
Neural Networks in Chemistry 

By Johann Gasteiger” and Jure Zupan” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The capabilities of the human brain have always fascinated scientists and led them to investi- 
gate its inner workings. Over the past 50 years a number of models have been developed which 
have attempted to replicate the brain’s various functions. At the same time the development 
of computers was taking a totally different direction. As a result, today’s computer architec- 
tures, operating systems, and programming have very little in common with information 
processing as performed by the brain. Currently we are experiencing a reevaluation of the 
brain’s abilities, and models of information processing in the brain have been translated into 
algorithms and made widely available. The basic building-block of these brain models (neural 
networks) is an information processing unit that is a model of a neuron. An artificial neuron 
of this kind performs only rather simple mathematical operations; its effectiveness is derived 
solely from the way in which large numbers of neurons may be connected to form a network. 
Just as the various neural models replicate different abilities of the brain, they can be used to 
solve different types of problem: the classification of objects, the modeling of functional 
relationships, the storage and retrieval of information, and the representation of large amounts 
of data. This potential suggests many possibilities for the processing of chemical data, and 
already applications cover a wide area: spectroscopic analysis, prediction of reactions, chem- 
ical process control, and the analysis of electrostatic potentials. All these are just a small 
sample of the great many possibilities. 

1. Introduction 

In many areas where complex information needs to be 
processed- -from the stock-market to medical diagnosis and 
chemistry-people are suddenly talking about “neural net- 
works”. Neural networks appear to be a new secret weapon 
to combat a multitude of problems. In order to illustrate this, 
Figure 1 shows the dramatic rise in the number of publica- 
tions on the use of neural networks in chemistry. What 
makes neural networks so attractive? Are they really a 
panacea for information processing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? 

Neural networks were originally developed as models of 
information processing within the brain. This explains some 
of their fascination: The human brain has phenomenal pro- 
cessing power, far beyond that even of supercomputers to- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 1 .  Increase in the number of publications on the use of neural networks in 
chemistry over the period 1988-1991. 
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day. Obviously the human brain processes information in a 
completely different way from that of today’s conventional 
computers, which are constructed along the lines of the “von 
Neumann” architecture. A von Neumann computer works 
through a program (an algorithm) step by step, that is, se- 
quentially. 

In contrast the human brain operates largely in parallel : 
incoming information is channeled through many processing 
units simultaneously. This can be demonstrated by the “100 
Step Paradox”: We know from neurophysiology that a nerve 
cell or  neuron recovers approximately one millisecond after 
firing. On the other hand we also know that the human brain 
is able to perform intelligent processes, such as recognizing 
a friend’s face or  reacting to some danger, in approximateiy 
one tenth of a second. Therefore the brain is able to perform 
difficult tasks in less than 100 sequential steps. This small 
number of steps is of course insufficient to solve such com- 
plex problems, so we conclude that many tasks must be 
performed simultaneously and in parallel. 

Artificial neural networks are nowadays usually imple- 
mented as software packages which run on conventional von 
Neumann computers and merely simulate parallel process- 
ing. True parallel processing is only possible on appropriate 
hardware (Transputers) and is still rare today. The software 
approach permits the use of the same program for quite 
different knowledge domains. The same algorithm can be 
used to study the relationships between chemical structure 
and the infrared spectrum, to simulate a tennis match, or to 
predict stock-market trends. 

In conventional programming one tries to solve problems 
by finding a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproblem-specific algorithm where every instruc- 
tion is tailored to exactly the task at  hand. Alternatively one 
may solve the problem by using an  expert system, which 
distinguishes strictly between the knowledge specific to the 
task and the mechanism to draw conclusions and make deci- 
sions. Neural network algorithms, however, do  not belong to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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any particular knowledge domain, but may be used generally 
to solve certain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclasses ofproblems from a wide variety of 
fields. 

N o  longer is it the sequence of instructions that is specific 
to a task. It is the type of information that is fed into the 
neural network and the way it is represented there that tailor 
a study involving a neural network to the task at  hand. 

Neural networks may be used to solve the following prob- 
lem types: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- Classification : An object, characterized by various prop- 

erties, is assigned to a particular category. 
- Modeling: Neural networks can output both binary and 

real values. Through this feature, by combining certain 
experimental results for an object we can arrive at  other 
properties for it. Statistical methods produce such rela- 
tionships by using an explicit mathematical equation. 
Neural networks however are able to express such rela- 
tionships implicitly; this is especially useful in cases where 
an explicit equation can not be set up. 

- Association: Neural networks can be used for the task of 
comparing information because they are able to store in- 
formation of similar kinds. Thus they are able to recognize 
that two pictures of a face depict the same person, even 
when one of the pictures is distorted (autoassociation). 
Furthermore, they can be used for associative tasks where 
one object has a particular relation to another object 
(heteroassociation). 

- Mapping: Complex information can be transformed into 
a simpler representation (e.g., projection onto a plane) 
while preserving all essential information. 
In this introductory article we shall first introduce the 

basic features of the various types of neural networks before 

giving an overview and selected examples of the application 
of neural nets in the field of chemistry.“, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2] 

2. Neurons and Networks 

In this review the term neural networks always refers to 
“artificial neural networks”, because these were developed in 
order to emulate the biological neural networks of the hu- 
man brain. However for simplicity the epithet “artificiaI” is 
omitted here. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. A Model of a Neuron 

Neural networks consist of subelements, the neurons, 
which are connected together to form a network. The artifi- 
cial neuron is supposed to model the functions of the biolog- 
ical nerve cell. Although there are at least five physiologically 
distinct types of nerve cell, we need only present one type 
here (Fig. 2), since we discuss only the basic structure of a 
neuron ; the physiological processes-and the chemical pro- 
c e ~ s e s ~ ~ ~  that cause them--cannot be examined in more de- 
tail. 

The nerve’s cell body possesses a large number of branch- 
es, known as dendrites, which receive the signals and pass 
them on to the cell body. Here the signals are accumulated, 
and when a particular threshold limit has been exceeded, the 
neuron “fires”. An electrical excitation is transmitted across 
the axon. At its end each axon has contact with the dendrites 
of the neighboring neurons; this contact point is called the 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFirst stage of a model of a neuron. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

The net signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANet is, however, not yet the signal that is 
transmitted, because this collective value Net can be very 
large, and in particular, it can also be negative. It is especially 

Fig. 2. Much simp1ified sheme Of a nerve 

ber of branches in the dendrites are much 
cell. The number of dendrites and the num- 

higher in reality the latter property that cannot be a good reflection of reality. 
A neuron may fire or not, but what is the meaning of a 
negative value? In order to attain a more realistic model, the 
value of Net is modified by a transfer function. In most cases 
a sigmoid function, also known as a logistic or Fermi func- 
tion, is used. With this transfer function the range of values 
for the ouput signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOUI [Eq. (c)] is restricted to between zero 
and one, regardless of whether Net is large or small or nega- 

synapse. Neurons are linked with each other across these 
synapses. 

