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ABSTRACT: Neural networks can be used 
to solve highly nonlinear control problems. 
This paper shows how a neural network can 
learn of its own accord to control a nonlinear 
dynamic system. An emulator, a multilay- 
ered neural network, learns to identify the 
system’s dynamic characteristics. The con- 
troller, another multilayered neural network, 
next learns to control the emulator. The self- 
trained controller is then used to control the 
actual dynamic system. The learning process 
continues as the emulator and controller im- 
prove and track the physical process. An ex- 
ample is given to illustrate these ideas. The 
“truck backer-upper,’’ a neural network 
controller steering a trailer truck while back- 
ing up to a loading dock, is demonstrated. 
The controller is able to guide the truck to 
the dock from almost any initial position. 
The technique explored here should be ap- 
plicable to a wide variety of nonlinear con- 
trol problems. 

Introduction 

This paper addresses the problem of con- 
trolling severely nonlinear systems from the 
standpoint of utilizing neural networks to 
achieve nonlinear controller design. The 
methodology shows promise for application 
to control problems that are so complex that 
analytical design techniques do not exist and 
may not exist for sometime to come. Neural 
networks can be used to implement highly 
nonlinear controllers with weights or internal 
parameters that can be determined by a self- 
learning process. 

Neural Networks 
A neural network is a system with inputs 

and outputs and is composed of many simple 
and similar processing elements. The pro- 
cessing elements each have a number of in- 
temal parameters called weights. Changing 
the weights of an element will alter the be- 
havior of the element and, therefore, will 
also alter the behavior of the whole network. 
The goal here is to choose the weights of the 
network to achieve a desired input/output re- 
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lationship. This process is known as training 
the network. The network can be considered 
memoryless in the sense that, if one keeps 
the weights constant, the output vector de- 
pends only on the current input vector and 
is independent of past inputs. 

Adalines 

The processing element used in the net- 
works in this paper, the Adaline [ 11, is shown 
in Fig. 1 .  It has an input vector X = {x,}, 
which contains n components, a single out- 
put y ,  and a weight vector W = { w, }, which 
also contains n components. The weights are 
variable coefficients indicated by circles with 
arrows. The output y equals the sum of in- 
puts multiplied by the weights and then 
passed through a nonlinear function. (Note: 
In the early 1960s, Adaline elements utilized 
sharp quantizers in the form of signum func- 
tions. Today both signum and the differen- 
tiable sigmoid functions are used.) 

, I -  I 

s(X) = c w,x, (1) 

Y ( X )  = f ( s ( X ) )  (2) 

, = o  

The nonlinear function f ( s )  used here is the 
sigmoid function 

f ( s )  = [ l  - exp (-2s)]/[l + exp (-2s)l 

= tanh (s) (3) 

With this nonlinearity, the Adaline behaves 
similar to a linear filter when its output is 
small, but saturates to + 1 or - 1 as the out- 
put magnitude increases. It should be noted 
that one of the Adaline’s inputs is usually 
set to + 1. This provides the Adaline with a 
way of adding a constant bias to the weighted 
sum. 

The goal here is to train the Adaline to 
achieve a desired form of behavior. During 
the training process, the Adaline is presented 
with an input X ,  which causes its output to 
be y ( X ) .  We would like the Adaline to output 
a desired value d ( X )  instead, and so we ad- 
just the weights to cause the output to be 
something closer to d ( X )  the next time X is 
presented. The value d ( X )  is called the de- 
sired response.’ Many input, desired-re- 
sponse pairs are used in the training of the 
weights. 

W 

Weights 

Fig. 1. Adaline with sigmoid. 

A good measure of the Adaline’s perfor- 
mance is the mean-squared error J, where 
E( .) denotes an expectation over all avail- 
able ( X ,  d ( X ) )  pairs. 

J = E(erro+) (4) 

= E(d(X) - Y ( X ) ) *  ( 5 )  

By applying gradient descent [1]-[3], the al- 
gorithm to adjust W to minimize J turns out 
to be the following, wheref’(s) is the de- 
rivative of the function f (s). 

Wi.new = Wi.old + 2phxl (7) 

(8) 
The designer chooses p ,  which affects the 
speed of convergence and stability of the 
weights during training. The value 6 can be 
thought of as an “equivalent error” and 
would be equal to the error d(X)  - y ( X )  if 
f ( s )  were the identity function. In this case, 
Eqs. (7) and (8) would be the same as the 
1959 least-mean-squares (LMS) algorithm of 
Widrow and Hoff [ l ]  and Widrow and 
Steams [3]. 

