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Abstract: In this paper, neural networks impedance control is proposed for robot-environment

interaction. Iterative learning control is developed to make the robot dynamics follow a given

target impedance model. To cope with the problem of unknown robot dynamics, neural net-

works are employed such that neither the robot structure nor the physical parameters are

required for the control design. The stability and performance of the resulted closed-loop sys-

tem are discussed through rigorous analysis and extensive remarks. The validity and feasibility

of the proposed method are verified through simulation studies.

Index Terms – impedance control, learning control, neural networks.

1 Introduction

Intelligent robots are envisioned not only to co-exist but also to collaborate and co-work

with human beings in the foreseeable future for productivity, service, and operations with

guaranteed quality. In these applications, a robot which is tightly controlled in position will

face lots of challenges when it interacts with unknown environments. Under position control,

the interaction force is deemed as disturbance and will be suppressed, which leads to a larger

∗To whom all correspondences should be addressed.
Tel: (+65) 6516 6821, Fax: (+65) 6779 1103, E-mail: samge@nus.edu.sg
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interaction force and may result in saturation, instability, and physical failure [1]. In the

literature, there are two approaches which are able to assure compliant motion of robots.

The first is hybrid position/force control [2, 3, 4, 5], which is aimed at controlling force and

position in a nonconflicting way. The second is impedance control [6], which is aimed at

developing a relationship between the contact force and position instead of controlling force

or position separately. By specifying the relationship between the contact force and position,

impedance control ensures that the robot is able to maneuver in a constrained environment

while maintaining appropriate contact force [1].

While impedance control is acknowledged to be a promising way for a robot interacting with

unknown environments, it has been studied and developed in many research works, such

as [7, 8, 9, 10]. As uncertainties and complexities keep multiplying, one critical problem is

impedance control design subject to unknown and uncertain robot dynamics. There have

been extensive research works on adaptive impedance control carried out to cope with this

problem in the literature. In [11], adaptive impedance control is developed to make the actual

position of robot manipulators track the virtual desired trajectory, subject to uncertain robot

parameters. As in most adaptive control methods including [11], the regressor introduced

in [12] is needed and thus the robot structure is required to be known. In [13], function

approximation technique is employed to approximate unknown and uncertain robot dynamics,

and regressor-free adaptive impedance control is developed.

In parallel with adaptive impedance control, there has also been research effort on learning

impedance control. In [14, 15], iterative learning impedance control is proposed where a

sufficient condition to guarantee the learning convergence is required. In [16], an auxiliary

error variable is introduced such that it is possible to extend existing methods in position

control to impedance control. Based on the boundedness property, learning impedance control

which requires neither the robot structure nor the physical parameters is developed in [16]. As

further discussed in [17], if the bounds of the robot dynamics are known, the learning process

is avoided while the high-gain scheme can be adopted. Compared to that in [14, 15], the

approach developed in [16, 17] has a straightforward framework and fewer open parameters.

It is thus more feasible in practical implementations and employed as the basis of the work in
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this paper. In the method described in [16, 17], it is found that the high-gain feedback and the

use of sign function are required, and the chattering exists when the defined impedance error

becomes very small. Even if the sign function can be replaced by a smooth threshold function,

the high-gain feedback still exists. In this regard, a model-based method is anticipated but

it is contradictory to the fact that it is too tedious to obtain a robot model, as mentioned

above. Similarly as in [13], a universal approximator can be employed to resolve this problem,

and neural networks (NN) are thus considered in this paper. It has been demonstrated that

NN are particularly suitable for controlling highly uncertain, nonlinear and complex systems,

due to their excellent universal approximation ability to unknown complicated nonlinearities

[18, 19, 20, 21]. The method using NN to approximate robot dynamics has been studied in

the literature [22], which motivates the control design in this work.

Based on the above discussion, we investigate the problem of a robot interacting with unknown

environments and develop NN impedance control. The method to be discussed in this paper is

based on the learning mechanism as proposed in [16, 17], while NN are employed to cope with

the problem of unknown robot dynamics. While the robot dynamics are not required in the

learning impedance control to be developed in this paper, the adoption of the boundedness

property in [16, 17] is also avoided. Then the high-gain feedback which is inherently along

with the method in [16, 17] can be resolved. This will be illustrated in details through rigorous

analysis and comparative simulation studies. Furthermore, it will be shown that the developed

method guarantees compliant motion when a robot arm interacts with unknown environments

and smooth transition between contact-free and contact phases.