The synapses, however, also present a barrier that alters 
the intensity of the signal during transmission. The degree of 
alteration is determined by the synaptic strength. An input 
signal of intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi has an intensity of si after crossing 
synapse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi of strength wi [Eq. (a), Fig. 31. The synaptic 
strength may change, even between one impulse and the 
next. 

1 
(c) out = 1 + e - ( a N e t + 9 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
Fig. 3. Transformation of an input signal x, on pds- 

sage through a synapse of strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwz. 

Each neuron has a large number of dendrites, and thus 
receives many signals simultaneously. These m signals com- 
bine into one collective signal. It is not yet known exactly 
how this net signal, termed Net, is derived from the individ- 
ual signals. 

For the development of artificial neurons the following 
assumptions are made: 
1 .  The Net is a function of all those signals that arrive at the 

neuron within a certain time interval, and of all the synap- 
tic strengths. 

2. The function is usually defined as the sum of the signals 
sir which in turn is given by the product of the input 
signals x i  (i = 1,. . . m) and the synaptic strengths wi 
( i  = 1 ,. . . m), now referred to as weights [Eq. (b)]. Figure 4 
shows the model of a neuron as developed up to this 
point. 

Net = s, + s2 + ... si + ... s,,, = w ,  x1 + w2 x2 
+ ... w,x ,  + t.. w,x, 

Most important, we now have a nonlinear relationship 
between input and output signals, and can therefore repre- 
sent nonlinear relationships between properties, a task which 
can often only be carried out with difficulty by statistical 
means. Moreover, in a and 9 we now have two parameters 
with which to influence the function of the neuron (Fig. 5). 

Fig. 5. Influence of a (a) or 9 on the output signal O U I , .  defined as in  Equation 
(C). 

The transfer function completes the model of the neuron. 
In Figure 6 a  the synaptic strengths, or weights w are still 
depicted as in Figure 4; in the following figures they will no 
longer be shown, as in Figure 6 b, but must of course still be 
used. 

X 

yj f 

out OUI 

Fig. 6. Complete model of a neuron a) with and b) without explicitly defined 
synapse strengths M'. 
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Symbols and Conventions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The literature on neural networks uses a confusing array of terminologies and 

symbols. In order that the reader may better compare the individual networks. 
a standard nomenclature will be followed throughout this article. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ Magnitudes that consist of a single value (scalar magnitudes) will be repre- 

sented by lower-case letters in italics .x,. (The only exception is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANrr which is 

capitalired in order to distinguish it from the English word net. Moreover. 

though zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANrr and on/ are symbols for single pieces ofdata, they are written with 

three letters so as to be more easily readable.) 

Data types which consist of several related values (vectors or matrices) are 

symbolized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa capital letter in bold italics. X .  
~ An input object that is described by several single data (e.g., measured values 

from sensors) will thus be represented by X .  whereas the individual values are 

given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Y , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2,. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..xm. A single input value from this series is specified with 

the index i. thus .xr. A single neuron from one group (layer) of n neurons will 

be labeled with the index 1: the whole of the output signals from these n 

neurons will be denoted Out (oar,,  our2. . .on/,): The output signal from any 

one individual thus has the value O I L / > .  

~ In a layer of n neurons receiving r n  input data there are n x F I T  weights that are 

organized into a matrix W ( N , ,  , w I 2 . .  II,~,,,). A single weight from this matrix 

will be labeled II',, . 
If there are more than one input objects. they will be distinguished by the 

index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.s: thus X , ;  the individual data will then be xTr. 

~ I n  a multilayered network the various layers will be labeled with the super- 

script /. e.g.. m/;. 

~ Iterations in a neural network are characterized by the superscripts /. which 

are written in parentheses. e.g.. W". 

2.2. Creating Networks of Neurons 

The 100-step paradox teaches us that the advantage of the 
human brain stems from the parallel processing of informa- 
tion. The model of a neuron that we have just presented is 
very simple, but even much more complicated models do  not 
provide any great degree of increased performance. The es- 
sential abilities and the flexibility of neural networks are 
brought about only by the interconnection of these individu- 
al arithmetic units, the artificial neurons, to form networks. 

Many kinds of networking strategies have been investigat- 
ed; we shall present various network models and architec- 
tures in the following sections. Since the most commonly 
applied is a layered model, this network architecture will be 
used to explain the function of a neural net. 

In a layered model the neurons are divided into groups or 
layers. The neurons of the same layer are not interconnected, 
but are only linked to the neurons in the layers above and 
below. In a single-layered network all the neurons belong to 
one layer (Fig. 7). Each neuronj  has access to all input data 
X (x l ,  x 2 , .  . . xi,. . . xm) and generates from these an output 
value which is specific to this neuron. outj. 

In Figure 7 the input units are shown at  the top. They do  
not count as a layer of neurons because they do  not carry out 
any of the arithmetic operations typical of a neuron, namely 

Fig. 7. Neural network with input units (squares) and one layer ofactive neu- 
rons (circles). 

the generation of a net signal Net, and its transformation by 
a transfer function into an output signal out. In order to 
distinguish them from neurons, which are represented as 
circles in the following diagrams, input units will be shown 
as squares. 

The main function of the input units is to distribute input 
values over all the neurons in the layer below. The values 
that arrive at the neurons are different, because each connec- 
tion from an input unit i to a neuronj  has a different weight 
M;#, representing a specific synaptic strength. The magni- 
tudes of the weights have to be determined by a learning 
process, the topic of Section 4. 

The output value outj of a neuron is determined by Equa- 
tions (d) and (e), which are generalizations of Equations (b) 

m 

Netj = C ivji x ,  ( 4  
i =  1 

and (c). The index j covers all n neurons and the index i all 
rn input values. 

In a single-layered network the output signals out, of the 
individual neurons are already the output values of the neu- 
ral network. 

Equations (d) and (e) suggest a more formal representa- 
tion for the neuron and the neural network. The input values 
can be interpreted as a vector X (xlr xz,. . .xi,. . .xm) that is 
transformed by the matrix of weights W with elements wII 
and the transfer function into the vector of output values Out 
( o u t , ,  out,, . . . out,, . . .out,) (Fig. 8). 

X( ... xt...) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA",p" 

mfn Out( ... out, ...) 

Fig. 8. Matrix representation of a one-layered network, which transforms the 
input data X into the output data Out by using the weights w,!. 

Each neuron represents a column in the matrix in Fig- 
ure 8. In this matrix representation it is emphasized that 
every input value is fed into every neuron. The implementa- 
tion of the layered model as algorithms is also realized in the 
matrix representation. 

A single layer of neurons is known as a perceptron model 
and offers only limited flexibility as yet for the transforma- 
tion of input values into output values. These Iimitations can 
be overcome by using several single layers in succession. 

