
Neural Networks
for Self-Learning Control Systems

Derrick H. Nguyen and Bernard Widrow

ABSTRACT: Neural networks can be used
to solve highly nonlinear control problems.
This paper shows how a neural network can
learn of its own accord to control a nonlinear
dynamic system. An emulator, a multilay-
ered neural network, learns to identify the
system’s dynamic characteristics. The con-
troller, another multilayered neural network,
next learns to control the emulator. The self-
trained controller is then used to control the
actual dynamic system. The learning process
continues as the emulator and controller im-
prove and track the physical process. An ex-
ample is given to illustrate these ideas. The
“truck backer-upper,’’ a neural network
controller steering a trailer truck while back-
ing up to a loading dock, is demonstrated.
The controller is able to guide the truck to
the dock from almost any initial position.
The technique explored here should be ap-
plicable to a wide variety of nonlinear con-
trol problems.

Introduction

This paper addresses the problem of con-
trolling severely nonlinear systems from the
standpoint of utilizing neural networks to
achieve nonlinear controller design. The
methodology shows promise for application
to control problems that are so complex that
analytical design techniques do not exist and
may not exist for sometime to come. Neural
networks can be used to implement highly
nonlinear controllers with weights or internal
parameters that can be determined by a self-
learning process.

Neural Networks
A neural network is a system with inputs

and outputs and is composed of many simple
and similar processing elements. The pro-
cessing elements each have a number of in-
temal parameters called weights. Changing
the weights of an element will alter the be-
havior of the element and, therefore, will
also alter the behavior of the whole network.
The goal here is to choose the weights of the
network to achieve a desired input/output re-

The authors are with Information Systems Labo-
ratory, Department of Electrical Engineering,
Stanford University, Stanford, CA 94305.

lationship. This process is known as training
the network. The network can be considered
memoryless in the sense that, if one keeps
the weights constant, the output vector de-
pends only on the current input vector and
is independent of past inputs.

Adalines

The processing element used in the net-
works in this paper, the Adaline [11, is shown
in Fig. 1 . It has an input vector X = {x,},
which contains n components, a single out-
put y , and a weight vector W = { w, }, which
also contains n components. The weights are
variable coefficients indicated by circles with
arrows. The output y equals the sum of in-
puts multiplied by the weights and then
passed through a nonlinear function. (Note:
In the early 1960s, Adaline elements utilized
sharp quantizers in the form of signum func-
tions. Today both signum and the differen-
tiable sigmoid functions are used.)

, I - I

s(X) = c w,x, (1)

Y (X) = f (s (X)) (2)

, = o

The nonlinear function f (s) used here is the
sigmoid function

f (s) = [l - exp (-2s)]/[l + exp (-2s)l

= tanh (s) (3)

With this nonlinearity, the Adaline behaves
similar to a linear filter when its output is
small, but saturates to + 1 or - 1 as the out-
put magnitude increases. It should be noted
that one of the Adaline’s inputs is usually
set to + 1. This provides the Adaline with a
way of adding a constant bias to the weighted
sum.

The goal here is to train the Adaline to
achieve a desired form of behavior. During
the training process, the Adaline is presented
with an input X , which causes its output to
be y (X) . We would like the Adaline to output
a desired value d (X) instead, and so we ad-
just the weights to cause the output to be
something closer to d (X) the next time X is
presented. The value d (X) is called the de-
sired response.’ Many input, desired-re-
sponse pairs are used in the training of the
weights.

W

Weights

Fig. 1. Adaline with sigmoid.

A good measure of the Adaline’s perfor-
mance is the mean-squared error J, where
E(.) denotes an expectation over all avail-
able (X , d (X)) pairs.

J = E(erro+) (4)

= E(d(X) - Y (X)) * (5)

By applying gradient descent [1]-[3], the al-
gorithm to adjust W to minimize J turns out
to be the following, wheref’(s) is the de-
rivative of the function f (s).

Wi.new = Wi.old + 2phxl (7)

(8)
The designer chooses p , which affects the
speed of convergence and stability of the
weights during training. The value 6 can be
thought of as an “equivalent error” and
would be equal to the error d(X) - y (X) if
f (s) were the identity function. In this case,
Eqs. (7) and (8) would be the same as the
1959 least-mean-squares (LMS) algorithm of
Widrow and Hoff [l] and Widrow and
Steams [3].