Based on the above discussion, we highlight the contributions of this paper as follows:

(i) NN are employed to cope with the problem of unknown robot dynamics, such that neither

the robot structure nor the physical parameters are required in the control design.

(ii) Learning control is developed based on NN approximation, and the use of the high-gain

feedback in [16, 17] is avoided.

(iii) The defined impedance error is guaranteed to iteratively go to zero, while all the other

signals in the closed-loop system are bounded.
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The rest of the paper is organized as follows. In Section 2, robot dynamics and control

objective are discussed. In Section 3, the details of the proposed learning control are presented,

followed by the rigorous analysis. In Section 4, the validity of the proposed method is verified

by simulation studies. Concluding remarks are given in Section 5.

2 System Overview

2.1 Robot Dynamics

The dynamics of the robot arm are described as

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − f(t) (1)

where M(q) ∈ R
n×n is the symmetric bounded positive definite inertia matrix; C(q, q̇)q̇ ∈ R

n

denotes the Coriolis and Centrifugal force; G(q) ∈ R
n is the gravitational force; τ ∈ R

n is the

vector of control input; and f(t) ∈ R
n denotes the vector of interaction force exerted by the

environment.

Assumption 1 It is assumed that the accurate force measurement is not achievable, i.e.,

there exists force measurement noise f̃ = f̂ − f 6= 0, where f̂ is the measurement of f . The

force measurement noise is bounded with an unknown bound bf , i.e., ‖ f̃ ‖≤ bf .

Property 1 [22] Matrix M(q) is symmetric and positive definite.

Property 2 [22] Matrix 2C(q, q̇) − Ṁ(q) is a skew-symmetric matrix if C(q, q̇) is in the

Christoffel form, i.e., ξT (2C(q, q̇) − Ṁ(q))ξ = 0, ∀ξ ∈ R
n.

As discussed in [23], the robot dynamics can be approximated by NN. Denote the elements

of M(q), C(q, q̇) and G(q) as mij(q), cij(q, q̇) and gi(q) for i = 1, 2, . . . , n, j = 1, 2, . . . , n,
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respectively. Then, they are represented by

mij(q) = θT
MijξMij(q) + ǫMij

cij(q, q̇) = θT
CijξCij(q, q̇) + ǫCij

gi(q) = θT
GiξGi(q) + ǫGi (2)

where ǫMij , ǫCij and ǫGi are the bounded approximation errors, θT
Mij , θ

T
Cij and θT

Gi are the

column vectors of the NN weights, ξMij(q), ξCij(q, q̇) and ξGi(q) are the vectors of Gaussian

functions (activation functions) with elements

ξMijl(q) = exp(
−(q − µMl)

T (q − µMl)

σ2

M

)

ξCijl(q) = exp(
−(η − µCl)

T (η − µCl)

σ2

C

)

ξGil(q) = exp(
−(q − µGl)

T (q − µGl)

σ2

G

) (3)

where l = 1, 2, . . . , p and p is the number of NN nodes, µMl, µCl and µGl are the centers of the

functions, and σ2

M , σ2

C and σ2

G are the variances, and η = [qT , q̇T ]T .

Remark 1 (GL matrices and operation [22]) As the complexity and nonlinearity of individual

entries of a matrix (vector) are different, to achieve roughly the same level of approximation

accuracy, the sizes of the corresponding NN should also be different. The introduction of

General-Leeway/Ge-Lee (GL) matrices {∗} and operation “•” makes convenient expression

and efficient computation possible for any general matrices/vectors in a manner with extra

flexibility and leeway.

Suppose that there are three matrices A = [aij ], B = [bij ] and C = [cij ], where the elements

aij and bij are column vectors, and cij are scalars. The corresponding GL matrices have the

following properties:

{A}T = [aT
ij ], {A}T • {B} = [aT

ijbij ], {A} • C = [cijaij] (4)

Note that aij and bij may have different sizes for different i and j, which increases the design
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freedom and analysis efficiency [22].