In  a multilayered model the architecture chosen usually 
connects all the neurons of one layer to all the neurons in the 
layer above and all the neurons in the layer below. Figure 9 
shows a two-layered neural network. (As we mentioned pre- 
viously, the input units do not count here, because they are 
not neurons but serve only to distribute the input values 
across the neuron layer below.) The network user cannot 
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input 

units 

hidden 
layer (layer 1) 

output 

layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( layer 2) 

Fig. 9. Neural network with input units and two layers of active neurons 

access the first layer of neurons, which is therefore known as 
a hidden layer; the neurons in it are called inner neurons. 
The output values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOut’ of the first layer of neurons are the 
input values X’ of the second layer of neurons. Thus each 
neuron in the upper layer passes its output value on to every 
neuron in the layer below. Because of the different weights 
w , ~  in the individual connections (synapses) the same output 
value Out’ = has a different effect on each individual 
neuron [Eq. (d)]. The result of the neural network as a whole 
is only given by the last layer in the network (here Out’). 
Figure 10 shows a two-layer network in matrix notation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Out’ = ?? m 
out2 

Fig. 10. Matrix representation of a two-layered network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Historical Perspective 

The dramatic increase in interest in neural networks does 
much to disguise the fact that people have been developing 
them for nearly 50 years.[41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs early as the forties McCulloch 
and P i t t ~ [ ’ * ~ ]  developed a mode! of a neuron as a logical 
threshold element with two possible states. They were forced 
to leave open the question of how neurons learn, to which 
Hebb (1949) suggested an answer.[’] This Hebb learning rule 
states that the synaptic strength of a neuron varies propor- 
tionally with the activity in front of and behind the synapse. 

Rosenblatt[’’ organized a number of neurons in such a 
way that they corresponded essentially to a one-layered net- 
work (Fig. 7), and named this formation a perceptron. 

The original enthusiasm for the development of models of 
biological nervous systems began to wane in the sixties for 
various reasons. The results with the networks of that time 
were hardly relevant to solving real-world problems and thus 

not very encouraging. With the advent of the computer, 
interest shifted more and more to problem-solving by direct- 
ly programmed methods. The buzz-word invented for this, 
“artificial intelligence”, shows only too clearly what was ex- 
pected of this technology, although it was clear from the 
outset that the method chosen had very little to do  with the 
processing of information as performed by the human brain. 

Not surprising therefore that research into neural net- 
works suffered a heavy blow from none other than Marvin 
Minsky, one of the main proponents of artificial intelligence. 
In 1969 together with Papert[’] Minsky published a very 
severe but probably justified criticism of the network models 
of the time. They showed in their theoretical study that per- 
ceptrons-at least as they were being developed at  that 
time-offer only limited possibilities. Moreover they specu- 
lated that extending the architecture of perceptrons to more 
layers would not bring about any significant improvement in 
results. As a consequence of this criticism from so influential 
a personage as M. Minsky, research funding for the model- 
ing of biological nervous systems became virtually unavail- 
able. 

In the years that followed very little work was done on 
neural network models; however, even at this time some 
important advances were made. The work of Albus,”” 
Amari,“ Grossberg,r’21 K ~ h o n e n , [ ’ ~ ]  von der Mals- 

A decisive new impetus was given in 1982 by a physicist, 
Hopfield,[16] who was able to show that network models of 
binary neurons correspond formally to spin systems, and can 
be manipulated by the methods already developed for them. 

The greatest boost for the application of neural networks 
then came through the publication of the “back-propaga- 
tion” algorithm for learning in multilayered models, intro- 
duced by Rumelhart, Hinton, and Williams.[”. ‘‘I Even 
though the back-propagation algorithm had been suggested 
earlier,[”] credit must go to the research group on “Parallel 
Distributed Systems”[201 for bringing it to the attention of 
the public. 

Despite all the successes in the development of models for 
neural information processing, we must clearly acknowledge 
the fact that we are still very far from an understanding of 
the way the human brain works. The capacities of artificial 
neural networks must still be reckoned very rudimentary in 
comparison with the biological networks they are supposed 
to emulate. Nevertheless even these elementary models of 
neural networks have shown new ways of processing infor- 
mation. It is precisely to the possibilities they are opening up, 
especially in the area of chemistry, that we wish to devote 
ourselves in this article. 

and Widrow and Hoff[”I all deserves mention. 

4. Architectures and Learning Processes 

Over the years a whole series of research groups have 
developed their own characteristic artificial neural networks. 
Some of these models are closer to their biological counter- 
parts than others; some seem to emulate certain processes in 
the human brain very well, whereas others bear only a slight 
similarity to their biological forbears. 

Our primary concern here however is not the faithfulness 
to reality of each neural network model. We wish rather to 
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show which kinds of problems can be processed with the 
various models, and what capacities these neural networks 
offer to information processing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn artificial neural network 
can still have great significance for information processing, 
even if it bears but little relationship to biological systems. 

As we mentioned in the introduction, neural networks can 
be applied to a whole series of problems: classification, mod- 
eling, association, and mapping. Each neural network is 
more or less suitable for handling these problem types; each 
has its own characteristic strengths and weaknesses. We wish 
expound upon this here and to develop some feeling for 
which network model is best applied to a particular task. 

Three elements essentially characterize every neural net- 
work model: 
1. the arithmetic operation in a neuron 
2. the architecture of the net, that is, the way the individual 

neurons are connected 
3. the learning process that adapts the weights so that the 

correct result is obtained. 
The model of a neuron mentioned in Section 2 is only one 

of many, albeit a very common one. Even the organization 
of neurons into layers need not necessarily be that described 
in Section 2. The learning process, though, is very tightly 
coupled to the architecture of the neural network. There are 
essentially two types of learning processes: learning with or 
learning without instruction (“supervised” and “unsuper- 
vised” learning). 

In supervised learning the neural net is presented with a 
series of objects. The input data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX from these objects is given 
to the net, along with the expected output values Y. The 
weights in the neural net are then adapted so that for any set 
p of known objects the output values Yconform as closely as 
possible to the expected values Y (Fig. 1 1 ) .  

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Supervised learning. A comparison with expected values yields an 
error 6, which determines whether further adjustment cycles are necessary. 

In unsupervised learning the input data are passed repeat- 
edly through the network until it has stabilized, and until the 
input values map an object into certain areas of the network 
(Fig. 12). 

4.1. The Hopfield Model 

The American physicist Hopfield brought new life into 
neural net research in 1982 with his model.[’61 He pointed 
out analogies between neural networks and spin systems and 

Fig. 12. Unsupervised learning 

was thereby able to apply a whole series of mathematical 
methods from theoretical physics to research into neural 
networks. In addition to this he is also responsible for the 
introduction of nonlinear transfer functions. 

