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ABSTRACT

Ensemble weather predictions require statistical postprocessing of systematic errors to obtain reliable and

accurate probabilistic forecasts. Traditionally, this is accomplished with distributional regression models in

which the parameters of a predictive distribution are estimated from a training period. We propose a flexible

alternative based on neural networks that can incorporate nonlinear relationships between arbitrary predictor

variables and forecast distribution parameters that are automatically learned in a data-driven way rather than

requiring prespecified link functions. In a case study of 2-m temperature forecasts at surface stations in

Germany, the neural network approach significantly outperforms benchmark postprocessing methods while

being computationally more affordable. Key components to this improvement are the use of auxiliary pre-

dictor variables and station-specific informationwith the help of embeddings. Furthermore, the trained neural

network can be used to gain insight into the importance of meteorological variables, thereby challenging the

notion of neural networks as uninterpretable black boxes. Our approach can easily be extended to other

statistical postprocessing and forecasting problems. We anticipate that recent advances in deep learning

combined with the ever-increasing amounts of model and observation data will transform the postprocessing

of numerical weather forecasts in the coming decade.

1. Introduction

Numerical weather prediction based on physical

models of the atmosphere has improved continuously

since its inception more than four decades ago (Bauer

et al. 2015). In particular, the emergence of ensemble

forecasts—simulations with varying initial conditions

and/or model physics—added another dimension by

quantifying the flow-dependent uncertainty. Yet de-

spite these advances the raw forecasts continue to ex-

hibit systematic errors that need to be corrected using

statistical postprocessing methods (Hemri et al. 2014).

Considering the ever-increasing social and economical

value of numerical weather prediction—for example, in

the renewable energy industry—producing accurate and

calibrated probabilistic forecasts is an urgent challenge.

Most postprocessing methods correct systematic errors

in the raw ensemble forecast by learning a function that

relates the response variable of interest to predictors.

From a machine learning perspective, postprocessing can

be viewed as a supervised learning task. For the purpose

of this studywewill consider postprocessing in a narrower

distributional regression framework where the aim is to

model the conditional distribution of the weather vari-

able of interest given a set of predictors. The two most

prominent approaches for probabilistic forecasts, Bayesian

model averaging (BMA; Raftery et al. 2005) and non-

homogeneous regression, also referred to as ensemble

model output statistics (EMOS; Gneiting et al. 2005),

rely on parametric forecast distributions. This means

one has to specify a predictive distribution and estimate

its parameters, for example, the mean and the standard de-

viation in the case of a Gaussian distribution. Within the
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EMOS framework the distribution parameters are con-

nected to summary statistics of the ensemble predictions

through suitable link functions that are estimated by

minimizing a probabilistic loss function over a training

dataset. Including additional predictors, such as forecasts of

cloud cover or humidity, is not straightforward within this

framework and requires elaborate approaches to avoid

overfitting (Messner et al. 2017), a term that describes the

inability of amodel to generalize to data outside the training

dataset. We propose an alternative approach based on

modern machine learning methods, which is capable of in-

cluding arbitrary predictors and learns nonlinear de-

pendencies in a data-driven way.

Much work over the past years has been spent on

flexible machine learning techniques for statistical mod-

eling and forecasting (McGovern et al. 2017). Random

forests (Breiman 2001), for instance, canmodel nonlinear

relationships including arbitrary predictors while being

robust to overfitting. They have been used for the clas-

sification and prediction of precipitation (Gagne et al.

2014), severe wind (Lagerquist et al. 2017), and hail

(Gagne et al. 2017). Within a postprocessing context,

quantile regression forest models have been proposed by

Taillardat et al. (2016).

Neural networks are a flexible and user-friendly ma-

chine learning algorithm that can model arbitrary non-

linear functions (Nielsen 2015). They consist of several

layers of interconnected nodes that are modulated with

simple nonlinearities (Fig. 1; section 4). Over the past

decade many fields, most notably computer vision and

natural language processing (LeCun et al. 2015), but also

biology, physics, and chemistry (Angermueller et al.

2016; Goh et al. 2017), have been transformed by neural

networks. In the atmospheric sciences, neural networks

have been used to detect extreme weather in climate

datasets (Liu et al. 2016) and parameterize subgrid

processes in general circulation models (Gentine et al.

2018; Rasp et al. 2018). Neural networks have also been

used for forecasting solar irradiances (Wang et al. 2012;

Chu et al. 2013) and damaging winds (Lagerquist et al.

2017). However, the complexity of the neural networks

used in these studies was limited.

Here, we demonstrate how neural networks can be

used for probabilistic postprocessing of ensemble fore-

casts within the distributional regression framework.

The presented model architecture allows for the in-

corporation of various features that are relevant for cor-

recting systematic deficiencies of ensemble predictions,

and to estimate the network parameters by optimizing

the continuous ranked probability score—a mathemati-

cally principled loss function for probabilistic forecasts.

Specifically, we explore a case study of 2-m temperature

forecasts at surface stations in Germany with data from

2007 to 2016. We compare different neural network

configurations to benchmark postprocessing methods

for varying training period lengths. We further use the

trained neural networks to gain meteorological insight

into the problem at hand. Our ultimate goal is to present

an efficient, multipurpose approach to statistical post-

processing and probabilistic forecasting. To the best of

our knowledge, this study is the first to tackle ensemble

postprocessing using neural networks.

FIG. 1. Schematic of (left) an FCN and (right) an NN with one hidden layer. In both cases, data flow from left to

right. Orange nodes and connections illustrate station embeddings, and blue nodes are for auxiliary input variables.

Mathematical operations are to be understood as elementwise operations for vector objects.
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The remainder of the paper is structured as follows.

Section 2 describes the forecast and observation data

as well as the notation used throughout the study. In

section 3 we describe the benchmark postprocessing

models, followed by a description of the neural network

techniques in section 4. The main results are presented

in section 5. In section 6 we explore the relative im-

portance of the predictor variables. A discussion of

possible extensions follows in section 7 before our con-

clusions are presented in section 8.