By employing NN and GL denotation, the robot dynamics are described as

M(q) = {ΘM}T • {ΞM(q)} + EM

C(q, q̇) = {ΘC}
T • {ΞC(q, q̇)} + EC

G(q) = {ΘG}
T • {ΞG(q)} + EG (5)

where ΘM , ΘC and ΘG are matrices formed by θMij , θCij and θGij , respectively, ΞM(q), ΞC(q, q̇)

and ΞG(q) are matrices formed by ξMij(q), ξCij(q, q̇) and ξGij(q), respectively, and EM , EC and

EG are matrices formed by ǫMij , ǫCij and ǫGij , respectively. Because EM , EC and EG are

bounded, we denote their upper bounds as bM , bC and bG, respectively. Equivalently, we have

‖EM‖ ≤ bM , ‖EC‖ ≤ bC , ‖EG‖ ≤ bG (6)

Note that bM , bC and bG are unknown.

2.2 Impedance Control

As discussed in the Introduction, impedance control can be employed for a robot interacting

with unknown environments. The stability of the coupled interaction system is guaranteed if

the environments are passive.

Suppose that there is a desired impedance model given in the joint space

Mdë + Cdė + Gde = f (7)

where e = qd − q with qd as the desired trajectory, and Md, Cd and Gd are the desired inertia,

damping and stiffness matrices, respectively.

The control objective in this paper is to find a sequence of control torques such that the

impedance of the whole system tracks the given target impedance model (7). Before the

control design, we need to construct an error signal between the real system and the virtual
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system (7). The following impedance error in [14] is used

w = Mdë + Cdė + Gde − f (8)

Then, the learning impedance control objective becomes

lim
k→∞

wk(t) = 0, ∀t ∈ [0, tf ] (9)

where k denotes the iteration number and tf is the iteration period. The problem under study

is very difficult to solve by conventional control methods because we do not have complete

knowledge of the robot arm. The situation becomes even more difficult when the unknown

system parameters are time-varying due to payload changes, mechanical wear and so on. To

overcome this difficulty, iterative learning control is proposed in the following, which searches

for a desired control input through a sequence of repetitive operations with pre-specified

operating conditions.

3 NN Impedance Control

In this section, NN impedance control is developed to achieve the control objective discussed

in the above section. While the same framework as discussed in [16, 17] is adopted, some

definitions and denotations are briefly introduced herein to make this paper self-contained.

For the analysis convenience, we define an augmented impedance error

w̄k = Kfw
k = ëk + Kdė

k + Kpe
k − Kff

k (10)

where Kd = M−1

d Cd, Kp = M−1

d Gd and Kf = M−1

d .

By choosing two positive definite matrices Λ and Γ such that

Λ + Γ = Kd and Λ̇ + ΓΛ = Kp (11)
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we further rewrite the augmented impedance error as

w̄k = ëk + (Λ + Γ)ėk + (Λ̇ + ΓΛ)ek − ḟk
l − Γfk

l (12)

where fk
l satisfies

ḟk
l + Γfk

l = Kff
k (13)

Remark 2 In practical implementations, Md, Cd and Gd are usually chosen to be diagonal

matrices with constant elements. In this way, we have Λ̇ = 0, and Λ and Γ are also diagonal

matrices that can be easily obtained according to (11).

By defining

zk = ėk + Λek − fk
l (14)

we obtain

w̄k = żk + Γzk (15)

Suppose that limk→∞ żk exists, limk→∞ zk = 0 will lead to limk→∞ żk = 0, and thus limk→∞ wk =

0 considering (15) and (10). Based on this fact, the control objective becomes zk → 0 as

k → ∞.

