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Abstract 

This study presents the normative knowledge source for the belief space of cultural algorithm(CA) based on an 

adaptive Radial Basis Function Neural Network (RBFNN). The use of the RBFNN makes it possible to use the 

previous upper and lower bounds of the normative knowledge to update them and to extract a logical 

relationship between the previous parameters of the normative knowledge and their new values. The proposed 

algorithm(N3KCA) is  similar to what the human brain does, i.e. to predict the new values of the bounds of 

normative knowledge based on the previous ones and some knowledge, which it has gained from the previous 

successive updates. Finally, the proposed cultural algorithm is evaluated on 10 unimodal and multimodal 

benchmark functions. The algorithm is compared with several other optimization algorithms including 

previous version of cultural algorithm. In order to have a fair comparison, the number of cost function 

evaluation is kept the same for all optimization algorithms. The obtained results show that the proposed 

modification enhances the performance of the CA in terms of convergence speed and global optimality. 

Keywords: Cultural algorithm (CA), global optimization, knowledge Sources, normative knowledge, adaptive 

Radial Basis Function Neural Network (RBFNN). 

1. Introduction 

Optimization is an important issue in different 

scientific applications. Many researchers dedicated

their studies to algorithms that can be used to find an 

optimal solution for different applications. 

Evolutionary computation techniques such as genetic

algorithm, evolutionary strategy, and evolutionary 

programming and swarm intelligence algorithms such 

as particle swarm intelligence algorithm and ant 

colony optimization are powerful tools for solving 

optimization problems [1]-[4]. Similar to particle 

swarm optimization and ant algorithm in which 

members try to share their experiences, CA tries to

model social intelligence based on natural cultural

evolution to solve the optimization problems [5]-

[6][24]. 

 Facing with an engineering optimization 

problem with extensive domain knowledge that 

cannot be easily integrated into the population level, 

CA is a proposed optimization method. The CA 

Performance is studied in many benchmark 

optimization problems [7] and in a number of diverse 

application areas. For example the efficacy of a 

version of CA is tested on Loney’s solenoid design 

which is an electromagnetic engineering problem [8]. 

In [9] authors applied the CA to the pressure vessel 

optimization problem which is a benchmark 

engineering design problem. The CA is also applied 

to some other engineering applications such as 

prediction by functional link-based neural fuzzy 

network [10], optimization of the tension 

compression of a spring weight [11] and modeling 

the evolution of agriculture [12]. 
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  Three major components of CA are population 

space, belief space and a protocol that defines the

relationship between the population and the belief 

space. The population space can be based on any 

population-based computing models such as genetic 

algorithm, evolutionary programming and particle 

swarm optimization method [10]. The belief space 

stores and updates the knowledge acquired from the 

experience of individuals in the population space. By 

using this knowledge, the belief space conducts the

population to the optimal solution. This mutual 

interaction between the population and the belief 

space will continue until the stop criteria of the 

algorithm are visited. One of these knowledge 

sources is normative knowledge which determines 

the upper and lower bounds for each variable. The 

normative knowledge source identifies promising 

variable ranges of the solutions. 

 This study presents a novel idea presenting the 

normative knowledge source, in the belief space of 

cultural algorithm; which is named "Neural Networks

for Normative Knowledge Source of Cultural 

Algorithm"(N
3
KCA). The proposed novel normative 

knowledge source benefits from an adaptive RBFNN. 

RBFNN has been widely used in many areas, such as 

data mining, pattern recognition, signal processing, 

time series prediction and nonlinear system modeling 

and control [13-23]. It is suggested that there exist a 

relationship between the previous upper and lower 

bounds of the normative knowledge and their new 

values. Using RBFNN as a normative knowledge 

source, it is possible to extract this logical 

relationship. The proposed method tries to pretend 

the way human brain thinks about the upper and the 

lower bounds of variables, considering their histories. 

Finally, the proposed cultural algorithm is evaluated 

on 10 unimodal and multimodal benchmark 

functions. The algorithm is compared with several 

other optimization algorithms such as previous 

version of cultural algorithm, differential evolution, 

particle swarm optimization and genetic algorithm. In 

order to have a fair comparison, the number of cost

function evaluation is kept the same for all 

optimization algorithms. The obtained results show 

that CA with normative knowledge source based on 

RBFNN outperforms these algorithms in terms of 

convergence speed and global optimality.

 The rest of this study is organized as follows. 

The components of CA are reviewed in section II. 

Section III presents normative knowledge source 

based on an adaptive RBFNN approach in details. 

Section IV compares the N
3
KCA algorithm with 

existing CA and various optimization algorithms for

a set of benchmark functions. Discussions and further 

investigations on the N
3
KCA are made in this 

section. Final conclusion is presented in section V. 