Python (Python Software Foundation 2017) and R

(R Core Team 2017) code for reproducing the results is

available online (https://github.com/slerch/ppnn).

2. Data and notation

a. Forecast data

For this study, we focus on 2-m temperature forecasts

at surface stations in Germany at a forecast lead time of

48 h. The forecasts are taken from the THORPEX In-

teractive Grand Global Ensemble (TIGGE) dataset1

(Bougeault et al. 2010). In particular, we use the global

European Centre for Medium-Range Weather Fore-

casts (ECMWF) 50-member ensemble forecasts initial-

ized at 0000 UTC every day. The data in the TIGGE

archive are upscaled onto a 0.58 3 0.58 grid, which cor-

responds to a horizontal grid spacing of around 35/55 km

(zonal/meridional). For comparison with the station

observations, the gridded data were bilinearly interpo-

lated to the observation locations. In addition to the

target variable, we retrieved several auxiliary predictor

variables (Table 12). These were chosen broadly based

on meteorological intuition.3 For each variable, we re-

duced the 50-member ensemble to its mean and stan-

dard deviation.

Ensemble predictions are available from 3 January

2007 to 31 December 2016 every day. For model esti-

mation we use two training periods, 2007–15 and 2015

only, to assess the importance of training sample size. To

validate the performance of the different models cor-

rectly, it is important to mimic operational conditions as

closely as possible. For this reason we chose future dates

only, in our case the entire year 2016, rather than a

random subsample of the entire dataset. Note also that

the ECMWF forecasting system has undergone major

changes during this 10-yr period. This might counteract

the usefulness of using longer training periods.

b. Observation data

The forecasts are evaluated at 537 weather stations in

Germany (see Fig. 24). The 2-m temperature data are

available from the Climate Data Center of the German

Weather Service [Deutscher Wetterdienst (DWD)5].

Several stations have periods of missing data, which are

omitted from the analysis. During the evaluation period

in calendar year 2016, observations are available at

499 stations.

After removing missing observations, the 2016 vali-

dation set contains 182 218 samples, the 2007–15 training

set contains 1 626 724 samples, and the 2015 training set

contains 180 849 samples.

c. Notation

We now introduce the notation that is used throughout

the rest of the paper. An observation of 2-m temperature

TABLE 1. Abbreviations and descriptions of all features.

Feature Description

Ensemble predictions (mean and std dev)

t2m 2-m temperature

cape Convective available

potential energy

sp Surface pressure

tcc Total cloud cover

sshf Sensible heat flux

slhf Latent heat flux

u10 10-m U wind

v10 10-m V wind

d2m 2-m dewpoint temperature

ssr Shortwave radiation flux

str Longwave radiation flux

sm Soil moisture

u_pl500 U wind at 500 hPa

v_pl500 V wind at 500 hPa

u_pl850 U wind at 850 hPa

v_pl850 V wind at 850 hPa

gh_pl500 Geopotential at 500 hPa

q_pl850 Specific humidity at 850 hPa

Station-specific information

station_alt Altitude of station

orog Altitude of model grid point

station_lat Lat of station

station_lon Lon of station

1Available at http://apps.ecmwf.int/datasets/data/tigge/, see

https://github.com/slerch/ppnn/tree/master/data_retrieval.
2Detailed definitions are available at https://software.ecmwf.int/

wiki/display/TIGGE/Parameters.
3 Similar sets of predictors have been used, for example, in

Messner et al. (2017), Schlosser et al. (2018), and Taillardat et al.

(2016, 2017).

4All maps in this article were produced using the R package

ggmap (Kahle and Wickham 2013).
5Available at https://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.

html.
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at station s 2 f1, . . . , Sg and time t 2 f1, . . . , Tg will be

denoted by ys,t. For each s and t, the 50-member ECMWF

ensemble forecast of variable y is given by xy,1s,t , . . . , x
y,50
s,t ,

with mean value xy,mean
s,t and standard deviation xy,sds,t . The

mean values and standard deviations of all variables in

the top part of Table 1 are combined with station-specific

features in the bottom part, and aggregated into a vector

of predictors Xs,t 2 R
p, p5 42. Further, we write Xt2m

s,t to

denote the vector of predictors that only contains the

mean value and standard deviation of the 2-m tempera-

ture forecasts.

3. Benchmark postprocessing techniques

a. Ensemble model output statistics

Within the general EMOS framework proposed by

Gneiting et al. (2005), the conditional distribution of the

weather variable of interest, ys,t, given ensemble pre-

dictions Xs,t, is modeled by a single parametric forecast

distribution Fus,t with parameters us,t 2 R
d:

y
s,t
jX

s,t
;F

us,t
. (1)

The parameters vary over space and time, and depend

on the ensemble predictions Xs,t through suitable link

functions g :R
p
/R

d:

u
s,t
5 g(X

s,t
) . (2)

Here, we are interested in modeling the conditional

distribution of temperature and follow Gneiting et al.

(2005), who introduced a model based on ensemble

predictions of temperature, Xt2m
s,t , only, where the fore-

cast distribution is Gaussian with parameters us,t 2 R
2

given by mean ms,t and standard deviation ss,t, that is,

y
s,t

�

�

�Xt2m
s,t ;N

(ms,t ,ss,t)
,

and where the link functions for the mean and standard

deviation are affine functions of the ensemble mean and

standard deviation, respectively:

(m
s,t
,s

s,t
)5 g(Xt2m

s,t )5 (a
s,t
1 b

s,t
xt2m,mean
s,t , c

s,t
1 d

s,t
xt2m,sd
s,t ) .

(3)

Over the past decade, the EMOS framework has been

extended from temperature to other weather variables

including wind speed (Thorarinsdottir and Gneiting

2010; Lerch and Thorarinsdottir 2013; Baran and Lerch

2015; Scheuerer and Möller 2015) and precipitation

(Messner et al. 2014; Scheuerer 2014; Scheuerer and

Hamill 2015).