The Hopfield net performs one of the most interesting 
functions of the human brain: it can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAassociate. This means 
that stored pictures (or any other kind of complex informa- 
tion that can be represented as a multidimensional vector or  
matrix) can be recognized even from partial information or 
distorted versions of the original picture. For example, one 
could recognize one particular face from a collection of 
faces, even if only the eyes and nose are shown. 

The Hopfield net is a one-layered model that has exactly 
the same number of neurons as input nodes. Because every 
input node is connected to every neuron (Fig. 7), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx rn 
weights must be determined fo rm input nodes. The original 
Hopfield model works with bipolar input data (+ 1 or - 1 )  

(f). The net result in neuron,jis attained by the multiplication 

Xi{ - 1  + 

of all input signals x i  by the weights wji for that neuron, as 
in Equation (d). The transfer function here is a simple step 
function (Fig. 13) as may be produced by the sign of the 
value. 

Fig. 13. A step function as a transfer 
function. 
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The output signal of a neuron, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAout,, in a Hopfield net is 
given in Equation (g), where as already mentioned, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, can 
only assume the values + 1 and - 1. 

the Hopfield net, then the weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,, for the neuron jmay be 
derived from the input values of the individual pictures s and 
thus X, according to (h) and (i). This means that the weight 

outj = sign(Netj) = sign 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwji xi  
i =  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

wji = 0 for j =  i 
In order to understand the learning process in Hopfield 

networks we introduce an example at this point: We require 
a Hopfield net to learn the four pictures in Figure 14. Each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwji increases by 1 if, in a particular picture, the pixels j and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i are either both black or both white, and decreases by 1 if, 
in that picture, the ith and j th pixels are of different colors. 
The more pictures there are in which pixelsj and i match, the 
greater is the weight wji. The 4 x 4 pictures from Figure 14 
are stored accordingly in a Hopfield net consisting of 16 
neurons with 16 weights in a weight-matrix of dimensions 
16 x 16. 

We should first test whether a Hopfield net has stabilized. 
For this purpose an input vector (e.g., one of the four pic- 
tures from Fig. 14) is fed into the Hopfield net, and the 
output values derived from Equation (g). These output val- 
ues are compared to the input values. If they are equal then 
the process can terminate, otherwise the output values are 
fed into the net again as new input values and the process is 
repeated (Fig. 16). If after a few cycles one receives as output 
the same values as the original input, then one can say that 
the net has stabilized. Of course a Hopfield net is not intend- 
ed simply to reproduce its own input values as output; this 
is just a stability test. 

Fig. 14. Four pictures X , ,  X , ,  X , ,  and X,, used to train a Hopfield network. 

picture consists of 4 x 4 fields (pixels) that are either black 
(+ 1) or white (- I), so that each picture may be represented 
as a 4 x 4 = 16 dimensional vector. Figure 15 shows the ar- 
chitecture of the corresponding Hopfield net and the input of 
the first picture with values represented by - 1 (for a white 
pixel) and + 1 (for a black one). In the picture used for train- 
ing, the output values are exactly equal to the input values. 

The weights w in a Hopfield net do not have to be derived 
from a costly, iterative learning process, but can be calculat- 
ed directly from the pictures: If p pictures are presented to 

Fig. 15. Architecture of the Hopfieid net complete with input and output of the 
first picture of Figure 14. The given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMI,, values are determined from Equation (h) 
for the four pictures of Figure 4. 

Fig. 16. Testing a Hopfield net for stability 

The true value of a Hopfield net becomes evident in the 
retrieval of the original stored data from incomplete or dis- 
torted data; we can for instance retrieve an original picture 
in the Hopfield net from a blurred or spoiled picture. 

We shall investigate this phenomenon with the four pic- 
tures from Figure 14 and a Hopfield net in which they are 
stored in the form of 16 x 16 weights. We produce distorted 
pictures by altering a certain number of pixels in the original 
pictures, that is, by changing fields from black to white and 
vice versa. In Figure 17 we have shown the results obtained 
when each picture is altered by two, five, or indeed even 
thirteen pixels. 

One can see that with a distortion of two pixels the original 
pictures are retrieved correctly after only 1-2 iterations. 
When five fields are altered (a noise level of 31 %!), the 
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the individual input values and their corresponding out- 
puts): 

Fig. 17. Search for original pictures (showed at the top) stored in a Hopfield 
network after input ofpictures with a) two, b) five. and c) thirteen altered fields. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N is the number of iterations required to arrive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the result (bottom line in a<) 
when presented with the erroneous input (top line in a x ) .  

original pictures are still found successfully, but only after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3-5 iterations. This is not always so; we have observed cases 
with a five-pixel distortion where the wrong picture is out- 
put, or the right picture in negative form (black and white 
pixels swapped), or an oscillation occurs between two pat- 
terns that represent none of the stored pictures, so that the 
operation has to be aborted. 

If thirteen pixels in the pictures are altered (81 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% distor- 
tion) the original pictures are retrieved after 2-3 iterations as 
negatives. How does this come about? After all, significantly 
more than half the fields have been altered in color. It is 
remarkable that the negative of the original picture is re- 
turned, and not the negative of some other picture. 

Thus we have seen that as simple a model as a Hopfield net 
can still reproduce one of the human brain's more interesting 
faculties, namely the power of association. The Hopfield net 
does however have one significant drawback: The number of 
patterns (pictures, vectors) that can be stored is severely 
limited. In order to store more pictures an increased number 
of neurons is required; thus the size of the weight matrix 
grows very rapidly. 

4.2. An Adaptive Bidirectional Associative Memory 

With the Hopfield net we have shown that a neural net- 
work has the power to associate. An adaptive bidirectional 
associative memory (or ABAM)["] can do  this as well. We 
shall now show, however, that an ABAM is able, in addition, 
to combine patterns. An ABAM is, like a Hopfield net, a 
one-layered network. The number of output neurons n is 
however usually much lower than the number of input units 
in. 

In order to simplify the notation, and because in the case 
of ABAMs the meanings of input and output are apt to blur, 
in the following sections we refer to an input vector as Xand 
the output values as Y. Thus we always observe pairs of 
input (X,) and output (Y,) values (the index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs characterizes 

Given a series of such pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Xs, } where it is known which 
Y, value is to be expected from a particular X, value, the 
weights are determined in a supervised learning process. 

First starting values are calculated for the weights accord- 
ing to Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6). The weight matrix is now no longer 
square, as in the Hopfield net, but rather rectangular. It has 
dimensions m x n. 

The basic idea of learning with an ABAM net is that one 
can multiply an m x n matrix in two different ways: the stan- 
dard way by multiplying by an m-dimensional vector, which 
results in an n-dimensional vector, or  in the alternative trans- 
posed form, by multiplying by an n-dimensional vector to 
give an m-dimensional vector (Fig. 18). 

.- 

._) 
X(Q = X'O' 

yco = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAym 

Fig. 18. The learning process in an adaptive bidirectional associative memory 
(ABAM). 