Let the estimates of M(q), C(q, q̇) and G(q) be M̂(q), Ĉ(q, q̇) and Ĝ(q), respectively, and they

are defined as

M̂(q) = {Θ̂M}T • {ΞM(q)}

Ĉ(q, q̇) = {Θ̂C}
T • {ΞC(q, q̇)}

Ĝ(q) = {Θ̂G}
T • {ΞG(q)} (16)

where Θ̂M , Θ̂C and Θ̂G are the estimates of ΘM , ΘC and ΘG, respectively.
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The control input is proposed as

τk = τk
ct + τk

fb + τk
com + f̂k (17)

where τk
ct, τk

fb and τk
com are the computed torque vector, feedback torque vector and compen-

sation torque vector, respectively.

In specific, the computed torque vector is given by

τk
ct = M̂k(q)q̈k

r + Ĉk(q, q̇)q̇k
r + Ĝk(q) (18)

where

q̇k
r = q̇d + Λek − f̂k

l

q̈k
r = q̈d + Λėk −

˙̂
fk

l (19)

with f̂k
l satisfying

˙̂
fk

l + Γf̂k
l = Kf f̂

k.

By defining

z̄k = ėk + Λek − f̂k
l = zk − f̃k

l (20)

with f̃k
l = f̂k

l − fk
l , the compensation torque vector is given by

τk
com = −LkB̂k (21)

where Lk = [sgn(z̄k), sgn(z̄k)‖q̈k
r ‖, sgn(z̄k)‖q̇k

r‖] and B̂ is the estimate of B = [bf +bG, bM , bC ]T .

The following analysis will show that the compensation torque vector (21) will compensate

for not only the inaccurate force measurement, but also the NN estimation error.

The feedback torque vector is given by

τk
fb = −Kz̄k (22)
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where K is a symmetric positive definite matrix.

To obtain M̂k(q), Ĉk(q, q̇) and Ĝk(q) in (18) and B̂k in (21), we develop the following learning

law

Θ̂k
M = Θ̂k−1

M − S−1

M • {ΞM(q)}z̄kq̈kT

r

Θ̂k
C = Θ̂k−1

C − S−1

C • {ΞC(q, q̇)}z̄kq̇kT

r

Θ̂k
G = Θ̂k−1

G − S−1

G {ΞG(q)} • z̄k

B̂k = B̂k−1 + S−1

B LkT

z̄k (23)

where SM , SC , SG and SB are symmetric positive definite matrices, and Θ̂k
M , Θ̂k

C , Θ̂k
G and B̂k

are the estimates of Θk
M , Θk

C , Θk
G and Bk, respectively.

Remark 3 The variables in the control input (17) include q̇d, q̈d, e, ė, q, q̇, f̂l and
˙̂
fl, which

are all available. Note that f̂l and
˙̂
fl are calculated from the measured force f̂ , of which the

derivative is not needed.

Substituting the control input (17) with (18), (21) and (22) into the dynamics (1), we obtain

the closed-loop dynamics as below

Mk(q) ˙̄zk + Ck(q, q̇)z̄k = −(M̃k(q)q̈k
r + C̃k(q, q̇)q̇k

r + G̃k(q) + Kz̄k + LkB̂k + f̃k) (24)

where M̃k(q) = Mk(q) − M̂k(q), C̃k(q, q̇) = Ck(q, q̇) − Ĉk(q, q̇) and G̃k(q) = Gk(q) − Ĝk(q).

Note that we have the following equations

M̃k(q) = {Θ̃k
M}T • {Ξk

M(q)} + Ek
M

C̃k(q, q̇) = {Θ̃k
C}

T • {Ξk
C(q, q̇)} + Ek

C

G̃k(q) = {Θ̃k
G}

T • {Ξk
G(q)} + Ek

G (25)

where Θ̃k
M = Θ̂k

M − ΘM , Θ̃k
C = Θ̂k

C − ΘC , Θ̃k
G = Θ̂k

G − ΘG and B̃k = B̂k − B.

Theorem 1 Considering the system described by (1) under Assumption 1, with the control

input (17) and the learning law (23), we have the following results:
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(i) lim
k→∞

wk(t) is bounded by ‖MdΓ‖bf for all t ∈ [0, tf ], i.e., ‖ lim
k→∞

wk(t)‖ ≤ bf . When the

force measurement is accurate, bf = 0 indicates lim
k→∞

wk(t) = 0.

(ii) all the signals in the closed-loop are bounded for all t ≥ 0.