The model parameters (or EMOS coefficients)

ks,t 5 (as,t, bs,t, cs,t, ds,t) are estimated by minimizing the

mean continuous ranked probability score (CRPS) as a

function of the parameters over a training set. The

CRPS is an example of a proper scoring rule (i.e., a

mathematically principled loss function for distribution

forecasts) and is a standard choice in meteorological

applications. Details on the mathematical background

of proper scoring rules and their use for model estima-

tion are provided in the appendix.

Training sets are often considered to be composed

of the most recent days only. However, as we did

not find substantial differences in predictive per-

formance, we estimate the coefficients over a fixed

training set, they thus do not vary over time and we

denote them by ks. Estimation is usually either per-

formed locally (i.e., considering only forecast cases

from the station of interest) or globally by pooling

together forecasts and observations from all stations.

We refer to the corresponding EMOS models as

EMOS-loc and EMOS-gl, respectively. The parame-

ters k of the global model do not depend on the sta-

tion s and are, thus, unable to correct location-specific

deficiencies of the ensemble forecasts. Alternative

approaches where training sets are selected based on

similarities of weather situations or observation sta-

tion characteristics were proposed by Junk et al.

(2015) and Lerch and Baran (2017). Both EMOS-gl

and EMOS-loc are implemented in R with the help of

the scoringRules package (Jordan et al. 2018).

FIG. 2. Locations of DWD surface observation stations. The

grayscale values of the points indicate the altitude (m).
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b. Boosting for predictor selection in EMOS models

Extending the EMOS framework to allow for in-

cluding additional predictor variables is nontrivial as the

increased number of parameters can result in overfitting.

Messner et al. (2017) proposed a boosting algorithm for

this purpose. In this approach components of the link

function g in (2) are chosen to be an affine function for

the mean ms,t and an exponential transformation of an

affine function for the standard deviation ss,t:

(m
s,t
,s

s,t
)5 g(X

s,t
)5 f(1,X

s,t
)Tb

s,t
, exp[(1,X

s,t
)Tg

s,t
]g .
(4)

Here, bs,t 2 R
p11 and gs,t 2 R

p11 denote coefficient vec-

tors corresponding to the vector of predictors Xs,t ex-

tended by a constant. As for the standard EMOSmodels,

the coefficient vectors are estimated over fixed training

periods and thus do not depend on t; we suppress the

index in the following.

The boosting algorithm proceeds iteratively by updat-

ing the coefficient of the predictor that improves the

current model fit most. As the coefficient vectors are

initialized as bs 5gs 5 0, only the most important var-

iables will have nonzero coefficients if the algorithm is

stopped before convergence. The contributions of the

different predictors are assessed by computing average

correlations to partial derivatives of the loss func-

tion with respect to ms,t and ss,t over the training set. If

the current model fit is improved, the coefficient vec-

tors are updated by a predefined step size into the di-

rection of steepest descent of linear approximations of

the gradients.

We denote local EMOS models with an additional

boosting step by EMOS-loc-bst. The tuning parameters

of the algorithm were chosen by fitting models for a

variety of choices and picking the configuration with the

best out-of-sample predictions (see the online supple-

mental material) based on implementations in the R

package crch (Messner et al. 2016). Note, however, that

the results are not very sensitive to the exact choice of

tuning parameters. For the local model considered here,

the station-specific features in the bottom part of Table 1

are not relevant and are excluded from Xs,t. Boosting-

based variants of global EMOS models have also been

tested, but result in worse forecasts.

The boosting-based EMOS-loc-bst model differs from

the standard EMOS models (EMOS-gl and EMOS-loc)

in several aspects. First, the boosting step allows us to

include covariate information from predictor variables

other than temperature forecasts. Second, the param-

eters are estimated by maximum likelihood estima-

tion (i.e., by minimizing the mean logarithmic score by

contrast to minimum CRPS estimation; see the appendix

for details).6 Further, the affine link function for the

standard deviation in (3) is replaced by an affine

function for the logarithm of the standard deviation

in (4). By construction the boosting-based EMOS

approach is unable to model interactions of the pre-

dictors. In principle, including nonlinear combinations

(e.g., products) of predictors as additional input allows us

to introduce such effects; however, initial tests indicated

no substantial improvements.

c. Quantile regression forests

Parametric distributional regression models such as

the EMOS methods described above require the choice

of a suitable parametric family Fu. While the conditional

distribution of temperature can be well approximated

by a Gaussian distribution, this poses a limitation for

other weather variables such as wind speed or pre-

cipitation where the choice is less obvious (see, e.g.,

Baran and Lerch 2018).

Nonparametric distributional regression approaches

provide alternatives that circumvent the choice of the

parametric family. For example, quantile regression

approaches approximate the conditional distribution

by a set of quantiles.Within the context of postprocessing

ensemble forecasts, Taillardat et al. (2016) proposed a

quantile regression forest (QRF) model based on the

work of Meinshausen (2006) that allows us to include

additional predictor variables.

The QRF model is based on the idea of generating

random forests from classification and regression trees

(Breiman et al. 1984). These are binary decision trees

obtained by iteratively splitting the training data into

two groups according to some threshold for one of the

predictors, chosen such that every split minimizes the

sum of the variance of the response variable in each of

the resulting groups. The splitting procedure is iterated

until a stopping criterion is reached. The final groups (or

terminal leaves) thus contain subsets of the training

observations based on the predictor values, and out-of-

sample forecasts at station s and time t can be obtained

by proceeding through the decision tree according to

the corresponding predictor values Xs,t. Random forest

models (Breiman 2001) increase the stability of the

predictions by averaging over many random decision

trees generated by selecting a random subset of the

6A recent development version of the R package crch provides

implementations of CRPS-based model estimation and boosting.