2. Cultural algorithm overview 

In this section we describe the traditional CA. The

key idea of CA is to store and update the problem 

solving knowledge with the feedback from the 

population and to guide the search using this 

knowledge [24]. The components of CA are 

population, belief space, acceptance function, and 

influence function. These major components of CA 

are depicted in Fig. 1.  

2.1. The belief space

The experience of individuals are used and stored in 

information repository called belief space. These 

experiences can be used by other individuals. In other 

words the members of the population share their 

experiences in the belief space and subsequently the 

knowledge is extracted from these experiences. The 

benefit of CA over other evolutionary algorithms is

that other than sharing the information with offspring 

the information is shared with other members of the

group. CA employs sets of knowledge sources which 

are characterized by their appearing in the problem

solving process. Reynold and Ali [9] identified five 

basic categories of Knowledge. Each of which are 

added in different time to achieve a various problem 

solving capabilities [7][25][26]. These five 

knowledge sources are normative knowledge, 

situational knowledge, domain knowledge, history 

knowledge and topographical knowledge. The range 

of acceptable behaviors in each generation is 

represented by normative knowledge [7]. Situational

knowledge keeps exemplars of successful solutions. 

Relationships and interactions between the objects in 

the domain are kept in the domain knowledge source 

[25]. Temporal and special patterns of behavior are

stored in history and topographical knowledge 

sources respectively [25][26]. Any cultural 

knowledge can be expressed as some combination of 

these five knowledge sources [9]. The goal of this 

study is to present a novel normative knowledge 

source and to meet this goal normative and 

situational knowledge sources are employed. 
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Fig1. The CA framework[9] 

 The formal syntax of belief space defined in this 

paper is <N[n],S> where N is a normative knowledge 

source and includes the interval information for each 

n variable and S is a situational knowledge 

component.

2.1.1. The existing normative knowledge source 

In all pervious works N[j]  is represented as

j j jN[j] =< I , L ,U > . jΙ  is the closed interval of j-th 

variable, [ ]j jj l ,uΙ = = { }j jx | l x u , x≤ ≤ ∈ � where 

for the j-th variable the lower bound, jl , and upper 

bound, uj, are initialized as the domain values and 

they can be changed later. Lj and Uj denote the 

performance score of the lower and upper bounds of 

j-th variable, respectively. Also in previous studies

the normative knowledge update mechanism is as 

follows. Assume that the i-th individual affects the 

lower and upper bounds of the j-th variable at 

generation t. The update formulas are given below. 

, ,1
( )

i j i j i

t t t t t

j jt

j t

j

x if x l or f x L
l

l Otherwise

+
 < <⎪

= ⎨
⎪⎩

(1)

,1
( ) ( )t t

i i j j i jt

j t

j

f x if x l or f x L
L

L Otherwise

+
⎧⎪ < <⎪⎪=⎨
⎪⎪⎪⎩

(2)

, ,1
( )

i j i j

t t t t t

j i jt

j t

j

x if x u or f x U
u

u Otherwise

+
 > <⎪

= ⎨
⎪⎩

(3)

,1
( ) ( )t t

i i j j i jt

j t

j

f x if x u or f x U
U

U Otherwise

+
 > <⎪

= ⎨
⎪⎩

(4)

Where 
t
i , jx represents the j-th variable of i-th 

individual at generation t  and 
i

f ( x )  denotes the 

fitness function for it. 

2.1.2. The situational knowledge source 

Some good experiences of individuals are kept in this 

knowledge source. Situational knowledge guides 

individuals to move towards these elite experiences. 

This is the earliest knowledge source used with the

CA which is inspired by elitist approaches in genetic 

algorithm. The basic idea of situational knowledge   

source is also very similar to the movement of 

particles towards the global best in particle swarm

optimization (PSO). This knowledge is updated as 

follows. 

best

t t t

bestt +1

t

x if f(x ) < f(S );
S =

S Otherwise

⎪
⎨
⎪⎩

(5)

where 
t

best
x  is the best individual in the population at 

current generation  t. 

2.2. The population space 

The population space consists of a set of possible 

solutions for the problem, and can be modeled using

any population-based approach. The population 

model used here is a simple evolutionary algorithm 

where each individual is a vector of real-valued 

variables. In each generation an individual is evolved 

by the mutation operators using a specific knowledge 

source. Each knowledge source specifies a different

mutation operator.  

 In this study population space is called
Main

P . 

Each individual in 
Main

P  has a number of features 

that are problem variables. Therefore when we want 

to optimize a function with n variables, i-th 

individual in 
Main

P  can be considered as follows. 

i 1 2 nx [x x x ]=
�

…  (6)

2.3. The acceptance function 

The acceptance function determines which of 

individuals and their behaviors can impact the belief 

space knowledge. The number of individuals which 

impact the belief space can range between 1% and 

100% of the population size, based on selected 

criteria. 