The preceding algorithm is applied many 
times with many different ( X ,  d ( X ) )  pairs un- 
til the weights converge to a minimum of the 
objective function J. 

Back-Propagation Algorithm 

6 = (4-V - y ( X ) ) f  ’ M X ) )  

In this paper, Adalines are connected to- 
gether to form what is known as a layered 
feedfonvard neural network, shown in Fig. 
2. A layer of Adalines is created by con- 
necting a number of Adalines to the same 
input vector. Many layers can then be cas- 
caded, with outputs of one layer connected 
to the inputs of the next layer, to form a 
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Fig. 2. Two-layer feedforward neural 
network. 

network. It has been proven that a network 
consisting of only two layers of Adalines can 
implement any nonlinear function X,  d (X)  
given enough Adalines in the first layer (the 
layer closest to the input). The idea is that 
each Adaline in the first layer can take a 
small piece of the function relating X to d(X)  
and make a linear approximation to that 
piece. The second layer then adds the pieces 
together to form the complete approximation 
to the desired function. A proof of this is 
given in [4]. [Note that d ( X )  can be vector 
valued since the network can have more than 
one output.] Despite this theoretical result, 
networks of many more layers than two are 
being used. They offer a variety of conver- 
gence properties, robustness, and general- 
ization characteristics (an ability to respond 
correctly to inputs that were not trained in) 
that can be quite different from those obtain- 
able with a two-layer network. 

The algorithm used to train layered neural 
networks is known as back-propagation [ 2 ] ,  
[ 5 ] ,  [ 6 ] .  This algorithm converges to a set 
of weights that minimizes the mean-square 
error 

where y ( X )  is the output vector of the last 
layer of the network. Just as in the case of 
the single Adaline, it is convenient to define 
“equivalent error” for each Adaline in the 
network. For Adaline m in the output layer, 
the equivalent error is the following, where 
ym is the output of Adaline m, 6, is the equiv- 
alent error of the jth Adaline, j indexes the 
set of all Adalines that have inputs connected 
to Adaline m’s output, and w,”, is the weight 
of the connection from Adaline m’s output 

Each weight is updated using the same equa- 
tion as for the single Adaline case, where i 
ranges over the inputs of Adaline m. 

Wmi.new = Wmi.old + 2p6mxk (12) 

Note that this is called the back-propaga- 
tion algorithm because the equivalent error 
is computed for the output layer using Eq. 
(lo), and then propagated backward through 
the layers toward the input layer using Eq. 
(11). As the equivalent error is computed 
during the backward propagation, the 
weights are updated using Eq. (12). 

Layered neural networks adapted by means 
of the back-propagation algorithm are pow- 
erful tools for pattern recognition, associa- 
tive memory, and adaptive filtering. In this 
paper, adaptive neural networks will be used 
to solve nonlinear adaptive control problems 
that are very difficult to solve with conven- 
tional methods. 

Control Problem 
The standard representation of a finite-di- 

mensional discrete-time plant is shown in 
Fig. 3. The vector uk represents the inputs 
to the plant at time k and the vector zk rep- 
resents the state of the plant at time k. The 
function uk) maps the current inputs 
and state into the next state. When the plant 
is linear, the usual state equation holds, 
where F and G are matrices. 

Z t + l  = A(Zk, U k )  F Z n  + GUk (13) 

The function A(zk, uk) would be nonlinear 
for a nonlinear plant. 

P. common problem in control is to pro- 
vide the correct input vector to drive a non- 
linear plant from an initial state to a subse- 
quent desired state z d .  The typical approach 
used in solving this problem involves lin- 
earizing the plant around a number of op- 
erating points, building linear state-space 
models of the plant at these operating points, 
and then building a controller. For nonlinear 
plants, this approach is usually computation- 
ally intensive and requires considerable de- 
sign effort. 

In this paper, the objective is to train a 

controller-in this case, a neural network- 
to produce the correct signal uk to drive the 
plant to the desired state z d  given the current 
state of the plant zk (Fig. 3 ) .  Each value of 
uk over time plays a part in determining the 
state of the plant. Knowing the desired state, 
however, does not easily yield information 
about the values of uk that would be required 
to achieve it. 