The preceding algorithm is applied many
times with many different (X , d (X)) pairs un-
til the weights converge to a minimum of the
objective function J.

Back-Propagation Algorithm

6 = (4-V - y (X)) f ’ M X))

In this paper, Adalines are connected to-
gether to form what is known as a layered
feedfonvard neural network, shown in Fig.
2. A layer of Adalines is created by con-
necting a number of Adalines to the same
input vector. Many layers can then be cas-
caded, with outputs of one layer connected
to the inputs of the next layer, to form a

0’272-170819010400-0018 $01 00 0 1990 IEEE
18 IEEE Control Systems Magazine

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE CAMPINAS. Downloaded on August 5, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

Fig. 2. Two-layer feedforward neural
network.

network. It has been proven that a network
consisting of only two layers of Adalines can
implement any nonlinear function X, d (X)
given enough Adalines in the first layer (the
layer closest to the input). The idea is that
each Adaline in the first layer can take a
small piece of the function relating X to d(X)
and make a linear approximation to that
piece. The second layer then adds the pieces
together to form the complete approximation
to the desired function. A proof of this is
given in [4]. [Note that d (X) can be vector
valued since the network can have more than
one output.] Despite this theoretical result,
networks of many more layers than two are
being used. They offer a variety of conver-
gence properties, robustness, and general-
ization characteristics (an ability to respond
correctly to inputs that were not trained in)
that can be quite different from those obtain-
able with a two-layer network.

The algorithm used to train layered neural
networks is known as back-propagation [2] ,
[5] , [6] . This algorithm converges to a set
of weights that minimizes the mean-square
error

where y (X) is the output vector of the last
layer of the network. Just as in the case of
the single Adaline, it is convenient to define
“equivalent error” for each Adaline in the
network. For Adaline m in the output layer,
the equivalent error is the following, where
ym is the output of Adaline m, 6, is the equiv-
alent error of the jth Adaline, j indexes the
set of all Adalines that have inputs connected
to Adaline m’s output, and w,”, is the weight
of the connection from Adaline m’s output

Each weight is updated using the same equa-
tion as for the single Adaline case, where i
ranges over the inputs of Adaline m.

Wmi.new = Wmi.old + 2p6mxk (12)

Note that this is called the back-propaga-
tion algorithm because the equivalent error
is computed for the output layer using Eq.
(lo), and then propagated backward through
the layers toward the input layer using Eq.
(11). As the equivalent error is computed
during the backward propagation, the
weights are updated using Eq. (12).

Layered neural networks adapted by means
of the back-propagation algorithm are pow-
erful tools for pattern recognition, associa-
tive memory, and adaptive filtering. In this
paper, adaptive neural networks will be used
to solve nonlinear adaptive control problems
that are very difficult to solve with conven-
tional methods.

Control Problem
The standard representation of a finite-di-

mensional discrete-time plant is shown in
Fig. 3. The vector uk represents the inputs
to the plant at time k and the vector zk rep-
resents the state of the plant at time k. The
function uk) maps the current inputs
and state into the next state. When the plant
is linear, the usual state equation holds,
where F and G are matrices.

Z t + l = A(Zk, U k) F Z n + GUk (13)

The function A(zk, uk) would be nonlinear
for a nonlinear plant.

P. common problem in control is to pro-
vide the correct input vector to drive a non-
linear plant from an initial state to a subse-
quent desired state z d . The typical approach
used in solving this problem involves lin-
earizing the plant around a number of op-
erating points, building linear state-space
models of the plant at these operating points,
and then building a controller. For nonlinear
plants, this approach is usually computation-
ally intensive and requires considerable de-
sign effort.

In this paper, the objective is to train a

controller-in this case, a neural network-
to produce the correct signal uk to drive the
plant to the desired state z d given the current
state of the plant zk (Fig. 3) . Each value of
uk over time plays a part in determining the
state of the plant. Knowing the desired state,
however, does not easily yield information
about the values of uk that would be required
to achieve it.

A number of different approaches for
training a controller have been described in
the literature. They include reinforcement
learning [7]-[9], inverse control [IO], [l l] ,
and optimal control [l l] . The architecture
and training algorithm presented in this pa-
per are novel in that they require little guid-
ance from the designer to solve the control
problem. This approach uses neural net-
works in optimal control by training the con-
troller to maximize a performance function.
The approach is different from [l l] in that
the plant can be an unknown plant and plant
identification is a part of the algorithm. A
similar approach has been used by Widrow
and Steams [3], Widrow [lo], and Jordan
r121.