2.4. The influence function 

The belief space can influence the new individuals of 

the population space according to the knowledge 

sources influence function. This function defines the 

method by which the knowledge in the belief space 

controls the mutation operator in the population 

space. As mentioned earlier, different mutation 

operators are defined by each knowledge source. 

Since in current research only two sources of 

situational knowledge and normative knowledge are 

used, therefore influence functions are defined as two 
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sources of knowledge. The mutation operator 

according to situational knowledge is defined as 

follows. 

i, j i, j i, j

i, j i, j i, j i, j

i, j i, j

t t t

j j

t +1 t t t

j j

t t

j

x + (x - S ).N(0,1) if x < S

x = x - (x - S ).N(0,1) if x > S ,

x +b. (x - S ) .N(0,1) otherwise

j = 1,..., n


⎪
⎪
⎨
⎪
⎪
⎩

(7)

where n is the number of parameters; xi,j is the j-th 

element in the i-th individual at generation t; 

( )0.01 ~ 0.6β is a constant that is selected equal to 

0.3 as used by Chung  [ 27 ], Sj is the j-th parameter 

in the best individual (S), and , (0,1)i jN  is a random 

number with normal probability distribution function. 

The normative knowledge defines the following 

mutation operator.  

, ,

, , ,

,

1

( ). (0,1)

( ). (0,1) ,

. ( ) . (0,1)

1,...,

i j i j

i j i j i j

i j

t t

j j j

t t t

j j j

t

j j

x u l N if x l

x x u l N if x u

x u l N otherwise

j n

β

+

 + − <
⎪
⎪

= − − >⎨
⎪

+ −⎪⎩

=

(8) 

3. RBFNN structure as normative knowledge 

source 

In this section we introduce the normative 

knowledge-generating system. As mentioned earlier, 

the normative knowledge produces the lower and 

upper bounds for each dimension of an optimization 

problem which is led to the optimal variables range. 

Considering an optimization problem with n

variables, a normal RBFNN is designed to generate 

the n –data pairs which represent the previous lower 

and upper bounds for variables. The structure of a 

normal RBFNN with m neurons is shown in Fig. 2. 

3.1. The inputs of normal RBFNN 

As can be seen from Fig. 2, this neural network has

four inputs which are the index number of the 

feature, the feature value, the lower and upper bounds 

of the feature.  For determining the input tx of this 

artificial neural network, accepted individuals in 

PMain , participate in a discrete recombination which 

benefits from a roulette wheel mechanism.  This 

individual which is produced from the accepted 

individuals is called Recombined Accepted 

Individual (RAI). As Fig. 2 shows the features of the 

RAI are fed to the network separately along with 

,t tx l and
t

u . In this way in order to compute the 

normative knowledge source, this neural network is 

evaluated n times. In general, the network equation 

can be expressed as follow. 

1

( , , )
m

i i i

i

Y W X cφ σ
=

=∑
� � �

��

(9)

where m is the number of neurons. The neural 

network input matrix at generation number t is as 

follows. 

1 1 1

2 2 2

n n n

t t t

1

t t t

2

t t t

n

i RAI l u

i RAI l u
X

i RAI l u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�

⋮ ⋮ ⋮ ⋮

(10)

which 
k

i (k=1,2,…,n) is the index of variables that is 

normalized to the variable range, t

k
RAI is value of k-

th variable at generation t, and t

k
l  and t

k
u  are the 

lower and upper bounds for k-th variable in 

generation t respectively. In each stage, the neural 

network is applied to a row of this matrix. The 

network output is as follows. 
t 1 t 1

1 1

t 1 t 1

2 2

t 1 t 1

n n

l u

l u
Y

l u

+ +

+ +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

⋮ ⋮

(11)

3.2. The feedforward algorithm of normal 

RBFNN 

Obviously, in every stage of the feedforward 

calculation of the neural network, a row of Y
�

 is 

achieved as the output of the neural network. So in

order to find the lower and upper bounds for all n

variables, it is required to run the neural network

feedforward algorithm for n times.   
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Figure 2. The structure of Norma
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numbers. In order to calculate the best personal and 

the global experiences, we need to evaluate these 

particles. In order to evaluate a particle, first we 

calculate the lower and upper bounds corresponding 

to this particle by neural network feedforward 

algorithm.  Using the achieved lower and upper 

bounds, RAI  is mutated by normative knowledge 

source influence function. This procedure is done for 

all particles in 
W

P  and subsequently the fitness of the 

corresponding mutated RAI  is considered as the 

fitness of each particle.  

 It should be noted that the centers of RBFs which 

are used to train W
�

, are selected as the best member 

of
C

P . The optimization of 
C

P  is described as 

follows.  

3.4. Training categories centers parameters C 

In order to obtain the best values for the parameters

C , evolutionary programming is utilized, which 

benefits from a simple mutation. The centers of the

RBFs are uniformly distributed in each dimension. 

The members of 
C

P  are selected as different 

permutations of these uniformly distributed centers. 