Proof 1 Consider the following Lyapunov-Krasovskii functional

Ωk(t) = Uk(t) + V k(t) + W k(t) (26)

where

Uk(t) =
1

2
z̄kT

Mk z̄k

V k(t) =
1

2

∫ t

0

[tr(Θ̃kT

M ST
MΘ̃k

M + Θ̃kT

C ST
CΘ̃k

C) + Θ̃kT

G ST
GΘ̃k

G]dτ

W k(t) =
1

2

∫ t

0

B̃kT

ST
BB̃kdτ (27)

where tr(·) denotes the matrix trace.

According to Property 2 and closed-loop dynamics (24), we have

Uk(t) = Uk(0) +

∫ t

0

[z̄kT

Mk(q) ˙̄zk +
1

2
z̄kT

Ṁk(q)z̄k]dτ

= Uk(0) +

∫ t

0

z̄kT

[Mk(q) ˙̄zk + Ck(q, q̇)z̄k]dτ

= Uk(0) −

∫ t

0

z̄kT

[M̃k(q)q̈k
r + C̃k(q, q̇)q̇k

r + G̃k(q) + Kz̄k + LkB̂k + f̃k]dτ

= −

∫ t

0

z̄kT

[M̃k(q)q̈k
r + C̃k(q, q̇)q̇k

r + G̃k(q) + Kz̄k + LkB̂k + f̃k]dτ (28)

where we use the assumption that Uk(0) = 0. This is obtained by assuming that q̇k(0) = q̇d(0),

qk(0) = qd(0) and f̂k(0) = 0, which are known as the resetting condition [24].
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Besides, we consider

V k(t) − V k−1(t)

= −

∫ t

0

[tr(
1

2
δΘ̃kT

M SMδΘ̃k
M + Θ̃kT

M SMδΘ̃k
M +

1

2
δΘ̃kT

C SCδΘ̃k
C + Θ̃kT

C SCδΘ̃k
C)

+
1

2
δΘ̃kT

G SGδΘ̃k
G + Θ̃kT

G SGδΘ̃k
G]dτ

≤ −

∫ t

0

[tr(Θ̃kT

M SMδΘ̃k
M + Θ̃kT

C SCδΘ̃k
C) + Θ̃kT

G SGδΘ̃k
G]dτ (29)

By defining δΘ̃k
M = Θ̃k−1

M − Θ̃k
M , δΘ̃k

C = Θ̃k−1

C − Θ̃k
C and δΘ̃k

G = Θ̃k−1

G − Θ̃k
G, we obtain the

following equations from (23)

δΘ̃k
M = −S−1

M • {ΞM(q)}z̄kq̈kT

r

δΘ̃k
C = −S−1

C • {ΞC(q, q̇)}z̄kq̇kT

r

δΘ̃k
G = −S−1

G {ΞG(q)} • z̄k (30)

Based on the above results, we have

−

∫ t

0

[tr(Θ̃kT

M SMδΘ̃k
M + Θ̃kT

C SCδΘ̃k
C) + Θ̃kT

G SGδΘ̃k
G]dτ

=

∫ t

0

[tr[({Θ̃k
M}T • {ΞM(q)})(z̄kq̈kT

r ) + ({Θ̃k
C}

T • {ΞC(q, q̇)})(z̄kq̇kT

r )]

+Θ̃kT

G ({ΞG(q)} • z̄k)]dτ

=

∫ t

0

[tr[(q̈k
r z̄

kT

)({Θ̃k
M}T • {ΞM(q)}) + (q̇k

r z̄kT

)({Θ̃k
C}

T • {ΞC(q, q̇)})]

+z̄kT

({Θ̃k
G}

T • {ΞG(q)})]dτ

=

∫ t

0

[tr[q̈k
r z̄

kT

(M̃k(q) − Ek
M) + q̇k

r z̄
kT

(C̃k(q, q̇) − Ek
C)]

+z̄kT

(G̃k(q) − Ek
G)]dτ (31)

Considering the following fact

tr[q̈k
r z̄

kT

(M̃k(q) − Ek
M )] = z̄kT

(M̃k(q) − Ek
M )q̈k

r

tr[q̇k
r z̄kT

(C̃k(q, q̇) − Ek
C)] = z̄kT

(C̃k(q, q̇) − Ek
C)q̇k

r (32)