Training Algorithm
Plant Identi3cation-

Training the Plant Emulator

Before training the neural net controller, a
separate neural net is trained to behave like
the plant. Specifically, the neural net is
trained to emulate &k, uk). Training the em-
ulator is similar to plant identification in con-
trol theory, except that the plant identifica-
tion here (Fig. 4) is done automatically by a
neural network capable of modeling nonlin-
ear plants.

In this paper, we assume that the states of
the plant are directly observable without
noise. A neural net with as many outputs as
there are states, and as many inputs as there

1 zy NeTl-Net 1 % + I -%
Emulator

U‘

/ ! Ermr

Fig. 4.
emulator.

Training the neural net plant

Apni 1990

-__

79

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE CAMPINAS. Downloaded on August 5, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

are states plus plant inputs, is created. The
number of layers in the neural net and the
number of nodes in each layer presently are
determined empirically since they depend on
the degree of nonlinearity of the plant.

In Fig. 4, the training process begins with
the plant in an initial state. The plant inputs
are generated randomly. At time k , the input
of the neural net is set equal to the current
state of the plant zt and the plant input uk.
The neural net is trained by back-propaga-
tion [Eqs. (10)-(12)J to predict the next state
of the plant, with the value of the next state
of the plant z p + I used as the desired response
during training. This process is roughly anal-
ogous to the steps that would be taken by a
human designer to identify the plant. In this
case, however, the plant identification is
done automatically by a neural network.

Training the Neural Network Controller

Given that the emulator now closely
matches the plant dynamics, we use it for
the purpose of training the controller. The
controller learns to drive the plant emulator
from an initial state zo to the desired state zd

in K time steps. Learning takes place during
many trials or runs, each starting from an
initial state and terminating at a final state
zK. The objective of the learning process is
to find a set of controller weights that min-
imizes the error function J, where J is aver-
aged over the set of initial states zo.

J = EtIIzd - Z K I I ~) (14)

The training process for the controller is
illustrated in Fig. 5. The training process
starts with the neural net plant emulator set
in a random initial state zo. Because the
neural net controller initially is untrained, it
will output an erroneous control signal U,, to
the plant emulator and to the plant itself. The
plant emulator will then move to the next
state z I , and this process continues for K time
steps. At this point, the plant is at the state
zK. (Note that the number of time steps K
needs to be determined by the designer.)

We now would like to modify the weights
in the controller network so that the square
error (zd - zK)’ will be less at the end of the
next run. To train the controller, we need to
know the e m r in the controller output uk for
each time step k. Unfortunately, only the er-
ror in the final plant state, (zd - ZK), is avail-
able. However, because the plant emulator
is a neural network, we can back-propagate
the final plant error (zd - z K) through the
plant emulator using Eqs. (10) and (11) to
get an equivalent error for the controller in
the Kth stage. This error then can be used to
train the controller by using Eqs. (11) and
(12). The emulator in a sense translates the
error in the final plant state to the e m r in
the controller output. The real plant cannot
be used here because the error cannot be
propagated through it. This is why the neural
network emulator is needed. The error con-
tinues to be back-propagated through all K
stages of the run using Eq. (l l) , and the
controller’s weight change is computed for
each stage. The weight changes from all the
stages obtained from the back-propagation
algorithm are added together and then added
to the controller’s weights. This completes
the training for one run.

The algorithm described would require
saving all the weight changes so that they
can be added to the original weights at the
end of the run. In practice, for simplicity’s
sake, the weight changes are added imme-
diately to the weights as they are computed.
This does not significantly affect the final
result since the weight changes are small and
do not affect the controller’s weights very
much after one run. It is their accumulated
effects over a large number of runs that im-
prove the controller’s performance.

Figure 5 represents the controller training
process. For clarity, the details of error back-
propagation are not illustrated there, but are
described above and are represented alge-
braically by Eqs. (10)-(12). Because the
training algorithm is essentially an imple-
mentation of gradient descent, local minima
in the error function may yield suboptimal

Error Back-Propagation

z./

Fig. 5.
(C = controller, E = emulator).

Training the controller with back-propagation

results. In practice, however, a good solu-
tion is almost always achieved by using a
large number of Adalines in the hidden lay-
ers of the neural networks.