Thus each member is defined by a matrix, whose 

rows are centers of a neuron and its columns include 

different dimensions of the inputs space which is 

considered to be 4 (see equation 15). We define a 

mutation operator on the members of 
C

P  that 

changes the places of the centers within the same 

dimension between different neurons. In other words, 

no new center values of the RBFs are generated and 

the values of the offspring are a permutation of its 

parent. This simple mutation will considerably lessen 

the computational cost. Using the mutation operator

the offspring are generated. In order to evaluate a

member, first we calculate the lower and upper 

bounds corresponding to this member using neural 

network feedforward algorithm. It should be noted 

that the output weights of neural network are the 

same for all members and are equal to the global best 

particle of
W

P . Using the achieved lower and upper 

bounds, RAI is mutated by normative knowledge 

source influence function. This procedure is repeated 

for all members in 
C

P  and its offsprings. The fitness 

of the corresponding mutated RAI  is considered as 

the fitness of each member. A selection operator 

chooses | |
C

P  (the number of members of 
C

P ) from 

the best members of the next generation. This 

procedure is repeated in each generation; In this way, 

with simultaneous optimization of RBFs centers and 

output weights, we obtain the best configuration for 

RBFs and neural network parameters.  

3.5. The Pseudo code of the whole algorithm 

The Pseudo code of the described algorithm can be 

briefly presented as follows. 

1. Initialize randomly PMain   ، PW and PC . 

2. Iterate the following steps until the stop 

criteria are visited. 

2.1. sort the PMain based on fitness function. 

2.2. update situational knowledge as equation 5 

2.3. Select individuals from PMain considering 

acceptance function and generate RAI  as 

described in section 3.1. 

2.4. Perform the procedure described in section 

3.3 for one generation and update the 

particles in PW . 

2.5. Perform the procedure described in section 

3.4. for one generation and update the 

particles in PC . 

2.6. update normative knowledge using RBFNN

(the best individual in PC would be replaced 

by C and the best particle in PW would be 

replaced  by W). 

2.7. Mutate Individuals in PMain using the 

normative knowledge and situational 

knowledge Influences function (50% by 

each). 

4. Simulation result 

In this section, some experiments are carried out on 

the benchmark functions to evaluate the proposed CA

which benefits from a RBFNN normative knowledge 

source. In addition, the proposed method is compared 

with existing structures for The CA and The other 

optimization methods e.g. particle swarm 

optimization (PSO)[42]-[44], The genetic 

algorithms(GA) [45]-[47]and The differential 

evolution(DE)[42],[48],[49]. 
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Table 1. Ten Benchmark functions are used in this paper. The first five functions are unimodal and the remaining are multimodal 

Global fmin Search space Test function 
Name of 

function

x 0, f ( x ) 0= =
� �

[ ]
D

100,100−

D
2

1 i

i 1

f ( x ) x
=

=∑Sphare 

x 0, f ( x ) 0= =
� �

[ ]
D

100,100−2 i if ( x ) max ( x )=Schwefel2.21 

x 1, f ( x ) 0= =
� �

[ ]
D

30 ,30−

D 1
2 2 2

3 i 1 i i

i 1

f ( x ) 100( x x ) ( x 1)
−

+
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑Rosenbrock 

x 0, f ( x ) 0= =
� �

[ ]
D

1.28,1.28−

D
4

4 i

i 1

f ix rand[ 0,1)
=

= +∑Quadric 

Noise 

x 0, f ( x ) 0= =
� �

[ ]
D

100,100−

D
2

5 i

i 1

f ( x ) x 0.5
=

⎢ ⎥= +⎣ ⎦∑Step 

x 0, f ( x ) 0= =
� �

[ ]
D

600,600−

D D
2 i

i

i

6

1i 1

f
1

x cos( ) 1
4000

( x)
i==

π
= − +∑ ∏Griewank 

x 0, f ( x ) 0= =
� �

[ ]
D

5.12,5.12−]
D

2

7 i i

i 1

f x 10 cos( 2 x ) 10
=

⎡= − π +⎢⎣∑Rasterigin 

x 0, f ( x ) 0= =
� �

[ ]
D

32,32−

D D
2
i i

i 1 i 1

1 1
0.2 x cos( 2 x )

D D

8f ( x ) 20e e 20 e= =

− π∑ ∑
=− − + +

Ackley 

x 0, f ( x ) 0= =
� �

[ ]
D

50 ,50−

( ) ( ) ( )

( ) } ( ) ( )

( )

( )

( )

D 1
22 2

9 1 i i 1

i 1

D
2

D i i i

i 1

m

i i

i i

m

i i

f ( x ) 10 sin y y 1 1 10 sin y
D

1
y 1 u x ,10,100,4 , where y 1 x 1 ,

4

k x a , x a

u x ,a ,k,m 0 , a x a

k x a , x a

−

+
=

=

⎧⎪π ⎪ ⎡ ⎤= π + − + π +⎨ ⎢ ⎥⎣ ⎦⎪⎪⎩

− + = + +

⎧⎪ − >⎪⎪⎪⎪= − ≤ ≤⎨
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∑

∑
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x 0, f ( x ) 0= =
� �

[ ]
D

5.12,5.12−

]