A number of different approaches for 
training a controller have been described in 
the literature. They include reinforcement 
learning [7]-[9], inverse control [IO], [ l l ] ,  
and optimal control [ l l ] .  The architecture 
and training algorithm presented in this pa- 
per are novel in that they require little guid- 
ance from the designer to solve the control 
problem. This approach uses neural net- 
works in optimal control by training the con- 
troller to maximize a performance function. 
The approach is different from [ l l ]  in that 
the plant can be an unknown plant and plant 
identification is a part of the algorithm. A 
similar approach has been used by Widrow 
and Steams [3], Widrow [lo], and Jordan 
r121. 

Training Algorithm 
Plant Identi3cation- 

Training the Plant Emulator 

Before training the neural net controller, a 
separate neural net is trained to behave like 
the plant. Specifically, the neural net is 
trained to emulate &k, uk). Training the em- 
ulator is similar to plant identification in con- 
trol theory, except that the plant identifica- 
tion here (Fig. 4) is done automatically by a 
neural network capable of modeling nonlin- 
ear plants. 

In this paper, we assume that the states of 
the plant are directly observable without 
noise. A neural net with as many outputs as 
there are states, and as many inputs as there 
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Fig. 4. 
emulator. 

Training the neural net plant 
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are states plus plant inputs, is created. The 
number of layers in the neural net and the 
number of nodes in each layer presently are 
determined empirically since they depend on 
the degree of nonlinearity of the plant. 

In Fig. 4, the training process begins with 
the plant in an initial state. The plant inputs 
are generated randomly. At time k ,  the input 
of the neural net is set equal to the current 
state of the plant zt and the plant input uk. 
The neural net is trained by back-propaga- 
tion [Eqs. (10)-(12)J to predict the next state 
of the plant, with the value of the next state 
of the plant z p  + I used as the desired response 
during training. This process is roughly anal- 
ogous to the steps that would be taken by a 
human designer to identify the plant. In this 
case, however, the plant identification is 
done automatically by a neural network. 

Training the Neural Network Controller 

Given that the emulator now closely 
matches the plant dynamics, we use it for 
the purpose of training the controller. The 
controller learns to drive the plant emulator 
from an initial state zo to the desired state zd 

in K time steps. Learning takes place during 
many trials or runs, each starting from an 
initial state and terminating at a final state 
zK. The objective of the learning process is 
to find a set of controller weights that min- 
imizes the error function J, where J is aver- 
aged over the set of initial states zo. 

J = EtIIzd - Z K I I ~ )  (14) 

The training process for the controller is 
illustrated in Fig. 5. The training process 
starts with the neural net plant emulator set 
in a random initial state zo. Because the 
neural net controller initially is untrained, it 
will output an erroneous control signal U,, to 
the plant emulator and to the plant itself. The 
plant emulator will then move to the next 
state z I ,  and this process continues for K time 
steps. At this point, the plant is at the state 
zK. (Note that the number of time steps K 
needs to be determined by the designer.) 

We now would like to modify the weights 
in the controller network so that the square 
error (zd - zK)’ will be less at the end of the 
next run. To train the controller, we need to 
know the e m r  in the controller output uk for 
each time step k. Unfortunately, only the er- 
ror in the final plant state, (zd - ZK), is avail- 
able. However, because the plant emulator 
is a neural network, we can back-propagate 
the final plant error (zd - z K )  through the 
plant emulator using Eqs. (10) and (11) to 
get an equivalent error for the controller in 
the Kth stage. This error then can be used to 
train the controller by using Eqs. (11) and 
(12). The emulator in a sense translates the 
error in the final plant state to the e m r  in 
the controller output. The real plant cannot 
be used here because the error cannot be 
propagated through it. This is why the neural 
network emulator is needed. The error con- 
tinues to be back-propagated through all K 
stages of the run using Eq. ( l l ) ,  and the 
controller’s weight change is computed for 
each stage. The weight changes from all the 
stages obtained from the back-propagation 
algorithm are added together and then added 
to the controller’s weights. This completes 
the training for one run. 

The algorithm described would require 
saving all the weight changes so that they 
can be added to the original weights at the 
end of the run. In practice, for simplicity’s 
sake, the weight changes are added imme- 
diately to the weights as they are computed. 
This does not significantly affect the final 
result since the weight changes are small and 
do not affect the controller’s weights very 
much after one run. It is their accumulated 
effects over a large number of runs that im- 
prove the controller’s performance. 