An Example: Truck Backer-Upper
Backing a trailer truck to a loading dock

is a difficult exercise for all but the most
skilled truck drivers. Anyone who has tried
to back up a house trailer or a boat trailer
will realize this. Normal driving instincts
lead to erroneous movements, and a great
deal of practice is required to develop the
requisite skills.

When watching a truck driver backing to-
ward a loading dock, one often observes the
driver backing, going forward, backing
again, going forward, etc., and finally back-
ing up to the desired position along the dock.
The forward and backward movements help
to position the trailer for successful backing
up to the dock. A more difficult backing up
sequence would only allow backing, with no
forward movements permitted. The specific
problem treated in this example is that of the
design by self-leaming of a nonlinear con-
troller to control the steering of a trailer truck
while backing up to a loading dock from any
initial position. Only backing up is allowed.
Computer simulation of the truck and its
controller has demonstrated that the algo-
rithm described earlier can train a controller
to control the truck very well. An experi-
mental two-layer neural controller contain-
ing 25 adaptive neural units in the first layer
and one unit in the second layer has exhib-
ited exquisite backing up control. The trailer
truck can be straight or initially “jack-
knifed” and aimed in many different direc-
tions, toward and away from the dock, but
as long as there is sufficient clearance, the
controller appears to be capable of finding a
solution.

Figure 6 shows a computer-screen image
of the truck, the trailer, and the loading dock.
The critical state variables representing the
position of the truck and that of the loading
dock are Ocab, the angle of the cab, Otraller, the
angle of the trailer, and xtraller and ytrailerr the
Cartesian position of the rear of the center
of the trailer. The definition of the state
variables is illustrated in Fig. 6.

The truck is placed at some initial position
and is backed up while being steered by the
controller. The run ends when the truck
comes to the dock. The goal is to cause the
back of the trailer to be parallel to the load-
ing dock, i.e., to make Otraller go to zero and
to have the point (x , ~ , , ~ ~ , y,,ll,,) be aligned as
closely as possible with the point (xdock,
ydock). The final cab angle is unimportant.

20 /€€E Conrroi Systems Magazine

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE CAMPINAS. Downloaded on August 5, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

Fig. 6. Truck, trailer, and loading dock.

The controller will learn to achieve these ob-
jectives by adapting its weights to minimize
the objective function J, where J is averaged
over all training runs.

J = E(aI(xdcck - &ader)* + aZ(Ydock

The constants a , , a', and a3 are chosen by
the designer to weigh the importance of each
error component.

Training

As described in the previous section, the
learning process for the truck backer-upper
controller involves two stages. The first stage
trains a neural network to be an emulator of
the truck and trailer kinematics. The second
stage enables the neural-network controller
to learn to control the truck by using the
emulator as a guide. The control process
consists of feeding the state vector zk to the
controller, which, in turn, provides a steer-
ing signal uk between -1 (hard right) and
+1 (hard left) to the truck (k is the time
index). At each time step, the truck backs
up by a fixed small distance. The next state
is determined by the present state and the
steering signal, which is fixed during the time
step.

The process used to train the emulator is
shown in Fig. 4. The emulator used in this
example is a two-layer network with 25 Ada-
lines in the first layer and four Adalines in
the second layer. A suitable architecture for
this network was determined by experiment.
There is no theory for this yet. Experience
shows that the choice of network architecture
is important but a range of variation is per-
missible. The emulator network has five in-
puts corresponding to the four state variables
xk and the steering signal uk, and four outputs
corresponding to the next four state variables
Zk+ I .

During training, the truck backs up ran-
domly, going through many cycles with ran-
domly selected steering signals. The emu-
lator learns to generate the next positional
state vector when given the present state vec-

tor and the steering signal. This is done for
a wide variety of positional states and steer-
ing angles. The two-layer emulator is adapted
by means of the back-propagation algorithm.
By this process, the emulator "gets the feel"
of how the trailer and truck behave. Once
the emulator is trained, then it can be used
to train the controller.