( )

D
2
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i 1

i i

i
i

i

f y 10 cos( 2 y ) 10 ,

x x 0.5

where y round 2x
x 0.5

2

=

⎡= − π +⎢⎣

⎧⎪ <⎪⎪⎪=⎨
⎪ >⎪⎪⎪⎩

∑
Non 

continuous 

Rasterigin 

4.1. Benchmark functions and algorithm   

configuration 

We have chosen ten test functions that are widely 

used in the nonlinear global optimization literature 

[28-30]. Function names, formulas, range of variables 

and the global optima are listed in Table 1 these 

benchmark functions have a wide variety of the 

different landscapes and present significant 

challenges to the optimization methods. The step 

function is a discontinuous unimodal function, but 

Sphere, Schwefel's 2.21, Rosenbrock, and Quadric 

Noise are continuous unimodal functions. Griewank, 

Rastring, Ackley and Generalized Penalized are 

difficult multimodal functions where the number of 

local optima increases exponentially with the 

problem dimension. “Non-continuous Rasterigin” is 

also a discrete multi-modal function.  

 In contemplation of comparing the proposed 

algorithm, the standard version of existing CA, PSO, 

GA and DE algorithms which are widely applied to 

optimization applications, are used. The existing CA 

uses two knowledge sources: situational and 

normative knowledge. This algorithm uses 
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evolutionary programming model for its population 

space. In addition, it benefits from influence 

functions operators defined by the knowledge sources 

mentioned above, each one having a 50% chance to 

be applied to an individual. DE is a simple method 

that uses the difference between two solutions to 

probabilistically adapt a third solution. For DE, we 

use a weighting factor F (0.2,0.8)U∼  and a 

crossover probability Pc=0.2. GA is based on natural 

selection in the theory of biological evolution. Here, 

we use real value coding for variables, roulette wheel 

selection, arithmetic crossover with a crossover 

probability Pc=0.7, uniform mutation with a mutation 

probability Pm= 0.1 and elitism operator that uses the 

best chromosome at each generation for the next 

generation. The PSO algorithm is based on the 

swarming behavior of birds and fish. For PSO we use

only global learning (star topology), the inertia 

weight w decreases linearly from 0.9 to 0.4 and the 

acceleration coefficients are set as c1 = c2 = 2 same 

as the common configuration in a standard PSO. 

 The value of maximum velocity is set as the 

scope of the search space for each case. The values of 

the parameters for above mentioned algorithms are 

shown in details in Table 2.  

 Two trends are used for determining the 

population size. In the first set of experiences, the 

sizes of population in all algorithms are kept constant 

and equal to 10. In the second set of experiments in 

order to have a fair comparison, the population sizes 

of the algorithms are considered in such a way that

the orders of complexity of all algorithms are kept the 

same. 

 The evaluation of the fitness function is 

considered as the key operator, for determining the

algorithm complexity. In other words the other 

operations of algorithms are considered to be 

neglectable when compared to the evaluation of the 

fitness function. As a result the complexity of these 

algorithms can be calculated as in Table 3.  

 In addition, if the sizes of all populations are 

considered equal as | | | | | |
Main W C

P P P PopSize= = = , 

then table 3 is updated as Table 4.

 As Table 4 illustrates, in order  to achieve the 

same complexity for N
3
KCA v.s CA, PSO, GA and 

DE ( 3 CA PSO GA DEN KCA
θ θ θ θ θ= = = = ) the population 

size of  N
3
KCA is set to 10 while for CA, PSO and 

GA the size is set to 30 and for DE is set to 15. 

4.2. Comparisons on the solutions  

Table 5. shows the comparison results of N
3
KCA 

and previous approaches. The dimension of the set of 

functions is set to 30 and the simulations are repeated 

for 15 times. As can be seen from the Table 5 the 

proposed algorithm outperforms others, when they 

are applied to f2, f3 and f4. It should be noted that 

since the complexity in terms of number of cost 

function evaluation in the proposed algorithm is 

higher than other methods, the population size of 

other algorithms are considered bigger to achieve the 

same complexity. But if the population sizes of the

algorithms are kept constant then the proposed 

algorithm performs better in eight of ten functions. It 

is also noticeable, in the functions that the proposed 

algorithm is not the best; it is often the second best 

algorithm. 