The learning process is as follows: An initial weight matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W'' is calculated from the predefined pairs {%'I, Y'')). 
From 2') and *') the output values Y'') are produced, 
which d o  not as yet correspond to the goal values. Therefore 
these Y'l) values are multiplied by the transposed matrix 
*o)T to give a set of % l )  values. Applying Equation (j) to the 
pairs {$I), Y")) we calculate a new weight matrix W'). This 
process is repeated until the pair { P I ,  Y")) corresponds to 
the predefined values (%'), Y ' O ) ) .  

In the procedure the Y values are calculated in the usual 
way. Here, too, the individual x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy values are bipolar 
( + l ,  -1) [Eq. (k) and (I)]. 

m 

Net, = c wJ3 xi 
i =  1 

y i  = sign(Netj) 

As with the Hopfield net we also use simple pictures here 
as an illustration of how an ABAM may be applied. Pictures 
made of 5 x 5 fields, where each field may each be black (+ 1) 
or white (- l), will serve as input information. These can 
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thus be represented by a 25-dimensional vector, so that 25 
input units will be required. We use only five such pictures 
and identify them on the output side by a 5-dimensional 
vector. Each of the five patterns (pictures) is assigned one of 
the five positions in the vector, thus in the case of the first 
picture the first position is 1 and all the others are zero 
(10000), the second picture is represented by (01000) etc. (We 
are actually dealing with bipolar values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 and - 1 here, but 
for clarity’s sake we use binary notation (1,O) in the following 
sections). Figure 19 shows the five patterns and their identi- 
fications. The ABAM has a 25 x 5 architecture. and thus 
25 x 5 weights. 

Fig. 19. Five pictures used to train the ABAM, their symbols, and vector rep- 
resentations. 

An ABAM was trained with these five pictures and the 
five-dimensional vector (consisting of four zeros and one 1 in 
each case). Then the ABAM’s ability to associate distorted 
pictures with stored undistorted ones was put to the test. All 
possible I-pixel errors were generated; in the case of five 
pictures each of 5 x 5 pixels this makes a total of 125 different 
distorted pictures. The ABAM identified the correct undis- 
torted output picture in all cases. 

Next the ability of the ABAM to combine individual 
pieces of information was tested: that is, can it recognize, 
when presented with pictures made of two patterns, which 
combination of two pictures it is, despite previously having 
been presented with the patterns only singly? Figure 20 
shows all ten permutations of pairs for the five patterns, with 
the answer from the ABAM written underneath as a five-bit 
vector. In eight cases the ABAM returns a 1 in exactly the 
right two positions. Thus, for example, for the first com- 
bined pattern, which consists of the patterns 1 and 2, it 
returns the answer (llOOO), meaning that first and second 
patterns are contained in it. In the cases of the other two 
pattern combinations (1 + 3 and 3 + 5) the ABAM also rec- 
ognizes which individual patterns are present in the combi- 
nation, but makes the mistake of identifying a third pattern. 
If we generate these three-pattern combinations, as demon- 
strated in the bottom row of Figure 20, they differ very little 
from the two-pattern combinations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  pixel difference). The 
ABAM’s answers in these two cases are therefore not very 
far from the truth. 

The ABAM’s ability to combine two patterns has been 
discussed here in more detail for two reasons: Firstly, the 
ability to recognize that a piece of information is a combina- 
tion of‘ other pieces of information is, of course, an impor- 
tant capability of the human brain. Therefore if the ABAM 
can do  this too, we have reproduced an important aspect of 

Fig. 20. All combinations of two pictures from Figure 19. The two cases where 
three hits were activated erroneously are compared with the combination of 
three pictures drawn in the bottom row (see text for details). 

biological, neural information processing. Secondly, the 
ability to combine single pieces of information is required in 
many problem tasks in chemistry, especially in the study of 
relationships between structure and spectral data : If a neural 
network learns this relationship from pairs of spectra and 
structures, it should be able to derive all the component 
substructures from a new spectrum, even if it has never 
“seen” this particular combination of substructures previ- 
ously. 

4.3. The Kohonen Network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.3.1. Principles 

T. Kohonen[22. 231 developed a neural network which of all 
models has the greatest similarity to its biological counter- 
part.IZ4] This is especially true of the way in which the brain 
processes sensory signals. 

There is a broad strip of tissue in the cerebral cortex which 
specializes in the perception of touch and is known as the 
somatosensory cortex. Particular areas in this tissue are re- 
sponsible for particular parts of the body; parts of the body 
that carry the most sensory receptors are assigned corre- 
spondingly large, contiguous areas, whereas areas of skin 
which are supplied with relatively few sensory nerves are 
assigned only small areas, even if the part of the body in 
question is actually very large by comparison. In addition. 
neighboring parts of the body are assigned neighboring re- 
gions in the somatosensory cortex, so that for the sense of 
touch there is a contorted mapping of the body surface onto 
the brain (Fig. 21). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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activated 

Fig. 23. Proximity relations of the neurons in a Kohonen network a) First 
sphere of neighbors: b) growth of the spheres, c) neurons a t  the edge of the 
network. 

ing algorithm because the topology is the decisive factor in a 
Kohonen net. If every neuron is to have the same number of 
neighbors, a square, planar array is poorly suited to the task 
because the neurons at  the edges have fewer neighbors than 
those in the center of the net (Fig. 23c). 

From a square or rectangular array of elements we can 
nevertheless easily construct a topology in which each ele- 
ment has exactly the same number of neighbors. In order to 
do  this we must wrap the surface around on itself and con- 

face we produce first a cylinder and then a torus, as shown 
in Figure 24. 

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 21. Mapof  the human body (top) in thesomatosensorycortex ofthe brain 
(bottom). 

nect (“glue together”) its opposite edges. Thus from the sur- 

Kohonen introduced the concept of a “self-organized to- 
pological feature map” that is able to generate such map- 
pings. Briefly, these are two-dimensional arrays of neurons 
that reflect as well as possible the topology of information, 
that is, the relationships between individual pieces of data 
and not their magnitude. Using the Kohonen model we are 
able to create a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmapping of multidimensional information 
onto a layer of neurons, that preserves the essential content 
of the information (relationships). The whole process there- 
fore represents a kind of abstraction. Figure 22 shows the 
two-dimensional organization of the neurons in a Kohonen 
net. 

Fig. 24. The transformation of a rectangu- 
lar array of neurons into a torus in which 
each neuron has the same number of neigh- 
bors. 

Fig. 22. Two-dimensional assign- 
ment of the neurons in a Kohonen 
network. 

In this context mapping of information means that the 
similarity of a pair of signals is expressed in the proximity o r  
“neighborhood relation” of the neurons activated by them : 
the more alike two signals are, the closer together the neu- 
rons they activate should lie. However, as we are talking here 
about topological and not Euclidean distance, a neuron in a 
square array (Fig. 23a) has eight neighbors in the first 
“sphere”, since the neuron has eight direct neighbors. In a 
Kohonen network where the neurons are arrayed in a square 
the spheres of neighborhood grow through the network as 
shown in Figure 23 b. 