Figure 5 represents the controller training 
process. For clarity, the details of error back- 
propagation are not illustrated there, but are 
described above and are represented alge- 
braically by Eqs. (10)-(12). Because the 
training algorithm is essentially an imple- 
mentation of gradient descent, local minima 
in the error function may yield suboptimal 

Error Back-Propagation 

z./ 

Fig. 5. 
(C = controller, E = emulator). 

Training the controller with back-propagation 

results. In practice, however, a good solu- 
tion is almost always achieved by using a 
large number of Adalines in the hidden lay- 
ers of the neural networks. 

An Example: Truck Backer-Upper 
Backing a trailer truck to a loading dock 

is a difficult exercise for all but the most 
skilled truck drivers. Anyone who has tried 
to back up a house trailer or a boat trailer 
will realize this. Normal driving instincts 
lead to erroneous movements, and a great 
deal of practice is required to develop the 
requisite skills. 

When watching a truck driver backing to- 
ward a loading dock, one often observes the 
driver backing, going forward, backing 
again, going forward, etc., and finally back- 
ing up to the desired position along the dock. 
The forward and backward movements help 
to position the trailer for successful backing 
up to the dock. A more difficult backing up 
sequence would only allow backing, with no 
forward movements permitted. The specific 
problem treated in this example is that of the 
design by self-leaming of a nonlinear con- 
troller to control the steering of a trailer truck 
while backing up to a loading dock from any 
initial position. Only backing up is allowed. 
Computer simulation of the truck and its 
controller has demonstrated that the algo- 
rithm described earlier can train a controller 
to control the truck very well. An experi- 
mental two-layer neural controller contain- 
ing 25 adaptive neural units in the first layer 
and one unit in the second layer has exhib- 
ited exquisite backing up control. The trailer 
truck can be straight or initially “jack- 
knifed” and aimed in many different direc- 
tions, toward and away from the dock, but 
as long as there is sufficient clearance, the 
controller appears to be capable of finding a 
solution. 

Figure 6 shows a computer-screen image 
of the truck, the trailer, and the loading dock. 
The critical state variables representing the 
position of the truck and that of the loading 
dock are Ocab, the angle of the cab, Otraller, the 
angle of the trailer, and xtraller and ytrailerr the 
Cartesian position of the rear of the center 
of the trailer. The definition of the state 
variables is illustrated in Fig. 6. 

The truck is placed at some initial position 
and is backed up while being steered by the 
controller. The run ends when the truck 
comes to the dock. The goal is to cause the 
back of the trailer to be parallel to the load- 
ing dock, i.e., to make Otraller go to zero and 
to have the point ( x , ~ , , ~ ~ ,  y,,ll,,) be aligned as 
closely as possible with the point (xdock, 
ydock). The final cab angle is unimportant. 
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Fig. 6. Truck, trailer, and loading dock. 

The controller will learn to achieve these ob- 
jectives by adapting its weights to minimize 
the objective function J, where J is averaged 
over all training runs. 

J = E(aI(xdcck - &ader)* + aZ(Ydock 

The constants a , ,  a', and a3  are chosen by 
the designer to weigh the importance of each 
error component. 

Training 

As described in the previous section, the 
learning process for the truck backer-upper 
controller involves two stages. The first stage 
trains a neural network to be an emulator of 
the truck and trailer kinematics. The second 
stage enables the neural-network controller 
to learn to control the truck by using the 
emulator as a guide. The control process 
consists of feeding the state vector zk to the 
controller, which, in turn, provides a steer- 
ing signal uk between -1 (hard right) and 
+1 (hard left) to the truck ( k  is the time 
index). At each time step, the truck backs 
up by a fixed small distance. The next state 
is determined by the present state and the 
steering signal, which is fixed during the time 
step. 

The process used to train the emulator is 
shown in Fig. 4. The emulator used in this 
example is a two-layer network with 25 Ada- 
lines in the first layer and four Adalines in 
the second layer. A suitable architecture for 
this network was determined by experiment. 
There is no theory for this yet. Experience 
shows that the choice of network architecture 
is important but a range of variation is per- 
missible. The emulator network has five in- 
puts corresponding to the four state variables 
xk and the steering signal uk, and four outputs 
corresponding to the next four state variables 
Zk+ I .  

During training, the truck backs up ran- 
domly, going through many cycles with ran- 
domly selected steering signals. The emu- 
lator learns to generate the next positional 
state vector when given the present state vec- 

tor and the steering signal. This is done for 
a wide variety of positional states and steer- 
ing angles. The two-layer emulator is adapted 
by means of the back-propagation algorithm. 
By this process, the emulator "gets the feel" 
of how the trailer and truck behave. Once 
the emulator is trained, then it can be used 
to train the controller. 