12



we have

∫ t

0

[tr[q̈k
r z̄

kT

(M̃k(q) − Ek
M) + q̇k

r z̄kT

(C̃k(q, q̇) − Ek
C)]

+z̄kT

(G̃k(q) − Ek
G)]dτ

=

∫ t

0

z̄kT

[(M̃k(q) − Ek
M)q̈k

r + (C̃k(q, q̇) − Ek
C)q̇k

r

+(G̃k(q) − Ek
G)]dτ

=

∫ t

0

z̄kT

(M̃k(q)q̈k
r + C̃k(q, q̇)q̇k

r + G̃k(q))dτ

−

∫ t

0

z̄kT

(Ek
M q̈k

r + Ek
C q̇k

r + Ek
G)dτ (33)

Considering (29), (31) and (33), we obtain

V k(t) − V k−1(t)

≤

∫ t

0

z̄kT

(M̃k(q)q̈k
r + C̃k(q, q̇)q̇k

r + G̃k(q))dτ

−

∫ t

0

z̄kT

(Ek
M q̈k

r + Ek
C q̇k

r + Ek
G)dτ (34)

Furthermore, by defining δB̃k = B̃k−1 − B̃k, we have δB̃k = −S−1

B LkT

z̄k, and

W k(t) − W k−1(t)

=

∫ t

0

(
1

2
B̃kT

ST
BB̃k − B̃k−1

T

ST
BB̃k−1)dτ

= −

∫ t

0

(δB̃kT

ST
BB̃k +

1

2
δB̃kT

ST
BδB̃k)dτ

≤ −

∫ t

0

δB̃kT

ST
BB̃kdτ =

∫ t

0

z̄kT

LkB̃kdτ (35)

13



According to (26), (28), (34) and (35), we have the following result

∆Ωk(t) = Ωk(t) − Ωk−1(t)

= (Uk(t) − Uk−1(t)) + (V k(t) − V k−1(t)) + (W k(t) − W k−1(t))

≤ −

∫ t

0

(z̄kT

(Kz̄k + LkB̂k + f̃k))dτ

−

∫ t

0

z̄kT

(Ek
M q̈k

r + Ek
C q̇k

r + Ek
G)dτ +

∫ t

0

z̄kT

LkB̃kdτ

≤ −

∫ t

0

z̄kT

Kz̄kdτ −

∫ t

0

(z̄kT

(LkB − LkB))dτ

= −

∫ t

0

z̄kT

Kz̄kdτ (36)

In the above derivation, the following result is used

−z̄kT

(f̃k + Ek
M q̈k

r + Ek
C q̇k

r + Ek
G)

≤ ‖z̄k‖(‖f̃k‖ + ‖Ek
M q̈k

r ‖ + ‖Ek
C q̇k

r ‖ + ‖Ek
G‖)

≤ ‖z̄k‖(‖f̃k‖ + ‖Ek
M‖‖q̈k

r ‖ + ‖Ek
C‖‖q̇

k
r‖ + ‖Ek

G‖)

≤ ‖z̄k‖(bf + bM‖q̈k
r‖ + bC‖q̇

k
r‖ + bG)

≤ z̄kT

sgn(z̄k)((bf + bG) + bM‖q̈k
r ‖ + bC‖q̇

k
r‖)

= z̄kT

LkBT (37)

Assuming that Ω0 is bounded for all t ∈ [0, tf ], (36) indicates that the monotonically decreasing

nonnegative sequence Ωk converges to a nonnegative fixed value, thus we have ∆Ωk → 0 as

k → ∞.

Considering that

∆Ωk ≤ −z̄kT

Kz̄k ≤ 0 (38)

we obtain

lim
k→∞

z̄k = 0 (39)

14



Considering the definition of z̄ in (20), we obtain

lim
k→∞

zk = lim
k→∞

f̃k
l (40)

It follows from (10), (15) and the above equation that

lim
k→∞

wk(t) = lim
k→∞

f̃k(t) (41)

which immediately leads to

‖ lim
k→∞

wk(t)‖ ≤ bf (42)

When the force measurement is accurate, bf = 0 indicates lim
k→∞

wk(t) = 0. It completes the

proof.