We must take the discussion on the topology of the Ko- 
honen net a little further before we can proceed to the learn- 

In a torus each element has the same number of neighbors: 
eight in the first circle, 16 in the second etc. Of course it is not 
easy to display in its entirety a mapping onto a torus. We 
shall therefore continue to represent Kohonen networks as 

Fig. 25. Representation of the surface of a torus on a plane. The topmost edge 
wraps onto the bottom, and the left edge wraps onto the right. 
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flat surfaces in the knowledge that if one arrives at  one of the 
edges the surface carries on over to the opposite edge 
(Fig. 25). Both the filled-in squares are therefore immediate 
neighbors. The same is true in the horizontal axis for those 
fields marked by crosses. 

The topology of the Kohonen net has been discussed a 
little more fully here in order to understand the examples 
better (see Sections 10.1 and 10.2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.3.2. The Learning Process 

Learning in a Kohonen net is a competitive process: all the 
neurons compete to be stimulated by the input signal. The 
input signal is an object that is described by m single values 
and can therefore be interpreted as a point in an m-dimen- 
sional space, projected onto a plane. Only one single neuron 
is finally chosen as the “best” (“winner takes all”). Different 
criteria are applied to find the “best” neuron--the central 
neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc. Very often the neuron whose weights are most 
similar to the input signal X ,  is chosen [Eq. (m)]. 

For this central neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, the weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwjr are corrected so 
that the output value becomes even more similar to the input 
signal. The weights on the other neurons are also corrected, 
albeit proportionally less the further they are from the 
strongly stimulated (central) neuron. Here it is the topologi- 
cal distance which counts, that is, which sphere of neighbor- 
hood (as reckoned outwards from the central neuron) in- 
cludes the neuron under consideration (compare Fig. 23). 

Then the process is repeated with the next input data. 
Every object (that is, every point in the m-dimensional space) 
stimulates a very specific neuron, so that every object is 
assigned a definite point in the Kohonen net. 

A simple example, the mapping of the surface of a sphere 
onto a Kohonen net, will explain the workings and the re- 
sults of the Kohonen net in more detail (Fig. 26). The spher- 
ical surface was divided into eight sectors, as shown in Fig- 
ure 26 b;  a point on this surface is defined by its three 
coordinates (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  z values). An array of 15 x 15 = 225 neu- 
rons was used to make a Kohonen net, which therefore 

Fig. 26. The representation of the surface 
of a sphere in a Kohonen network. The 
sphere’s surface is divided into eight sectors. 
Each point on the surface of the sphere is 
characterized by its assignment to one of 
these sectors. The point marked in the 
sphere at the bottom belongs to sector num- 
ber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

had three input units distributing their data over 225 neu- 
rons. Thus a total of 3 x 225 = 675 weights had to be deter- 
mined. 

Two thousand points were chosen at random from the 
spherical surface, and their sets of x, y ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz coordinates 
used severally to train the Kohonen net. For the graphical 
representation of the net that had developed after the learn- 
ing of these 2000 points, each point was identified by the 
number of the spherical sector from whence it came. (This 
information was not used in the learning process, however, 
but only at  the end for identifying the points.) Because 2000 
points have to be mapped onto 225 fields there are several 
points mapped onto each field. As it turns out, however, at 
the end of the learning process only points from the same 
sector of the sphere arrive at the same field, and points from 
neighboring regions of the spherical surface are projected 
onto neighboring fields. Figure 27 shows the resulting Ko- 
honen net. 

Fig. 27 Result of the projection of a spherical surface onto a Kohonen net- 
work. 

Fields with the same number, that is, points from the same 
sector of the sphere, form contiguous areas in the Kohonen 
net. It must be remembered that the surface shown here 
actually forms a torus (Fig. 24); therefore points on the left- 
hand edge are continued over onto the right hand edge 
(Fig. 25). Thus the two fields on the left-hand edge marked 
with the number 8 d o  indeed have a direct connection to the 
remaining fields with the number 8. Some fields (neurons) in 
the Kohonen net were not assigned any points from the 
spherical surface. That the spherical surface was mapped 
onto the Kohonen net while preserving the neighborhood 
relations between the points on the sphere may also be seen 
from the details of the Kohonen net as shown in Figure 28. 
Sectors on the sphere which meet at  lines of longitude or at 
the equator are also neighbors in their projection on the 
Kohonen net, and hold whole borders in common. In several 
regions four fields meet together; these regions or points 
correspond to the points where the coordinate axes break 
through the spherical surface. For example at  the circle in 
Figure 28 (bottom row, center) the sectors 1,2,3 and 4 con- 
verge. This corresponds to the “North pole” of the sphere. 

The mapping of a sphere onto a Kohonen net has been 
explained in this detail to show how a simple three-dimen- 
sional body can be mapped onto a plane. This illustrates well 
the way a Kohonen net functions as a topology-preserving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
jf Fig. 28. Areas on the Kohonen 

map of Figure 27 where four sec- 
tors meet, highlighted by circles. 

map and lays the foundation for a good understanding of the 
application of Kohonen networks to examples from the field 
of chemistry. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABack-Propagation 

The majority of neural net applications uses the "back- 
propagation" algorithm. This algorithm does not represent 
any particular kind of network architecture (a multilayered 
net is generally used) but rather a special learning process. 
Although this method was not introduced until 1986 by 
Rumelhart, Hinton, and Williams[171 it quickly gained wide- 
spread popularity and contributed decisively in the eventual 
triumph of neural networks. A few years ago a study carried 
out on publications about neural networks in chemistry 
showed that in 90% the back-propagation algorithm was 
used.t2] 

The attraction of learning through back-propagation 
stems from the fact that adjustments to the neural net's 
weights can be calculated on the basis of well-defined equa- 
tions. Nevertheless this procedure for correcting errors has 
very little in common with those processes responsible for 
the adjustment of synaptic weights in biological systems. 

The back-propagation algorithm may be used for one- or 
multilayered networks and is a supervised learning process. 
The input data are passed through the layers; the output 
data of a layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOut' form the input data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx"' of the layer 
/ + 1  . The results for the input data should eventually be 
delivered by the final layer. This will, however, not be the 
case at first. The output data, Oda",  of the final layer are 
therefore compared with the expected values Y and the error 
determined. This error is now used to correct the weights in 
the output layer. Next the weights in the penultimate layer 
are corrected with regard to the error from the final layer. 
Thus the error is fed back layer by layer, from bottom to top, 
and used to correct the weights at each level (Fig. 29). The 
error therefore flows counter to the direction of the input 
data; hence the name back-propagation, or  loosely formu- 
lated, "error-correction in reverse".[251 In the following sec- 
tions we demonstrate the basic features of the back-propaga- 
tion algorithm. For a detailed explanation we refer the 
reader to the literature."' ''. 1 8 , 2 5 1  

The back-propagation algorithm is intended to change the 
weights until the error in the output values Out is minimized; 
that is, they must correspond as closely as possible to the 
provided values Y.  