However, initial tests indicated slightly worse predictive perfor-

mance; we thus focus on maximum likelihood-based methods

instead.
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predictors at each candidate split in conjunction with

bagging (i.e., bootstrap aggregation of random sub-

samples of training sets). In the quantile regression

forest approach, each tree provides an approximation of

the distribution of the variable of interest given by the

empirical cumulative distribution function (CDF) of the

observation values in the terminal leaf associated with

the current predictor values Xs,t. Quantile forecasts can

then be computed from the combined forecast distri-

bution, which is obtained by averaging over all tree-

based empirical CDFs.

We implement a local version of the QRF model

where separate models are estimated for each station

based on training sets that only contain past forecasts

and observations from that specific station. As dis-

cussed by Taillardat et al. (2016), the predicted quan-

tiles are necessarily restricted to the range of observed

values in the training period by construction, which

may be disadvantageous in cases of shorter training

periods. However, global variants of the QRF model

did not result in improved forecast performance even

with only one year of training data; we will thus

restrict attention to the local QRF model. The models

are implemented using the quantregForest package

(Meinshausen 2017) for R. Tuning parameters are

chosen as for the EMOS-loc-bst model (see the sup-

plemental material).

The QRF approach has recently been extended in

several directions. Athey et al. (2016) propose a gener-

alized version of random forest-based quantile re-

gression based on theoretical considerations (GRF),

which has been tested but did not result in improved

forecast performance. Taillardat et al. (2017) combine

QRF (and GRF) models and parametric distributional

regression by fitting a parametric CDF to the observa-

tions in the terminal leaves instead of using the empirical

CDF. Schlosser et al. (2018) combine parametric dis-

tributional regression and random forests for parameter

estimation within the framework of a generalized addi-

tive model for location, scale, and shape.

4. Neural networks

In this section we will give a brief introduction to

neural networks. For a more detailed treatment the in-

terested reader is referred to more comprehensive re-

sources (e.g., Nielsen 2015; Goodfellow et al. 2016). The

network techniques are implemented using the Python

libraries Keras (Chollet et al. 2015) and TensorFlow

(Abadi et al. 2016).

Neural networks consist of several layers of nodes

(Fig. 1), each of which is a weighted sum of all nodes j

from the previous layer plus a bias term:

�
j

w
j
x
j
1 b . (5)

The first layer contains the input values, or features,

while the last layer represents the output values, or

targets. In the layers in between, called hidden layers,

each node value is passed through a nonlinear activation

function. For this study, we use a rectified linear unit

(ReLU):

ReLU(x)5max(0, x) .

This activation function allows the neural network to

represent nonlinear functions. We tried other common

nonlinear activation functions, such as sigmoid or hy-

perbolic tangent, but obtained the best results with

ReLUs, which are the first choice for most applications

these days. The weights and biases are optimized to

reduce a loss function using stochastic gradient descent

(SGD). Here, we employ an SGD version called Adam

(Kingma and Ba 2014).

In this study we use networks without a hidden layer

and with a single hidden layer (Fig. 1). The former,

which we will call fully connected networks (FCNs),

model the outputs as a linear combination of the in-

puts. The latter, called neural networks (NNs) here,

are capable of representing nonlinear relationships

and interactions. Introducing additional hidden layers

to neural networks did not improve the predictions

as additional model complexity increases the potential

of overfitting. For more details on network hyper-

parameters, see the supplemental material.

a. Neural networks for ensemble postprocessing

Neural networks can be applied to a range of prob-

lems, such as regression and classification. The main

difference between those options is in the contents and

activation function of the output layer, as well as the loss

function. Here, we use the neural network for the dis-

tributional regression task of postprocessing ensemble

forecasts. Our output layer represents the distribution

parameters ms,t and ss,t of the Gaussian predictive dis-

tribution. No activation function is applied. The corre-

sponding probabilistic forecast describes the conditional

distribution of the observation ys,t given the predictors

Xs,t as input features. As a loss function for determining

the network parameters, we use the closed form ex-

pression of the CRPS for a Gaussian distribution; see

(A2). This is a nonstandard choice in the neural network

literature [D’Isanto and Polsterer (2018) is the only

previous study to our knowledge] but provides a math-

ematically principled choice for the distributional re-

gression problem at hand (see the appendix for the

mathematical background). Other probabilistic neural
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network approaches include quantile regression (Taylor

2000) and distribution-to-distribution regression (Kou

et al. 2018).

The simplest network model is a fully connected

model based on predictorsXt2m
s,t [i.e., mean and standard

deviation of ensemble predictions of temperature only

(denoted by FCN)]. Apart from additional connections

for the mean and standard deviation to the ensemble

standard deviation and mean, respectively, the FCN

model is conceptually equivalent to EMOS-gl, but dif-

fers in the parameter estimation approaches. A neural

network with a hidden layer for the Xt2m
s,t input did not

show any improvements over the simple linear model,

suggesting that there are no nonlinear relationships to

exploit. Additional information from auxiliary variables

can be taken into account by considering the entire

vector Xs,t of predictors as input features. The corre-

sponding fully connected and neural network models

are referred to as FCN-aux and NN-aux.

b. Station embeddings

To enable the networks to learn station-specific in-

formation, we use embeddings, a common technique in

natural language processing and recommender systems.

An embedding e is a mapping from a discrete object, in

our case the station ID s, to a vector of real numbers

Xemb
s (Guo and Berkhahn 2016):

e : s1Xemb
s ,

whereXemb
s 2 R

nemb ; nemb is the number of elements in the

embedding vector which are also referred to as latent

features. These latent features encode information about

each station s but do not correspond to any real variable.

In total then, the embedding matrix has dimension

S3 nemb, where S is the number of stations. The latent

features Xemb
s are concatenated with the predictors, Xt2m

s,t

orXs,t, and are updated along with the weights and biases

during training. This allows the algorithm to learn a spe-

cific set of numbers for each station. Here, we use nemb 5 2

because larger values did not improve the predictions.

The fully connected network with input features Xt2m
s,t

and embeddings is abbreviated by FCN-emb. As with

FCN, adding a hidden layer did not improve the results.