Remark 4 As discussed in the Introduction, the linear-in-the-parameters property is consid-

ered in most adaptive/learning methods [12], and the regressor is used in the control design.

However, the usage of the regressor indicates a requirement that the robot structure is known as

a priori knowledge. The computation of the regressor is quite tedious especially when the robot

arm has a high DOF. In [16], this problem has been investigated by employing the boundedness

property, and a learning method was developed to “learn” unknown bounds kM , kC , kG. It has

also been shown that if the bounds kM , kC , kG are known, the learning process can be further

avoided by employing the high-gain scheme [17]. In the control input proposed in [16, 17],

the sign function and high-gain feedback are used which may cause chattering or even system

instability during implementations. It can be partially solved by replacing the sign function

by a smooth threshold function, but the high-gain feedback still exists. By employing NN, the

unknown robot dynamics instead of the unknown bounds are estimated in this work, and thus

the high-gain feedback is avoided in the computed torque component.

Remark 5 Note that sign function still appears in the control input (17), but it is only used in

(21) to compensate for inaccurate force measurement and NN estimation error. In other words,

sign function is not necessarily to be employed in the proposed method, if the force measurement

15



and NN approximation are accurate enough or a prescribed small error is acceptable.

Remark 6 Although NN are employed in the control design discussed in this section, it can

be replaced by other linearly parameterized function approximators such as fuzzy systems, poly-

nomials, splines etc.

Remark 7 Instead of iterative learning, the method developed in this paper can be used to

develop an adaptive NN control. While iterative learning requires the operations to be repeated

over and over again, it provides an advantage over the adaptive control that the system pa-

rameters of the robot dynamics can be time-varying during a learning iteration. Therefore,

iterative learning and adaptive control can be chosen according to different system setups.

4 Simulation Studies

In this section, we conduct the simulation using the Robotics Toolbox introduced in [25]. A

two-DOF robot arm with two revolute joints moves in the X − Y plane, as shown in Fig.

1. The robot arm repeats its motion to track the desired trajectory in each iteration, and is

repositioned to its initial position at the beginning of each iteration. In the following, mi, li, Ini

and lci, i = 1, 2, represent the mass, the length, the inertia about the Z-axis that comes out

of the page passing through the center of mass, and the distance from the previous joint to

the center of mass of link i, respectively. And we set m1 = m2 = 1.0kg, l1 = l2 = 0.2m,

In1 = In2 = 0.01kgm2, and lc1 = lc2 = 0.1m. Note that these parameters are only used for

the simulation and they will not be used in the control design. The initial position of the

robot arm at the kth iteration is qk(0) = [−π
3
, 2π

3
]T .

The desired trajectory of the robot arm in the Cartesian space is specified by

xd(t) = 0.2 + 0.1(6t5 − 15t4 + 10t3), yd(t) = 0 (43)

where t ∈ [0, tf ] and tf = 1s.
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The desired impedance model is specified by (7) with

Md = 0.1I2, Cd = 8I2 and Gd = 8I2 (44)

where I2 represents a 2 × 2 unit matrix.

Consider the control input (17) with each component (18), (21) and (22), and the updating

law (23). In (18), we choose µMl = 0.1, µCl = 0.1, µGl = 0.1, δM = 1, δC = 1 and δG = 1, for

l = 1, 2, . . . , 10. In (22), we choose K = I2. And in (23), we choose SM = 0.33I2, SC = 0.25I2,

SG = 0.33I2 and SB = 0.67I2 to obtain Θ̂k
M , Θ̂k

C , Θ̂k
G and B̂k. Similarly as in [16], no dynamics

information is needed so the control design is straightforward and simple. While the above

parameters do not guarantee the best control performance, it is feasible to change them with

other values.