In the case of the last layer the error can be determined 
directly because the value Y, which is the expected output 
value, is known. The weight adjustments for the final layer, 

corr. W' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 corr. w2 

corr. W"S' P W  
25 output out 

correction 6 G 7  
Fig. 29. The learning process of the back-propagation algorithm. The weights 
are corrected by feeding the errors back into the network. 

Au.!"', are determined by deriving the error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [Eq. (n)] ac- 
cording to the individual weights. The chain rule leads to 
Equations (0) and (p). 

In the hidden layers the error is not directly known be- 
cause it is not known what output values, Out', should be 
produced by those layers. At this point we make the assump- 
tion that the error from the layer below was distributed even- 
ly over all the weights in the layer above. This assumption 
enables the error in one layer to be calculated from the error 
in the layer below (which has just been calculated). This is the 
basis of the back-propagation algorithm: The error is carried 
back through the individual layers (hence "back-propaga- 
tion of errors") thus enabling us to correct the weights in 
each layer. 

All in all we derive the closed form (9) for correcting the 
weights of a single layer. Here q is a parameter, the learning 

rate, that determines how rapidly a neural net learns. Usual- 
ly a value between 0.1 and 0.9 is chosen for it. FrequentIy 
when correcting the weights, the changes in weights from the 
cycle before (previous) are also taken into account. This is 
accomplished by extending the Equation (9) by the contribu- 
tion p A ~ t . : ~ ~ ~ ~ " l " " ~ ) .  The parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the momentum term. It 
determines the extent to which the previous weight changes 
are taken into account; it gives the learning process a certain 
capacity for inertia. The smaller p is, the quicker previous 
changes in weights are forgotten. It can be shown that the 
sum of q and p should be about I.[''] 
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5. Other Neural Network Models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Apart from those mentioned in Section 4, a number of dif- 

ferent processes for analyzing data with neural networks are 
still available. We wish briefly to mention only two more. 

The counterpropagation network consists of a Kohonen 
layer combined with a look-up table in order to give 
an~wers.[~’1 

The associative memory system (AMS) was developed as 
a model of information processing in the cerebellum, which 
is primarily responsible for processing motoric stimuli.[’01 
The AMS model has been used to predict chemical reactivity 
data, in particular the polar reactivity of bonds.[281 

6. Overview of Applications in Chemistry 

A great many approaches to problems from diverse 
branches of chemistry have already been investigated by ap- 
plying neural networks-from very general tasks such as 
structure-spectrum relationships, chemical reactivity, sec- 
ondary and tertiary structures of proteins and process mon- 
itoring, to such specific questions as the classification of 
energy levels in the curium atom and the recognition and 
classification of aerosol particle distributions, as well as the 
relationship between the physical structure and the mechan- 
ical properties of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApolyethylene-terephthalate fibers. 

This diversity underlines the fact that neural networks 
represent quite general, broadly applicable problem-solving 
methods. The final, concrete application is determined only 
by the nature of the data fed into the neural network. 

This article is intended to convey some feeling for the 
kinds of problems best approached with neural networks, so 
that the reader will be able to decide whether these methods 
can be used for his particular problem. The goal is therefore 
to demonstrate the capabilities of the methods and to give 
incentive to further applications, rather than to give a com- 
prehensive overview of all the work that has gone before. For 
this reason only a selection of typical neural network appli- 
cations in chemistry will be given in the following sections; 
these will not be organized by application area but rather by 
problem type, that is, according to whether the task in ques- 
tion is one of classification, modeling, association, or map- 
ping. 

There is, of course, a whole series of methods that can be 
used as alternatives to neural networks-and which have 
been used successfully for many years. Many tasks for which 
neural networks are used today could be solved equally well 
by using statistical and pattern-recognition methods such as 
regression analysis, clustering methods, and principal com- 
ponent analysis. In many cases these methods should be able 
to deliver results that are every bit as good. What is unfortu- 
nately lacking in most papers is a comparison between the 
capabilities of neural networks and those of more established 
methods. Comparisons such as these might bring out the 
advantages of neural networks more. These advantages in- 
clude the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ the mathematical form of the relationship between the 

- neural networks are also able to represent nonlinear rela- 
input and output data does not need to be provided 

tionships. 

On the other hand, the application of neural networks 
requires exactly the same care in the formulation of the prob- 
lem, the representation of information, the selection of data, 
and the division of data into training and test sets as is 
necessary for pattern-recognition and statistical methods. It 
must be stated clearly that the quality of the results obtained 
from neural networks depends crucially on the work and 
trouble invested in these subtasks. 

Essential aspects must be considered before deploying any 
kind of neural network. 
- What is the nature of the task under consideration? Clas- 

sification, modeling, association, or  mapping? 
- Which kind of learning process should be chosen? Super- 

vised or  unsupervised learning? Is there a set of expected 
results available for the objects, or must the structure of 
the information first be found? 
In Table 1 the various methods are correlated with prob- 

lem types and learning processes to make it easier to decide 
which neural network method should be used for a specific 
task. 

Table 1. Possibilities for applying neural networks. 

Hopfield ABAM Kohonen Back-propd- 
network network gation 

~ _ _ _ _ ~ ~  ~ ~ 

classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX X x 
modeling X 

association X X X 

mapping X 

learning unsup. unsup. unsup. sup. 
process [a] + sup. 

[a] unsup. = unsupervised learning, sup. = supervised learning (see Section 4). 

In chemistry most problems are of the classification or 
modeling types. This is one of the reasons why multilayered 
networks trained by the back-propagation algorithm pre- 
dominate. The results of a survey of those neural network 
applications in chemistry that appeared before the end of 
1990 show that over 90% of studies used the back-propaga- 
tion algorithm.[21 Hopfield networks were used twice, an 
adaptive bidirectional associative memory only once, and a 
Kohonen net coupled with the counterpropagation al- 
gorithm likewise only once. This distribution need not hold 
true in future, however, since ABAM and Kohonen net- 
works as well as the counterpropagation algorithm all offer 
possibilities that have by no means been exhausted. 