Table 2. detail of all algorithms used in the  

comparison

knowledge sources=normative knowledge and 

situational knowledge  

influence function =see equation 7 and 8(50% by 

each one) 

acceptance function=decrease linearly from �������

��	�
���
������������������������
�

CA 

c1=2 

c2=2 

w= decreases linearly from 0.9 to 0.4 

PSO 

selection : roulette  wheel 

crossover : arithmetic crossover 

mutation : uniform mutation 

Pc=0.7 

Pm=0.1 

GA 

weighting factor F U(0.2,0.8 )∼   

crossover probability=0.2 

DE 

Table 3. The complexity of all algorithms used in the 

comparison

3 Main W CN KCA

Main W C

T (| P |,| P |,| P |,MaxGen )

MaxGen (| P | | P | | P |)

=

× + +

CA Main MainT (| P |,MaxGen ) MaxGen | P |= ×

PSO Main MainT (| P |,MaxGen ) MaxGen | P |= ×

GA Main MainT (| P |,MaxGen ) MaxGen | P |= ×

DE Main MainT (| P |,MaxGen ) MaxGen | 2P |= ×

Table 4. The complexity of all algorithms used in the 

comparison. The sizes of all populations are kept as 

Main W C| P | | P | | P | PopSize= = =

3N KCA
T ( PopSize,MaxGen ) 3 MaxGen PopSize= × ×

CAT ( PopSize,MaxGen ) MaxGen PopSize= ×

PSOT ( PopSize,MaxGen ) MaxGen PopSize= ×

GAT ( PopSize,MaxGen ) MaxGen PopSize= ×

DET ( PopSize,MaxGen ) 2 MaxGen PopSize= × ×

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

986



N3KCA

 Although other algorithms are comparable with 

the proposed method in low dimensions, the 

performance improvement of the proposed algorithm 

in higher dimension is more significant. 

 The simulation results of the comparison 

between N
3
KCA and the previous methods in higher 

dimensions are given in Table 6. This table shows the 

results of 15 independent runs of each algorithm in

terms of the "best", mean and overall standard 

deviations (SD) of the solutions. Boldface in the table 

indicates the best result among other contenders. As 

can be seen from the table, when the dimension of the 

functions increases, the proposed algorithm 

outperforms previously mentioned algorithms. As 

can be seen from the table, the performance of the 

proposed method is significantly better than other 

methods in both unimodal and multimodal 

optimization functions. Especially the difference of 

the optimal solutions found in f3, f6, f7 and f10 for the 

proposed algorithm with respect to other studied 

methods is much higher. 

 Furthermore, the N
3
KCA can successfully jump 

out of the local minima on all of the multimodal 

functions and surpasses all the other algorithms on

functions f7, f8, and f9, when the dimension of the 

problem is high. Considering the fact that the global 

optimum of f7 (Schwefel’s function) is far away from 

any of the local optima, and the globally best 

solutions of f8 and f9 (continuous/noncontiguous 

Rastrigin’s functions) are surrounded by a large 

number of local optima, it can be concluded that 

when the dimension of the problem is high, the 

proposed method has a great ability to avoid being 

trapped in the local optima and achieving global 

optimal solutions to multimodal functions. Hence, 

when facing the high dimensional optimization 

problems, the proposed algorithm is a viable choice. 

Table 5. Search Result Comparison of N3KCA, CA, PSO, GA, DE And Ten Test functions. The dimension of the functions is set to 

30 and the simulations are repeated for 15 times. 

Algorithm N3K CA CA PSO GA DE 

No of Population 10 10 30 10 30 10 30 10 15 

f1

Best ��������	 
����
	 ��������	 �������	 ��������	 ����
�
	 ����
���	 ��������	 �������	

Average ��������	 ��
�����	 
��
���
	 ����
���	 �������	 ��������	 �������	 �������	 ��������	

STD ������	 �������	 ��������	 �
������	 �������	 ��������	 ��������	 �������	 ��������	

f2

Best �����
�	 ������	 �
����	 ����
���	 ��������	 ������

	 ��������	 �������	 �������	

Average �������	 �
���
	 �����	 �����
��	 ��������	 ����
��	 ������	 �������	 
��

�

	

STD ��������	 �����
��	 �������
	 �������	 
�������	 �������	 �������	 
�������	 ������
	

f3

Best �������	 �������
	 �������	 ������	 ��������	 ������	 ��
����	 �������
	 ����
��	

Average 
�������	 �
�
����	 ������
	 ��
����	 ���
��	 �
��
�	 ������
	 ��
����	 �������
	

STD ������	 ��������	 �������
	 �����
�	 �������	 ���
����	 �����	 ��
�
��	 �������	

f4

Best �����


	 �������	 �������
	 ������	 ���
����	 �����
��	 �����
��	 ��������	 �����
��	

Average ��������	 ������	 �������	 �������	 �������	 ���
���	 �������	 �������	 ������
	