Fully connected and neural networks with both, station

embeddings and auxiliary inputs Xs,t, are denoted by

FCN-aux-emb and NN-aux-emb.

c. Further network details

Neural networks with a large number of parameters

(i.e., weights and biases) can suffer from overfitting. One

way to reduce overfitting is to stop training early. When

to stop can be guessed by taking out a subset (20%) from

the training set (2007–15 or 2015) and checking when the

score on this separate dataset stops improving. This

gives a good approximation of when to stop training on

the full training set without using the actual 2016 vali-

dation set during training. Other common regularization

techniques to prevent overfitting, such as dropout or

weight decay (L2 regularization), were not successful in

our case for reasons unclear to us. Further investigation

in follow-on studies may be helpful.

Finally, we train ensembles of 10 neural networks with

different random initial parameters for each configura-

tion and average over the forecast distribution parameter

estimates to obtain us,t. For the more complex network

models this helps to stabilize the parameter estimates

by reducing the variability due to random variations be-

tween model runs and slightly improves the forecasts.

5. Results

Tuning parameters for all benchmark and network

models are listed in the supplemental material (Tables

S1 and S2). Details on the employed evaluationmethods

are provided in the appendix.

a. General results

The CRPS values averaged over all stations and the

entire 2016 validation period are summarized in

Table 2.7 For the 2015 training period, EMOS-gl gives

a 13% relative improvement compared to the raw

ECMWF ensemble forecasts in terms of mean CRPS.

As expected, FCN, whichmimics the design of EMOS-gl,

achieves a very similar score. Adding local station

information in EMOS-loc and FCN-emb improves

the global score by another 10%. While EMOS-loc

estimates a separate model for each station, FCN-emb

can be seen as a global network–based implementation

of EMOS-loc. Adding covariate information through

auxiliary variables results in an improvement for the

fully connected models similar to that of adding station

information. Combining auxiliary variables and sta-

tion embeddings in FCN-emb-aux improves the mean

CRPS further to 0.88 but the effects do not stack line-

arly. Adding covariate information in EMOS models

using boosting (EMOS-loc-bst) outperforms FCN-emb-

aux by 3%. Allowing for nonlinear interactions of sta-

tion information and auxiliary variables using a neural

7To account for the intertwined choice of scoring rules formodel

estimation and evaluation (Gebetsberger et al. 2017), we have also

evaluated the models using LogS. However, as the results are very

similar to those reported here and computation of LogS for the raw

ensemble and QRF forecasts is problematic (Krüger et al. 2016),

we focus on CRPS-based evaluation.
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network (NN-aux-emb) achieves the best results, im-

proving the best benchmark technique (EMOS-loc-bst)

by 3% for a total improvement compared to the raw

ensemble of 29%. The QRFmodel is unable to compete

with most of the postprocessing models for the 2015

training period.

The relative scores and model rankings for the

2007–15 training period closely match those of the

2015 period. For the linear models (EMOS-gl, EMOS-loc,

and all FCN) more data does not improve the score

by much. For EMOS-loc-bst and the neural network

models, however, the skill is increased by 4%–5%.

This suggests that longer training periods are most

efficiently exploited by more complex, nonlinear

models. QRF improves the most, now being among

the best models, which indicates a minimum data

amount required for this method to work. This is

likely due to the limitation of predicted quantiles to

the range of observed values in the training data; see

section 3c.

To assess calibration, verification rank and proba-

bility integral transform (PIT) histograms of raw and

postprocessed forecasts are shown in the supplemen-

tal material. The raw ensemble forecasts are under-

dispersed, as indicated by theU-shaped verification rank

histogram; that is, observations tend to fall outside the

range of the ensemble too frequently. By contrast, all

postprocessed forecast distributions are substantially

better calibrated and the corresponding PIT histograms

show much smaller deviations from uniformity. All

models show a slight overprediction of high tempera-

tures and, with the exception of QRF, an under-

prediction of low values. This might be due to residual

skewness (Gebetsberger et al. 2018). The linear EMOS

and FCN models as well as QRF are further slightly

overdispersive, as indicated by the inverse U-shaped top

parts of the histogram.

b. Station-by-station results

Figure 3 shows the station-wise distribution of the

continuous ranked probability skill score (CRPSS),

which measures the probabilistic skill relative to a ref-

erence model. Positive values indicate an improvement

over the reference. Compared to the raw ensemble,

forecasts at most stations are improved by all post-

processing methods with only a few negative outliers.

Compared to EMOS-loc, only FCN-aux-emb, the neural

network models, and EMOS-loc-bst show improve-

ments at the majority of the stations. Corresponding

plots with the three best-performingmodels as reference

experiments are provided in the supplemental material.

It is interesting to note that the networkmodels, with the

exception of FCN and FCN-emb, have more outliers,

particularly for negative values compared to the EMOS

methods and QRF, which have very few negative out-

liers. This might be due to a few stations with strongly

location-specific error characteristics that the locally

estimated benchmark models are better able to capture.

Training with data from 2007 to 2015 alleviates this

somewhat.

Figure 4 shows maps with the best-performing models

in terms of mean CRPS for each station. For the ma-

jority of stations NN-aux-emb provides the best pre-

dictions. The variability of station-specific best models is

greater for the 2015 training period compared to 2007–

15. The top three models for the 2015 period are

NN-aux-emb (best at 65.9% of stations), EMOS-loc-bst

(16.0%), and NN-aux (7.2%), and for 2007–15 they are

TABLE 2. Mean CRPSs for raw and postprocessed ECMWF ensemble forecasts, averaged over all available observations during calendar

year 2016. The lowest (i.e., best) values are marked in boldface.

