case of this
class of learning algorithms. Unfortunately the error surface of a multi-layer
perceptron model is often highly complex. This is a severe disadvantage and
potential pitfalls may exist in the identification procedure.

The radial basis function network provides an alternative two-layer network
structure. Each node in the hidden layer has a radially symmetric response
around the node centre and linear learning laws can be derived. Two identifica
tion approaches, the orthogonal least squares method and the hybrid clustering
and least squares method, have been described. The former is a batch learning

1.5 r--,---,---,---,----.----,

~

~

~ 0.5

~
~ 0 t-++H-+I-++I-++H-+;H-+-1I-++-I1-+-1I
~
~

~

~ -0.5
.2-

-1

-1.5 L--L-_L-_L-_.L-_.L-----l

600 610 620 630 640 650 660
Samples

Figure 15. Waveforms of autonomous system response and iterative subset polynomial model
response.
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algorithm capable of identifying adequate network structures and the latter can
naturally be implemented as a recursive learning algorithm.

Many conventional nonlinear models can be interpreted as some kind of
networks that can be dubbed as a neural network. It has been shown that the
functional-link network is just a class of nonlinear models that was previously
referred to as the extended model set representation. This class of networks is
linear in the parameters and this offers a significant advantage in learning. For
practical system identification, efficient subset selecting techniques are required
to overcome excessive model dimension.
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