STD �����	 ���
����	 �����	 �������	 ����


�	 ����

�	 �������
	 ������	 �������	

f5

Best �	 �����	 �	 �
	 ����	 �
	 ��	 �	 �	

Average �	 �
�����	 ���	 �������	 ������	 ������	 ��������	 �����	 �������	

STD �������
	 
������	 ��������	 �������	 �����
��	 �
�����	 ����	 ����

�	 ����
�	

f6

Best ��������	 ����
	 �	 �������	 ������
�	 �������	 �������	 ����
���	 ��������	

Average ������	 ���

��	 �����
��	 �������	 �
����	 ������	 �������
	 ������
	 ��������	

STD ������	 
�������	 ��������	 �������	 �����
	 ���
����	 �������
	 ��
����	 �������	

f7

Best �������	 �
�����
	 
�����	 ��
�����	 �����
��	 �����	 ��������	 �������	 ������	

Average �������
	 �����	 ����
���	 �������	 ������
�	 
�����	 �
������	 ���
�	 ��������	

STD ����
�
�	 ��������	 ��������	 �������	 �������	 ���
�
�	 ���
�
�	 ��
�����	 ��������	

f8

Best ��������	 ��������	 ����
�
	 �������	 ��������	 ��
�����	 ������	 ��������	 ��������	

Average �������	 �
������	 ����	 �������	 ����
���	 ����
��	 ���
��	 ��
�����	 �������	

STD ��������	 ���
���	 ��
�����	 �����	 ��

��
	 ������	 ��������	 ��������	 ���
���	

f9

Best ������	 ����
��	 ��������	 
�������	 ����
���	 �������	 ��
�����	 ������	 �������
	

Average �������	 ����
���	 ��
��
	 ����
��	 ��
��	 ������	 �����
��	 �������	 ��������	

STD �������	 �

�
�
	 ����
��	 
�����	 ������	 �����
�	 ��������	 �������	 ��������	

f10

Best �������
	 ������
�	 ��	 �������	 ��������	 ����
��	 �
�����	 ��������	 �������	

Average ��������	 �����
�	 
�������	 �������
	 �������	 �������	 
����
��	 �
�����	 �������	

STD ������	 �������	 �
����	 �������	 �
������	 ���
����	 ���
����	 ������	 ������
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 Fig. 3 and Fig. 4 depict the convergence graph of 

the studied algorithms. These figures show that the

convergence speeds of the proposed algorithm when 

it is applied to different unimodal and multimodal 

functions, is much higher than the other algorithms. 

These figures also imply that if the generation 

number of the algorithms is set to a small value, the 

proposed method noticeably outperforms other 

methods.  For example if the generation number for 

all algorithms is set to 100, almost none of the 

algorithms can achieve comparable results with 

respect to the N
3
KCA.  

 Fig. 5 illustrates the Frobinous norm of the 

neural network weights used in the normative 

knowledge source of the proposed algorithm. As can 

be seen from the figure the weights of this neural 

network are trained to obtain their optimal values 

during the optimization process. Fig. 5 shows that in 

the multimodal optimization problem, the weights 

need to be changed more, in order to obtain an 

optimal result. In addition, it can be seen that the 

weights of neural network are generally more rapidly 

converge when the cost function is unimodal. Using 

this neural network, make it possible to obtain an 

optimal nonlinear and intelligent relationship 

between the previous values of the normative 

knowledge and its successful future values. The fact 

that the proposed algorithm obtains the best results 

especially in high dimensions shows that the 

proposed method is successful in using its 

experiences to obtain the desired knowledge source.

Table 6. Search Result Comparison of N3KCA, CA, PSO, GA, DE And Ten Test functions. The dimension of the functions is set to 100 and the 

simulations are repeated for 15 times. 
Algorithm N3K CA CA PSO GA DE 

No of Population ١٠ 10 30 10 30 10 30 10 15 

f1

Best ������	 �������	 �������
	 ���
���	 �������	 ������	 ��������	 ������	 �������	

Average �������	 ����
	 ������
�	 ���
�

	 ������	 �
����	 �
���
�	 ������
	 �������	

STD ��������	 ���
��
	 �
������	 �������	 �����	 �������	 ����
���	 ������
�	 �������
	

f2

Best ��������	 
�����	 
������	 ������
	 ����
�
	 ������	 ����	 ��������	 ���

�
�	

Average �������	 ��������	 
�����	 ������
	 ���

��	 ������	 �
�����	 ��������	 ������
�	

STD ��������	 ������	 ��������	 
����
�	 ��������	 �������	 ���
����	 ������	 ��
���

	

f3

Best ��������	 �������
	 �������	 �

�����	 ��
�
�	 ������	 ��������	 ���
����	 �����	

Average ������	 ������
	 �������	 ������
	 �������	 �����	 ����
���	 �����
	 �������	

STD ����
��	 ������
	 ��������	 ������	 �������	 ���
�	 �������	 ����

	 �����	

f4

Best ����
���	 
������	 �������	 ���
����	 ������	 ������	 ��������	 ����
�	 ������	