Model Description

Mean CRPS for training

period

2015 2007–15

Raw ensemble 1.16 1.16

Benchmark postprocessing methods

EMOS-gl Global EMOS 1.01 1.00

EMOS-loc Local EMOS 0.90 0.90

EMOS-loc-bst Local EMOS with boosting 0.85 0.80

QRF Local quantile regression forest 0.95 0.81

Neural network models

FCN Fully connected network 1.01 1.01

FCN-aux . . .with auxiliary predictors 0.92 0.91

FCN-emb . . .with station embeddings 0.91 0.91

FCN-aux-emb . . .with both of the above 0.88 0.87

NN-aux One-hidden-layer NN with auxiliary predictors 0.90 0.86

NN-aux-emb . . .and station embeddings 0.82 0.78
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NN-aux-emb (73.5%), EMOS-loc-bst (12.4%), and

QRF (7.4%). At coastal and offshore locations, partic-

ularly for the shorter training period, the bench-

markmethods tend to outperform the networkmethods.

Ensemble forecast errors at these locations likely have a

strong location-specific component that might be easier

to capture for the locally estimated EMOS and QRF

methods.

FIG. 3. Boxplots of stationwise mean CRPSS of all postprocessing models using the (top) raw ensemble and

(bottom) EMOS-loc as the reference forecast. A dot within each box represents the mean CRPSS at one of the

observation stations. The CRPSS is computed so that positive values indicate an improvement of the model

specified on the horizontal axis over the reference. Similar plots with different referencemodels are provided in the

supplemental material.
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Additionally, we evaluated the statistical signifi-

cance of the differences between the competing

postprocessing methods using a combination of

Diebold–Mariano tests (Diebold and Mariano 1995)

and a Benjamini and Hochberg (1995) procedure to

account for temporal and spatial dependencies of

forecast errors. We thereby follow the suggestions of

Wilks (2016); the mathematical details are deferred

to the appendix. The results (provided in the sup-

plemental material) generally indicate high ratios of

stations with significant score differences in favor of

the neural network models. Even when compared to

the second-best-performing model, EMOS-loc-bst,

NN-aux-emb is significantly better at 30% of the

stations and worse at only 2% or less for both training

periods.

c. Computational aspects

While a direct comparison of computation times for

the different methods is difficult, even the most com-

plex network methods are a factor of 2 or more faster

than EMOS-loc-bst. This includes creating an en-

semble of 10 different model realizations. QRF is by

far the slowest method, being roughly 10 times slower

than EMOS-loc-bst. Complex neural networks benefit

substantially from running on a graphics processing

unit (GPU) compared to running on the core pro-

cessing unit (CPU; roughly 6 times slower for NN-

aux-emb). Neural network–ready GPUs are now widely

available in many scientific computing environments

or via cloud computing.8 For more details on the

computational methods and results see the supple-

mental material.

6. Feature importance

To assess the relative importance of all features, we

use a technique called permutation importance that was

first described within the context of random forests

(Breiman 2001). We randomly shuffle each predictor/

feature in the validation set one at a time and observe the

increase in mean CRPS compared to the unpermuted

features. While unable to capture colinearities between

features, this method does not require reestimating the

model with each individual feature omitted.

Consider a random permutation of station and time

indices p(s, t) and let X
perm

y

s,t denote the vector of pre-

dictors where variable y is permuted according to

p (i.e., a vector with jth entry):

X
perm

y
(j)

s,t 5

(

X(j)
s,t , j 6¼ y

X
(y)
p(s,t), j5 y

for j5 1, . . . ,p .

The importance of input feature y is computed as the

mean CRPS difference:

FIG. 4. Observation station locations color coded by the best performing model (in terms of mean CRPS over calendar

year 2016) for models trained on data from (left) 2015 and (right) 2007 to 2015. Point shapes indicate the type of model.

8 For example, see https://colab.research.google.com/.
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Importance(y)5
1

ST
�
S

s51
�
T

t51

[CRPS(FjXperm
y

s,t , y
s,t
)

2 CRPS(FjX
s,t
, y

s,t
)] ,

where we average over the entire evaluation set and FjX
denotes the conditional forecast distribution given a

vector of predictors.

We picked three network setups to investigate how

feature importance changes by adding station embeddings

and a nonlinear layer (Fig. 5). For the linearmodel without

station embeddings (FCN-aux), the station altitude and

orography, the altitude of the model grid cell, are the most

important predictors after the mean temperature forecast.

This makes sense since our interpolation from the forecast

model grid to the station does not adjust for the height of

the surface station. The only other features with significant

importance are the mean shortwave radiation flux and the

850-hPa specific humidity. Adding station embeddings

(FCN-aux-emb) reduces the significance of the station al-

titude information, which now seems to be encoded in the

latent embedding features. The nonlinearity added by the

hidden layer in NN-aux-emb increases the sensitivity to

permuting input features overall and distributes the fea-

ture importance more evenly. In particular, we note an

increase in the importance of the station altitude and

orography but also the sensible and latent heat flux and

total cloud cover.

The most important features, apart from the obvious

mean forecast temperature and station altitude, seem

to be indicative of insolation, either directly like the

shortwave flux or indirectly like the 850-hPa humidity.

It is interesting that the latter seems to be picked by the

algorithms as a proxy for cloud cover rather than the di-

rect cloud cover feature, potentially due to a lack of

forecast skill of the total cloud cover predictions (e.g.,

Hemri et al. 2016). Curiously, the temperature standard

deviation is not an important feature for the post-

processing models. We suspect that this is a consequence

of the low correlation between the raw ensemble stan-

dard deviation and the forecast error (r5 0:15 on the test

set) and the general underdispersion (mean spread–error

ratio of 0.51). The postprocessing algorithms almost

double the spread to achieve a spread–error ratio of 0.95.

The correlation of the raw and postprocessed ensemble

spreads is 0.39. suggesting that the postprocessing is

mostly an additive correction to the ensemble spread.

Note that this method of assessing feature importance

is in principle possible for boosting- and QRF-based

models. However, for the local implementations of

the algorithm the importance changes from station to

station, making interpretation more difficult.

7. Discussion

Here, we discuss some approaches we attempted that

failed to improve our results, as well as directions for

future research.