Refer to Fig. 7. The identical blocks la-
beled C represent the controller net. The
identical blocks labeled T represent the truck
and trailer emulator. Let the weights of C be
chosen at random initially. Let the truck back
up. The initial state vector z,, is fed to C,
whose output sets the steering angle of the
truck. The backing up cycle proceeds with
the truck backing a small fixed distance so
that the truck and trailer soon arrive at the
next state z , . With C remaining fixed, a new
steering angle is computed for state z I , and
the truck backs up a small fixed distance once
again. The backing up sequence continues
until the truck hits something and stops. The
final state zK is compared with the desired
final state (the rear of the trailer parallel to
the dock with proper positional alignment)
to obtain the final state error vector E ~ . (Note
that, in reality, there is only one controller
C. Figure 7 shows multiple copies of C for
the purpose of explanation.) The error vector
contains four elements, which are the errors
of interest in Ztrailerr Ytrailcv etm,~err and ecab and

are used to adapt the controller C. The final
angle of the cab, ecabt does not matter and
so the element of the error vector due to Bcab
is set to zero. Each element of the error vec-
tor is also weighted by the corresponding ai
of Eq. (15).

The method of adapting the controller C
is illustrated in Fig. 7. The final state error
vector eK is used to adapt the blocks labeled
C, which are maintained identical to each
other throughout the adaptive process. The
controller C is a two-layer neural network.
The first layer has the six state variables as
inputs, and this layer contains 25 adaptive
Adaline units. The second, or output, layer
has one adaptive Adaline unit and produces
the steering signal as its output. All of the
Adaline units have sigmoidal activation
functions.

The controller C is adapted as described
in the previous section. The weights of C are
chosen initially at random. The initial posi-
tion of the truck is chosen at random. The
truck backs up, undergoing many individual
back-up moves, until it comes to the dock.
The final error is then computed and used by
back-propagation to adapt the controller. The
error is used to update the weights as it is
back-propagated through the network. This
way, the controller is adapted to minimize
the sum of the squares of the components of
the error vector using the method of steepest
descent. The entire process is repeated by
placing the truck and trailer in another initial
position and allowing it to back up until it
stops. Once again, the controller weights are
adapted. And so on.

The controller and the emulator are two-
layered neural networks each containing 25
hidden units. Thus, each stage of Fig. 7
amounts to a four-layer neural network. The
entire process of going from an initial state
to the final state can be seen from Fig. 7 to
be analogous to a neural network having a
number of layers equal to four times the

I I

Error Back-Propagation C A

Final desired response:
'trailer = 'dock

Ylrailer = Ydock

@I,,,,,, = 0

Fig. 7.
(C = controller, T = truck emulator).

Training the truck controller with back-propagation

April 1990 21

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE CAMPINAS. Downloaded on August 5, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

number of backing up steps when going from
the initial state to the final state. The number
of steps K varies, of course, with the initial
position of the truck and trailer relative to
the position of the target, the loading dock.

The diagram of Fig. 7 was simplified for
clarity of presentation. The output error ac-
tually back-propagates through the T-hlocks
and C-blocks. Thus, the error used to adapt
each of the C-blocks does originate from the
output error cK, but travels through the proper
back-propagation paths. For purposes of
back-propagation of the error, the T-blocks
are the truck emulator. However, the actual
truck kinematics are used when sensing the
error eK itself.

The training of the controller was divided
into several “lessons.” In the beginning, the
controller was trained with the truck initially
set to points very near the dock and the trailer
pointing at the dock. Once the controller was
proficient at working with these initial po-
sitions, the problem was made harder by
starting the truck farther away from the dock
and at increasingly difficult angles. This way,
the controller learned to do easy problems
first and more difficult problems after it mas-
tered the easy ones. There were 16 lessons
in all. In the easiest lesson, the trailer was
set about half a truck length from the dock
in the x direction pointing at the dock, and
the cab at a random angle of k30 deg. In

back-up run when using the trained control-
ler is demonstrated in Fig. 8. Initial and final
states are shown on the computer screen dis-
plays, and the backing up trajectory is illus-
trated by the time-lapse plot. The trained
controller was capable of controlling the
truck from initial positions it had never seen.
For example, the controller was trained with
the cab and trailer placed at angles of +90
deg, but was capable of backing up the truck
with the cab and trailer placed at any angle
provided that there was enough distance be-
tween the truck and the dock.