Average �������	 ��������	 ��������	 ������
�	 ���
��	 �������	 ��������	 �����	 �����	

STD ������
	 �
������	 ��������	 ������
	 ���

�	 ����
���	 ���
�
��	 ��
����	 �������	

f5

Best �	 ��
���	 ����	 �����	 ���
�	 ����	 ��
�	 ���	 �	

Average ����	 �������	 ���
���	 ������
	 �������	 ������	 �������	 ������	 
������	

STD �
����	 �������	 �������	 �������	 �������	 ������	 ������	 ������	 ����
�
	

f6

Best ������	 ��

���	 �������	 ������	 �������
	 �
������	 �������	 ��������	 �������	

Average �����
�	 ��������	 �������	 ��������	 �
������	 ����
	 ��
���	 ������	 ��������	

STD �������	 ����

�	 �����
�	 �������	 ��������	 ��������	 �������	 ��������	 �����	

f7

Best �
�����	 �������	 ��������	 
�������	 

�����	 ���

��	 �������
	 ��
�����	 ������	

Average ����
	 ��������	 ��������	 ���
��

	 

����
	 
�������	 

�����	 �������	 �
�����	

STD �����	 ����

��	 ��������	 ��������	 ����
��	 
�����	 
������	 ����
��	 �����
�	

f8

Best �����
�	 ��������	 �
����
	 ������
�	 ��������	 ��������	 ����
�	 ������	 ���
��	

Average ������	 ����
��	 �����
��	 �����
�	 �������	 ������	 �������
	 ��������	 �������	

STD ��������	 ������	 ��������	 ����
���	 �����
	 �������
	 ������
�	 ���
��
�	 ������	

f9

Best ���
���
	 ��������	 ��������	 ���
����	 ��������	 �������	 ��������	 ��������	 ��������	

Average �������
	 ��
����	 �������	 ����
�

	 �
�
���	 ��������	 �������	 ������
	 �

��
	

STD �����
�	 ��
����
	 ����
���	 �
�����	 ����
���	 �

����	 �������	 ����

	 ��������	

f10

Best ��������	 �������	 ��������	 �
�����	 �������	 �������	 ��

����	 ��������	 ���
����	

Average �����

�	 ��������	 ������	 ��
�
���	 
�������	 �������	 
���
���	 ��������	 �������	

STD ��������	 ��������	 
�������	 �
������	 
��
����	 ����
�
	 �
�����	 �
����	 ��������	
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Fig. 3. Convergence performance of the five algorithms on the 10 test functions. f1, f2, f3, f4.

5. Conclusion 

In this study, a novel version of CA is introduced and 

tested. The proposed novel version of CA benefits 

from a RBFNN in its normative knowledge source 

and hence is called N
3
KCA. This version of CA uses 

two knowledge sources of normative and situational.

The use of RBFNN in the normative knowledge 

source of CA makes it possible to update the 

normative knowledge by means of experiences which 

are obtained during the optimization process and the 

learning capability of RBFNN.  The proposed 

algorithm pretends what the human brain does, i.e. to 

update the new values of the bounds of its normative 

knowledge, using the previous values of its 

normative knowledge and its experiences gained 

during the optimization. In order to optimize the 

values of the RBFNN used in the N
3
KCA, 

evolutionary methods are utilized. A novel mutation

operator is used to train RBFNN. The novel mutation

operator is less complex and easy to implement. In 

addition, the output weights of the RBFNN are 

trained using PSO. 

 In order to update the RBFNN and consequently 

the normative knowledge source, the input of the 

RBFNN is selected by means of an acceptance 

function which benefits from a discrete reproducing

algorithm. The lower and upper bounds of normative 

knowledge source are obtained using the updated 

RBFNN and the selected individual which is called 

RAI. The new population is generated by means of 

the influence function in the form of two mutation 

operators introduced by normative and situational 

knowledge sources. In order to show the efficacy of

the proposed algorithm, it is compared with four 

other well known optimization methods namely GA, 

PSO, DE and existing version of CA using several 

unimodal and multimodal benchmark optimization 

problems.  

 In order to have a fair comparison, the 

comparisons are done in two cases: same number of 

population size and same order of complexities. The

obtained results show that the N
3
KCA can 

successfully jump out of the local minima on all of

the multimodal functions and surpasses all the other 

algorithms when the dimension of the problem is 

high. In addition, the convergence graphs of the 

algorithms depict that the proposed method is capable 

of obtaining high quality solutions much faster than 

other mentioned algorithms. 
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Fig. 4. (Continued.) Convergence performance of the five algorithms on the 10 test functions. f5, f6, f7, f8, f9, f10.
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1 

f1 f2

f3 f4
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f8 f8

f9 f10

Fig 5. Frobinous norm of the weights of the normal RBFNN used in 

the normative knowledge source of the proposed algorithm. 
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