Having to describe the distribution of the target var-

iable in parametric techniques is a nontrivial task. For

temperature, a Gaussian distribution is a good approx-

imation but for other variables, such as wind speed or

precipitation, finding a distribution that fits the data

is a substantial challenge (e.g., Taillardat et al. 2016;

FIG. 5. Feature importance for the 15 most important predictors. Note that the values for

t2m_mean are divided by 10. See Table 1 for variable abbreviations and descriptions.
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Baran and Lerch 2018). Ideally, a machine learning al-

gorithm would learn to predict the full probability dis-

tribution rather than distribution parameters only. One

way to achieve this is to approximate the forecast dis-

tribution by a combination of uniform distributions and

predicting the probability of the temperature being

within prespecified bins. Initial experiments indicate

that the neural network is able to produce a good ap-

proximation of a Gaussian distribution but the skill was

comparable only to the raw ensemble. This suggests that

for target variables that are well approximated by a

parametric distribution, utilizing these distributions is

advantageous. One direction for future research is to

apply this approach to more complex variables.

Standard EMOS models are often estimated based on

so-called rolling training windows with data from pre-

vious days only in order to incorporate temporal de-

pendencies of ensemble forecast errors. For neural

networks, oneway to incorporate temporal dependencies

is to use convolutional or recurrent neural networks

(Schmidhuber 2015) which can proces sequences as an

input. In our tests, this leads to more overfitting without

an improvement in the validation score. For other data-

sets, however, we believe that these approaches are worth

revisiting. Temporal dependencies of forecast errors

might further include seasonal effects. For standard

EMOS models, it is possible to account for seasonality

by estimating the model based on a centered window

[d0 2m, d0 1m] around the current day d0. For the local

EMOS model this resulted in negligible improvements

only. For postprocessing models with additional pre-

dictors seasonal effects can, for example, be included by

considering the month of d0 as an input feature.

One popular way to combat overfitting in machine

learning algorithms is through data augmentation. In the

example of image recognition models, the training im-

ages are randomly rotated, flipped, zoomed, etc. to

artificially increase the sample size (e.g., Krizhevsky

et al. 2012). We tried a similar approach by adding

random noise of a reasonable scale to the input features,

but found no improvement in the validation score. A

potential alternative to adding random noise might be

augmenting the forecasts for a station with data from

neighboring stations or grid points.

Similarly to rolling training windows for the traditional

EMOS models, we tried updating the neural network

each day during the validation period with the data from

the previous time step, but found no improvements. This

supports our observation that rolling training windows

only bring marginal improvements for the benchmark

EMOS models. Such an online learning approach could

be more relevant in an operational setting, however,

where model versions might change frequently or it is too

expensive to reestimate the entire postprocessing model

every time new data become available.

We have restricted the set of predictors to observation

station characteristics and summary statistics (mean and

standard deviation) of ensemble predictions of several

weather variables. Recently, flexible distribution-to-

distribution regression network models have been pro-

posed in the machine learning literature (e.g., Oliva

et al. 2013; Kou et al. 2018). Adaptations of such ap-

proaches might enable the use of the entire ensemble

forecast of each predictor variable as an input feature.

However, training of these substantially more complex

models likely requires longer training periods than were

possible in our study.

Another possible extension would be to postprocess

forecasts on the entire two-dimensional grid, rather than

individual stations locations, for example, by using

convolutional neural networks. This adds computational

complexity and probably requires more training data

but could provide information about the large-scale

weather patterns and help to produce spatially consis-

tent predictions.

We have considered probabilistic forecasts of a single

weather variable at a single location and look-ahead

time only. However, many applications require accurate

models of cross-variable, spatial, and temporal de-

pendence structures, and much recent work has been

focused on multivariate postprocessing methods (e.g.,

Schefzik et al. 2013). Extending the neural network–

based approaches to multivariate forecast distributions

accounting for such dependencies presents a promising

starting point for future research.

8. Conclusions

In this studywedemonstrated howneural networks can

be used for distributional regression postprocessing of

ensemble weather forecasts. Our neural network models

significantly outperform state-of-the-art postprocessing

techniques while being computationally more efficient.

The main advantages of using neural networks are the

ability to capture nonlinear relations between arbitrary

predictors and distribution parameters without having to

specify appropriate link functions, and the ease of adding

station information into a global model by using em-

beddings. The network model parameters are estimated

by optimizing the CRPS, a nonstandard choice in the

machine learning literature tailored to probabilistic

forecasting. Furthermore, the rapid pace of development

in the deep learning community provides flexible and

efficient modeling techniques and software libraries. The

presented approach can therefore be easily applied to

other problems.
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The building blocks of our network model architec-

ture provide general insight into the relative importance

of model properties for postprocessing ensemble fore-

casts. Specifically, the results indicate that encoding lo-

cal information is very important for providing skillful

probabilistic temperature forecasts. Further, including

covariate information via auxiliary variables improves

the results considerably, particularly when allowing for

nonlinear relations of predictors and forecast distribu-

tion parameters. Ideally, any postprocessing model

should thus strive to incorporate all of these aspects.

We also showed that a trained machine learning

model can be used to gain meteorological insight. In our

case, it allowed us to identify the variables that are most

important for correcting systematic temperature fore-

cast errors of the ensemble. Within this context, neural

networks are somewhat interpretable and give us more

information than we originally asked for. While a direct

interpretation of the individual parameters of the model

is intractable, this challenges the common notion of

neural networks as pure black boxes.

Because of their flexibility, neural networks are ideally

suited to handle the increasing amounts of model and

observation data as well as the diverse requirements for

correcting multifaceted aspects of systematic ensemble

forecast errors. We anticipate, therefore, that they will

provide a valuable addition to the modeler’s toolkit for

many areas of statistical postprocessing and forecasting.
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APPENDIX

Forecast Evaluation

For the purpose of this appendix, we denote a generic

probabilistic forecast for 2-m temperature ys,t at station

s and time t by Fs,t. Note that Fs,t may be a parametric

forecast distribution represented by CDF or a proba-

bility density function (PDF), an ensemble forecast

xt2m,1
s,t , . . . , xt2m,50

s,t , or a set of quantiles.Wemay choose to

suppress the index s, t at times for ease of notation.

a. Calibration and sharpness

As argued by Gneiting et al. (2007), probabilistic fore-

casts should generally aim to maximize sharpness subject

to calibration. In a nutshell, a forecast is called calibrated if

the realizing observation cannot be distinguished from a

random draw from the forecast distribution. Calibration

thus refers to the statistical consistency between forecast

distribution and observation. By contrast, sharpness is a

property of the forecast only and refers to the concen-

tration of the predictive distribution. The calibration of

ensemble forecasts can be assessed via verification rank

(VR) histograms summarizing the distribution of ranks of

the observation ys,t when it is pooled with the ensemble

forecast (Hamill 2001; Gneiting et al. 2007; Wilks 2011).