Refer to Fig. 7. The identical blocks la- 
beled C represent the controller net. The 
identical blocks labeled T represent the truck 
and trailer emulator. Let the weights of C be 
chosen at random initially. Let the truck back 
up. The initial state vector z,, is fed to C, 
whose output sets the steering angle of the 
truck. The backing up cycle proceeds with 
the truck backing a small fixed distance so 
that the truck and trailer soon arrive at the 
next state z , .  With C remaining fixed, a new 
steering angle is computed for state z I ,  and 
the truck backs up a small fixed distance once 
again. The backing up sequence continues 
until the truck hits something and stops. The 
final state zK is compared with the desired 
final state (the rear of the trailer parallel to 
the dock with proper positional alignment) 
to obtain the final state error vector E ~ .  (Note 
that, in reality, there is only one controller 
C. Figure 7 shows multiple copies of C for 
the purpose of explanation.) The error vector 
contains four elements, which are the errors 
of interest in Ztrailerr Ytrailcv etm,~err and ecab and 

are used to adapt the controller C. The final 
angle of the cab, ecabt does not matter and 
so the element of the error vector due to Bcab 
is set to zero. Each element of the error vec- 
tor is also weighted by the corresponding ai 
of Eq. (15). 

The method of adapting the controller C 
is illustrated in Fig. 7. The final state error 
vector eK is used to adapt the blocks labeled 
C, which are maintained identical to each 
other throughout the adaptive process. The 
controller C is a two-layer neural network. 
The first layer has the six state variables as 
inputs, and this layer contains 25 adaptive 
Adaline units. The second, or output, layer 
has one adaptive Adaline unit and produces 
the steering signal as its output. All of the 
Adaline units have sigmoidal activation 
functions. 

The controller C is adapted as described 
in the previous section. The weights of C are 
chosen initially at random. The initial posi- 
tion of the truck is chosen at random. The 
truck backs up, undergoing many individual 
back-up moves, until it comes to the dock. 
The final error is then computed and used by 
back-propagation to adapt the controller. The 
error is used to update the weights as it is 
back-propagated through the network. This 
way, the controller is adapted to minimize 
the sum of the squares of the components of 
the error vector using the method of steepest 
descent. The entire process is repeated by 
placing the truck and trailer in another initial 
position and allowing it to back up until it 
stops. Once again, the controller weights are 
adapted. And so on. 

The controller and the emulator are two- 
layered neural networks each containing 25 
hidden units. Thus, each stage of Fig. 7 
amounts to a four-layer neural network. The 
entire process of going from an initial state 
to the final state can be seen from Fig. 7 to 
be analogous to a neural network having a 
number of layers equal to four times the 

I I 

Error Back-Propagation C A  

Final desired response: 
'trailer = 'dock 

Ylrailer = Ydock 

@I,,,,,, = 0 

Fig. 7. 
(C = controller, T = truck emulator). 

Training the truck controller with back-propagation 
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number of backing up steps when going from 
the initial state to the final state. The number 
of steps K varies, of course, with the initial 
position of the truck and trailer relative to 
the position of the target, the loading dock. 

The diagram of Fig. 7 was simplified for 
clarity of presentation. The output error ac- 
tually back-propagates through the T-hlocks 
and C-blocks. Thus, the error used to adapt 
each of the C-blocks does originate from the 
output error cK, but travels through the proper 
back-propagation paths. For purposes of 
back-propagation of the error, the T-blocks 
are the truck emulator. However, the actual 
truck kinematics are used when sensing the 
error eK itself. 

The training of the controller was divided 
into several “lessons.” In the beginning, the 
controller was trained with the truck initially 
set to points very near the dock and the trailer 
pointing at the dock. Once the controller was 
proficient at working with these initial po- 
sitions, the problem was made harder by 
starting the truck farther away from the dock 
and at increasingly difficult angles. This way, 
the controller learned to do easy problems 
first and more difficult problems after it mas- 
tered the easy ones. There were 16 lessons 
in all. In the easiest lesson, the trailer was 
set about half a truck length from the dock 
in the x direction pointing at the dock, and 
the cab at a random angle of k30 deg. In 

back-up run when using the trained control- 
ler is demonstrated in Fig. 8. Initial and final 
states are shown on the computer screen dis- 
plays, and the backing up trajectory is illus- 
trated by the time-lapse plot. The trained 
controller was capable of controlling the 
truck from initial positions it had never seen. 
For example, the controller was trained with 
the cab and trailer placed at angles of +90 
deg, but was capable of backing up the truck 
with the cab and trailer placed at any angle 
provided that there was enough distance be- 
tween the truck and the dock. 