A More Sophisticated Objective Function

The above-described truck controller was
trained to minimize only the final state error.
One can also train it to minimize total path
length or control energy in addition to the
final state error. For example, the objective
function to minimize control energy is the
following, with J averaged over all training
trials.

r

K - I

+ f f 4 k = O c .:] (16)

the last and most difficult lesson, the rear of
the trailer was set randomly between one and
two truck lengths from the dock in the x
direction and ir. 1 truck length from the dock
in the y direction. The cab and trailer angles
were set to be the same, at a random angle
of &90 deg. (Note that uniform distributions
were used to generate the random parame-
ters.) The controller was trained for about
lo00 truck backups per lesson during the
early lessons, and 2000 truck backups per

A simple change is made to the algorithm to
minimize this objective function. In the orig-
inal algorithm, the equivalent error for the
controller at each time step k is computed
during the backward pass of the back-prop-
agation algorithm. It is easy to show that
control energy can be minimized by adding
- f f 4 4 to the equivalent error of the con-
troller at each time step. The modified equiv-
alent error is then back-propagated through

lesson during the last few. It took about
20,000 backups to train the controller.

Results

The controller learned to control the truck
very well with the preceding training pro-
cess. Near the end of the last lesson, the
root-mean-square (rms) error of ytmller was
about 3 percent of a truck length. The rms
error of Orraller was about 7 deg. There is no
error in xtraller since a truck backup is stopped
when xtraller = xdock. One may, of course,
trade off the error in ylrailer with the error in
B,,,,,, by giving them different weights in the

After training, the controller’s weights
were fixed. The truck and trailer were placed
in a variety of initial positions, and backing
up was done successfully in each case. A

objective function during training. i ;[---a ’ -
Final state

Fig. 8. A backing up example.

the controller to update the controller’s
weights as earlier. This change makes sense,
since using -a4uk as an error in causes
the COntrokr to learn to make uk smaller in
magnitude.

Training the controller to minimize control
energy would cause it to drive the truck to
the dock with as little steering as possible.
An example with the controller trained in
this manner is shown in Fig. 9. This example
uses the same truck and trailer initial position
as with the example of Fig. 8. Note that the
path of the truck controlled by the new con-
troller contains fewer sharp turns. Of course,
the final state error increases somewhat be-
cause of the new control objective.

Summary
The truck emulator in the form of a two-

layer neural network was able to represent
the trailer and truck when jackknifed, in line,
or in any condition in between. Nonlinearity
in the emulator was essential for accurate
modeling of the kinematics. The angle be-
tween the truck and the trailer was not small
and thus sin 0 could not be represented ap-
proximately as 0. Controlling the nonlinear
kinematics of the truck and trailer required
a nonlinear controller, implemented by an-
other two-layer neural network. Self-learn-
ing processes were used to determine the pa-
rameters of both the emulator and the
controller. Thousands of backups were re-
quired to train these networks, requiring sev-
eral hours on a workstation. Without the
learning process, however, substantial
amounts of human effort and design time
would have been required to devise the con-
troller.

The truck “backer-upper’’ learns to solve
sequential decision problems. The control
decisions made early in the backing up pro-

1 Final state

Fig. 9.
control energy.

Backing up while minimizing

22 IEEE Control Systems Magazine

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE CAMPINAS. Downloaded on August 5, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

cess have substantial effects on final results.
Early moves may not always be in a direc-
tion to reduce error, but they position the
truck and trailer for ultimate success. In
many respects, the truck backer-upper learns

conclusions, or recommendations expressed
in this publication are those of the authors
and do not necessarily reflect the views of
the National Science Foundation.

a control strategy similar to a dynamic pro-
gramming problem solution. The learning is
done in a layered neural network. Connect-
ing signals from one layer to another corre-
sponds to the idea that the final state of a
given backing up cycle is the same as the
initial state of the next backing up cycle.

Future research will be concerned with

Determination of complexity of the emu-
lator as related to the complexity of the
system being controlled.

References
B. Widrow and M. E. Hoff, Jr., “Adaptive
Switching Circuits,” in 1960 IRE WEST-
CON Conv. Record, Part 4 , pp. 96-104,
1960.
D. E. Rumelhart, G. E. Hinton, and R. J .
Williams, “Learning Internal Representa-
tions by Error Propagation,” in D. E. Ru-
melhart and J . L. McClelland, Eds., Par-
allel Distributed Processing, vol. 1, chap.
8, Cambridge, MA: MIT Press, 1986.
B. Widrow and S . D. Steams, Adaptive Sig-

Systems with Excess Degrees of Free-
dom,” COINS 88-27, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1988.