For continuous forecast distributions, histograms of the

PIT Fs,t(ys,t) provide analogs of verification rank histo-

grams. Calibrated forecasts result in uniform VR and

PIT histograms, and deviations from uniformity indi-

cate specific systematic errors such as biases or an un-

derrepresentation of the forecast uncertainty.

b. Proper scoring rules

For comparativemodel assessment, proper scoring rules

allow simultaneous evaluation of calibration and sharpness

(Gneiting and Raftery 2007). A scoring rule S(F, y)

assigns a numerical score to a pair of probabilistic forecasts

F and corresponding realizing observations y, and is called

proper relative to a class of forecast distributions F if

E
Y;G

S(G,Y)#E
Y;G

S(F,Y) for all F,G 2 F ,

that is, if the expected score is optimized if the true

distribution of the observation is issued as forecast.

Here, scoring rules are considered to be negatively ori-

ented, with smaller scores indicating better forecasts

Popular examples of proper scoring rules include the

logarithmic score (LogS; Good 1952):

LogS(F, y)52log[f (y)] ,

where y denotes the observations and f denotes the PDF

of the forecast distribution and the continuous ranked

probability score (CRPS; Matheson and Winkler 1976):

CRPS(F, y)5

ð

‘

2‘

[F(z)2 1(y# z)]
2
dz , (A1)

where F denotes the CDF of the forecast distribution

with finite first moment and 1(y# z) is an indicator
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function that is 1 if y# z and 0 otherwise. The integral in

(A1) can be computed analytically for ensemble fore-

casts and a variety of continuous forecast distributions

(see, e.g., Jordan et al. 2018). Specifically, the CRPS of a

Gaussian distribution with mean value m and standard

deviation s can be computed as

CRPS(F
m,s

, y)5s

�

y2m

s

h

2F
�y2m

s

�

2 1
i

1 2u
�y2m

s

�

2
1
ffiffiffiffi

p
p

�

, (A2)

where F and u denote the CDF and PDF of a stan-

dard Gaussian distribution, respectively (Gneiting

et al. 2005).

Apart from forecast evaluation, proper scoring rules

can also be used for parameter estimation. Following

the generic optimum score estimation framework of

Gneiting and Raftery (2007, section 9.1), the parameters

of a forecast distribution are determined by optimizing

the value of a proper scoring rule, on average over a

training sample. Optimum score estimation based on the

LogS then corresponds to classical maximum likelihood

estimation, whereas optimum score estimation based on

the CRPS is often employed as amore robust alternative

in meteorological applications. Analytical closed-form

solutions of the CRPS, for example for a Gaussian dis-

tribution in (A2), allow for computing analytical gradi-

ent functions that can be leveraged in numerical

optimization; see Jordan et al. (2018) for details.

In practical applications, scoring rules are usually

computed as averages over stations and/or time periods.

To assess the relative improvement over a reference

forecast Fref , we further introduce the continuous ranked

probability skill score:

CRPSS(F, y)5 12
CRPS(F, y)

CRPS(F
ref
, y)

,

which is positively oriented and can be interpreted as a

relative improvement over the reference. The CRPSS

is usually computed as the skill score of the CRPS

averages.

c. Statistical tests of equal predictive performance

Formal statistical tests of equal forecast performance

for assessing statistical significance of score differences

have beenwidely used in the economic literature.Consider

two forecasts, F1 and F2, with corresponding mean

scores S(F i)5 1/n�
n

j51S(F
i
j , yj) for i5 1, 2 over a test

j5 1, . . . , n, where we assume that the forecast F i
j was

issued k time steps before the observation yj was recorded.

Diebold and Mariano (1995) propose the test statistic

t
n
5

ffiffiffi

n
p S(F1)2 S(F2)

ŝ
n

,

where ŝn is an estimator of the asymptotic standard

deviation of the score difference between F1 and F2.

Under standard regularity conditions, tn asymptotically

follows a standard normal distribution under the null

hypothesis of equal predictive performance of F1 and

F2. Thereby, negative values of tn indicate superior

predictive performance of F1, whereas positive values

indicate superior performance of F2. To account for

temporal dependencies in the score differences, we use

the square root of the sample autocovariance up to lag

k2 1 as estimator ŝn following Diebold and Mariano

(1995). We employ Diebold–Mariano tests on an ob-

servation station level; that is, the mean CRPS values

are determined by averaging over all scores at the spe-

cific station s0 2 f1, . . . , Sg of interest:

CRPSðF i
s0
Þ5 1

T
�
T

t51

F i
s0,t

,

where t5 1, . . . , T denotes days in the evaluation period.

Compared to previous uses of Diebold–Mariano tests

in postprocessing applications (e.g., Baran and Lerch

2016), we further account for spatial dependencies of

score differences at the different stations. Following the

suggestions of Wilks (2016), we apply a Benjamini and

Hochberg (1995) procedure to control the false discov-

ery rate at level a5 0:05. In a nutshell, the algorithm re-

quires a higher standard in order to reject a local null

hypothesis of equal predictive performance by selecting a

threshold p value (p*) based on the set of ordered local

p values: p(1), . . . , p(S). Particularly, p* is the largest p(i)
that is not larger than i/S3a, where S is the number of

tests (i.e., the number of stations in the evaluation set).
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