A More Sophisticated Objective Function 

The above-described truck controller was 
trained to minimize only the final state error. 
One can also train it to minimize total path 
length or control energy in addition to the 
final state error. For example, the objective 
function to minimize control energy is the 
following, with J averaged over all training 
trials. 

r 

K -  I 

+ f f 4  k = O  c .:] (16) 

the last and most difficult lesson, the rear of 
the trailer was set randomly between one and 
two truck lengths from the dock in the x 
direction and ir. 1 truck length from the dock 
in the y direction. The cab and trailer angles 
were set to be the same, at a random angle 
of &90 deg. (Note that uniform distributions 
were used to generate the random parame- 
ters.) The controller was trained for about 
lo00 truck backups per lesson during the 
early lessons, and 2000 truck backups per 

A simple change is made to the algorithm to 
minimize this objective function. In the orig- 
inal algorithm, the equivalent error for the 
controller at each time step k is computed 
during the backward pass of the back-prop- 
agation algorithm. It is easy to show that 
control energy can be minimized by adding 
- f f 4 4  to the equivalent error of the con- 
troller at each time step. The modified equiv- 
alent error is then back-propagated through 

lesson during the last few. It took about 
20,000 backups to train the controller. 

Results 

The controller learned to control the truck 
very well with the preceding training pro- 
cess. Near the end of the last lesson, the 
root-mean-square (rms) error of ytmller was 
about 3 percent of a truck length. The rms 
error of Orraller was about 7 deg. There is no 
error in xtraller since a truck backup is stopped 
when xtraller = xdock. One may, of course, 
trade off the error in ylrailer with the error in 
B,,,,,, by giving them different weights in the 

After training, the controller’s weights 
were fixed. The truck and trailer were placed 
in a variety of initial positions, and backing 
up was done successfully in each case. A 

objective function during training. i ;[---a ’ -  
Final state 

Fig. 8. A backing up example. 

the controller to update the controller’s 
weights as earlier. This change makes sense, 
since using -a4uk as an error in causes 
the COntrokr to learn to make uk smaller in 
magnitude. 

Training the controller to minimize control 
energy would cause it to drive the truck to 
the dock with as little steering as possible. 
An example with the controller trained in 
this manner is shown in Fig. 9. This example 
uses the same truck and trailer initial position 
as with the example of Fig. 8. Note that the 
path of the truck controlled by the new con- 
troller contains fewer sharp turns. Of course, 
the final state error increases somewhat be- 
cause of the new control objective. 

Summary 
The truck emulator in the form of a two- 

layer neural network was able to represent 
the trailer and truck when jackknifed, in line, 
or in any condition in between. Nonlinearity 
in the emulator was essential for accurate 
modeling of the kinematics. The angle be- 
tween the truck and the trailer was not small 
and thus sin 0 could not be represented ap- 
proximately as 0. Controlling the nonlinear 
kinematics of the truck and trailer required 
a nonlinear controller, implemented by an- 
other two-layer neural network. Self-learn- 
ing processes were used to determine the pa- 
rameters of both the emulator and the 
controller. Thousands of backups were re- 
quired to train these networks, requiring sev- 
eral hours on a workstation. Without the 
learning process, however, substantial 
amounts of human effort and design time 
would have been required to devise the con- 
troller. 

The truck “backer-upper’’ learns to solve 
sequential decision problems. The control 
decisions made early in the backing up pro- 

1 Final state 

Fig. 9. 
control energy. 

Backing up while minimizing 
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cess have substantial effects on final results. 
Early moves may not always be in a direc- 
tion to reduce error, but they position the 
truck and trailer for ultimate success. In 
many respects, the truck backer-upper learns 

conclusions, or recommendations expressed 
in this publication are those of the authors 
and do not necessarily reflect the views of 
the National Science Foundation. 

a control strategy similar to a dynamic pro- 
gramming problem solution. The learning is 
done in a layered neural network. Connect- 
ing signals from one layer to another corre- 
sponds to the idea that the final state of a 
given backing up cycle is the same as the 
initial state of the next backing up cycle. 

Future research will be concerned with 

Determination of complexity of the emu- 
lator as related to the complexity of the 
system being controlled. 
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