Derrick H. Nguyen is a
Ph.D. candidate in the
Electrical Engineering
Department at Stanford
University. He received
the B.S.E.E. degree from
the California Institute of
Technology in 1986 and
the M.S.E.E. degree from
Stanford University in
1987. His research inter-
ests include adaptive sig-

Determination of the complexity of the nal Processing, Englewood Cliffs, NJ: nal processing and adaptive control with neural
controller as related to the complexity of networks. He is a Student Member of IEEE and

the emulator. a member of Tau Beta Pi. He received a National
Science Foundation Graduate Fellowship in 1986. Determination of the convergence and rate

of learning for the emulator and control-
1..- 1988.

Prentice-Hall, 1985.
B. Irie and S . Miyake, “Capabilities of
Three-Layered Perceptrons,” Proc. IEEE
Intl. Con$ Neural Networks, pp. 1-641,

[4]

1G1.

Proof of robustness of the control scheme.
Analytic derivation of the nonlinear con-
troller for the truck backer-upper, and
comparison with the self-learned control-
ler.
Relearning in the presence of movable ob-
stacles.
Exploration of other areas of application
for self-learning neural networks.

Acknowledgments

This research was sponsored by the SDI0
Innovative Science and Technology Office
and managed by ONR under Contract
N00014-86-K-0718, by the Department of
the Army Belvoir RD&E Center under Con-
tract DAAK70-89-K-0001, by NASA Ames
under Contract NCA2-389, by the Rome Air
Development Center under Subcontract
E-21-T22-S1 with Georgia Institute of Tech-
nology, and by grants from the Thomson
CSF Company and the Lockheed Missiles
and Space Company.

This material is based on work supported
under a National Science Foundation Grad-
uate Fellowship. Any opinions, findings,

D. B. Parker, “Learning Logic,” Tech.
Rept. TR-47, Center for Comput. Res.
Econ. and Manage., Massachusetts Insti-
tute of Technology, Cambridge, MA, 1985.
P. Werbos, “Beyond Regression: New
Tools for Prediction and Analysis in the Be-
havioral Sciences,” Ph.D. Thesis, Harvard
Univ., Cambridge, MA, Aug. 1974.
B. Widrow, N. K. Gupta, and S . Maitra,
“Punish/Reward: Learning with a Critic in
Adaptive Threshold Systems,” IEEE Trans.
Sysr., Man, Cybern., Sept. 1973.
A. G. Barto, R. S . Sutton, and C. W. An-
derson, “Neumnlike Adaptive Elements
That Can Solve Difficult Learning Control
Problems,” IEEE Trans. Sysr., Man, Cy-
bern., Sept./Oct. 1983.
C. W. Anderson, “Learning to Control an
Inverted Pendulum Using Neural Net-
works,” IEEE Contr. Syst. Mag., vol. 9,
no. 3, Apr. 1989.
B. Widrow, “Adaptive Inverse Control,”
in Adaptive Systems in Control and Signal
Processing 1986, International Federation
of Automatic Control, July 1986.
D. Psaltis, A. Sideris, and A. A. Yama-
mura, “A Multilayered Neural Network
Controller,” IEEE Conrr. Syst. Mag., vol.
8, Apr. 1988.
M. I . Jordan, “Supervised Learning and

[9]

[lo]

[I l l

[I21

Bernard Widrow is Pro-
fessor of Electrical Engi-
neering at Stanford Uni-
versity. Before joining the
Stanford faculty in 1959,
he was with the Massa-
chusetts Institute of Tech-
nology (MlT), Cam-
bridge, Massachusetts. He
is presently engaged in re-
search and teaching in
neural networks, pattern

recognition, adaptive filtering, and adaptive con-
trol systems. He is Associate Editor of the journals
Adaptive Conrrol and Signal Processing, Neural
Networks, Information Sciences, and Pattern Rec-
ognition, and coauthor with S. D. Steams of
Adaprive Signal Processing (Prentice-Hall). Dr.
Widrow received the S.B., S.M., and Sc.D. de-
grees from MIT in 1951, 1953, and 1956. He is
a member of the American Association of Uni-
versity Professors, the Pattern Recognition Soci-
ety, Sigma Xi, and Tau Beta Pi. He is a Fellow
of the IEEE and of the American Association for
the Advancement of Science. He is President of
the International Neural Network Society. Dr.
Widrow received the lEEE Alexander Graham Bell
Medal in 1986 for exceptional contributions to the
advancement of telecommunications.

Aoril 1990 23

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE CAMPINAS. Downloaded on August 5, 2009 at 10:01 from IEEE Xplore. Restrictions apply.