In the first case of this simulation, the robot arm is considered to be contact-free, which

indicates that there is no external force exerted by the environment. The defined impedance

error in the joint space and positions in X and Y directions are shown in Figs. 2, 3 and

4, which illustrate the results at k = 1, k = 10 and k = 30 respectively. It is easy to find

that the impedance error becomes smaller as the iteration number increases. At k = 30, the

impedance errors at two directions almost go to zero, as shown in Fig. 4, which indicates that

the dynamics of the robot arm are governed by the desired impedance model. As there is no

external force from the environment, the actual position converges to the desired trajectory,

which can be found in the last two sub-figures of Figs. 2, 3 and 4. Theoretically, the learning

process will not stop until k → ∞. However, in the practical implementations, the learning

process can be manually stopped when the impedance error falls into a pre-defined small set.

In the second case, it is considered that there is an external force exerted by the environment

to the end-effector of the robot arm at the X direction. The environment is described by

fx = Ke(x − x0) which is a model widely used in the literature, e.g., [26, 27]. fx is the

interaction force in the Cartesian space and x0 = 0.2 is the rest position of the environment.

Ke = 2(1+0.5∆) is the stiffness where ∆ stands for the uncertainty and it is a pseudo-random

value drawn from a uniform distribution on the unit interval. Note that this environment
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model is only used for the simulation and it is unknown for the control design. The force

measurement noise is a uniform-random-number signal with amplitude of 0.01. The defined

impedance error and positions in X and Y directions at k = 1, k = 10 and k = 30 are shown

in Figs. 5, 6 and 7, respectively. It is found that the positions in X and Y directions drift

away from the desired trajectories due to the effect of the external force, which is different

from that in the first case. Nevertheless, as the iteration number increases, the impedance

error becomes smaller and converges to zero as the iteration number becomes very large. This

is similar to that in the first case and indicates that the proposed method guarantees the robot

dynamics governed by the desired impedance model in both contact-free and contact cases.

Furthermore, the above results may be achieved by learning control proposed in [16]. The

method in [16] is based on a property that the robot dynamics are bounded and the high-gain

feedback is required in the computed torque component, as discussed in Remark 4. For the

comparison purpose, the results with learning control in [16] in two cases of contact-free and

contact are shown in Figs. 8 and 9, respectively. The learning rate of the method in [16] is

L = 0.04I2 and other parameters are the same as in above simulation studies. Compared to

that in Figs. 4 and 7, similar results of impedance error and trajectory are found in Figs. 8

and 9, but there exists an obvious chattering in both figures. In this regard, NN based method

proposed in this paper is preferred. Nonetheless, it is also necessary to note that using NN

based method increases complexity and thus reduces robustness compared to the method in

[16]. Therefore, which one to be adopted in practical implementations needs to be evaluated

by considering the computation complexity and possible sacrifice of system stability.

5 Conclusion

In this work, robot-environment interaction has been investigated. Learning control has been

developed to make the robot dynamics governed by the given target impedance model. By

adopting NN, neither the linear-in-parameters property nor the dynamics boundedness prop-

erty was needed. The control performance has been discussed through rigorous proof and

remarking arguments. The simulation results have shown the validity of the proposed method
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and the superiority over the existing methods.
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Figure 1: Simulation scenario
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Figure 2: The first case: impedance error, actual trajectory and desired trajectory at k=1
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Figure 3: The first case: impedance error, actual trajectory and desired trajectory at k=10
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Figure 4: The first case: impedance error, actual trajectory and desired trajectory at k=30
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Figure 5: The second case: impedance error, actual trajectory and desired trajectory at k=1
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Figure 6: The second case: impedance error, actual trajectory and desired trajectory at k=10
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Figure 7: The second case: impedance error, actual trajectory and desired trajectory at k=30

28



0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

im
p

e
d

a
n

c
e

 e
rr

o
r 

(N
m

)
 

 

w
1

w
2

0 10 20 30 40 50 60 70 80 90 100
0.2

0.22

0.24

0.26

p
o

s
it
io

n
 (

m
)

 

 

x
d

x

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

−3

time (0.01s)

p
o

s
it
io

n
 (

m
)

 

 

y
d

y

Figure 8: The first case: impedance error, actual trajectory and desired trajectory at k=30
with the method in [16]
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Figure 9: The second case: impedance error, actual trajectory and desired trajectory at k=30
with the method in [16]
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