If we consider only the multilayered model with the back- 
propagation algorithm, we still have a broad spectrum for 
the complexities of the networks used: from networks with 
only 20 weights up to some with 40000, in one case even 
500000 weights! The number of data used for training a net 
should, in the case of the back-propagation algorithm, be at 
least as large as the number of weights. This rule was by no 
means always followed. The number of times the training 
data-set was passed through the net (number of epochs) also 
varied considerably: from 20 up to 100000 iterations. As 
may be imagined, the training times increased greatly in pro- 
portion with the number of weights and the number of iter- 
ations, from a few minutes on a personal computer up to 
hours on a Cray supercomputer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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7. Classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Classification problems are one of the most common areas 

of application for neural networks. An object is first charac- 
terized by various measurements and on that basis assigned 
to a specific category. Alternatively it may be found not to 
have a particular characteristic or not to belong to the class 
in question. Thus the output data are binary in nature: a 
feature is either present or  it is not; the object either belongs 
to a certain class or it does not. The input data that charac- 
terize the object can be binary in nature but can also be real 
values (measured data). Classification is a traditional do- 
main for the use of statistical and pattern-recognition meth- 
ods. Neural networks have the advantage that they can still 
be applied in cases where the relationships between the ob- 
ject data and the classes to which they are to be assigned are 
highly complex. Neural networks are suitable even for rela- 
tionships that cannot or  can only barely be expressed in 
terms ofexplicit equations. In the following sections we show 
examples from several branches of chemistry where either a 
single condition is to be diagnosed (Section 7.1) or a single 
category is to be chosen from a series of others (Section 7 . 9 ,  
or alternatively where an object is to be assigned to several 
classes simultaneously (Sections 7.2-7.4). 

input 
units 

hidden 
layer 

output 
neuron 

reactivity 

Fig. 30. Architecture and input parameters for a neural network to predict the 
breaking of bonds. For details see text. 

heterolytically in two directions (see Scheme I), there was a 
total of 770 possible bond breaks. From these, 149 heteroly- 
ses of simple bonds were chosen and 64 of them used to train 
the net by the back-propagation algorithm; the remaining 85 
bond-breaks were used to test the net (the division into train- 
ing and test data sets will be explained in Section 10.1). Fig- 
ure 31 shows a selection of molecules from the data set, in 
which those bonds classified as breakable or unbreakable 
have been marked. 

7.1. Chemical Reactivity 

The chemist derives his knowledge about the reactivity of 
bonds and functional groups from a great many observa- 
tions of individual reactions. How can this process be trans- 
ferred to a neural network? Let us look at the problem of 
polar bond breaking (Scheme I), the first step in many or- 
ganic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,f A? + 

A-B , ' A@ + :BQ Scheme 1. Polar bond cleavage. 

The reactivity is characterized very roughly in this case: 
namely whether a bond is easy or hard to break heterolytical- 
ly. For this a single output neuron that is set to one if the 
bond may be easily broken and to zero if the bond is difficult 
to break will suffice. We still have to characterize the polar 
bond breaking by parameters that serve to influence the 
process. For  this purpose a number of energetic and elec- 
tronic effects were used: bond dissociation energy (BDE), 
difference in total charge Ag,,, , difference in n-charge Agn, 

difference in o-electronegativity Ax,, o-polarity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,, polariz- 
ability of bonds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAah,  and the degree of resonance stabilization 
R' of the charges that arise from polar bond breaking. Val- 
ues for these quantities were calculated by empirical meth- 
o d ~ . ~ ~ ~ - ~ ~ ~  For these seven parameters, seven units are re- 
quired into which are fed the (real) values of the individual 
quantities. A hidden layer of three neurons completes the 
architecture for this study (Fig. 30). 

A data set that consisted of 29 aliphatic compounds con- 
taining 385 bonds was created. As each bond may be broken 

Fig. 31. Selection ofstructures from the training set indicating which bonds are 
easy (arrow) or difficult (arrow crossed through) to break heterolytically. The 
direction of the arrows indicate to which atom the electron pair will be shifted 
in bond cleavage (that is, which atom will receive the negative charge). 

After 1300 cycles (epochs) the net had correctly learned all 
64 bond breaks from the training data set. Then the bond 
breaks from the test data set were passed through the already 
trained neural net. These 85 bond breaks, about which the 
net had hitherto received no information, were also classified 
correctly. The division of the bonds into those easily and 
those not easily broken was predicted by the net exactly the 
same way as the chemist had determined them. The net had 
therefore learned the relationship between electronic and en- 
ergetic parameters and polar bond-breaking. 

The net was then ready to be applied to compounds that 
were contained neither in the training nor the test data sets. 
It even made correct predictions about bond types which 
contained atoms that were not used at  all in training. In 
Figure 32 the predicted reactive bonds of a structure which 
was not used to train the net are shown. The dissociation of 
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IT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 
H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 32. Bond cleavages predicted by the neural network for a structure which 
was not used in training. The direction of the arrows indicate the shifts of 
electron pairs, the values the predicted probability for heterolysis. 

a bromide ion and a thiol group, both in ally1 position, were 
found to be especially reactive, as were the removal of a 
proton from the central allylic position and from the thiol 
group. The allylic positions at  the ends of the system were 
estimated to be less acidic, whereas the position at  which the 
bromine atom can still function in an inductively stabilizing 
way receives a higher acidity. Thus all results correspond 
closely to chemical experience. 

It is remarkable that the reactivity of the SH group was 
correctly judged, even though the training data set did not 
contain a single structure with a sulfur atom. This is made 
possible by the use of those electronic and energetic parame- 
ters that contain the influence of the atom in general form in 
the techniques used for calculation of the inputs. Thus even 
a type of atom which does not occur in the current training 
set can be taken into consideration, provided that it is con- 
tained in the calculation process. 

This neural network is able to predict which bonds can 
easily be broken in a polar manner for a wide range of 
aliphatic structures. 

7.2. Process Control 

For many chemical processes the relationship between 
process data and control parameters can be represented, if at  
all, only by nonlinear equations. It is therefore very hard to 
model these processes and to predict their behavior. It there- 
fore comes as no surprise that neural networks are being 
used intensively for tasks in process ~ o n t r o I . [ ~ ~ - ~ ’ ~  This in- 
cludes not only the classification of certain events (yes/no 
decisions). but also the modeling of control parameters (pre- 
diction of a real value). 

An example in which the task is to choose between mem- 
bership of different classes will serve to illustrate the possible 
applications.[361 The goal was to derive individual Failure 
modes from six different sensor values for a continually 
stirred reaction vessel in which an exothermic reaction was in 
progress. 

The following measurements were taken (cf. Fig. 33): 1) 
The outlet concentration of the educt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,, 2) the reactor tem- 
perature r ,  3) the volume of the contents of the reactor V,, 
4) the outlet flowrate FR,, 5 )  the temperature of the cooling 
water T,, and 6) the flowrate of the cooling water, FR,. 
These six parameters were to be used as “symptoms” to 
diagnose several failure modes of the reactor. Malfunction 
can be caused by incorrect inlet concentration of the educt 
C,,,. inlet temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  and inlet flow-rate FR,. If any of 
these measurements deviates by more than 5 percent from 
the normal value, a failure has occurred in the reactor. 

@ @  
Fig. 33. Diagram of a reactor tank showing the six measured values ( C c .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  V,. 
FR,, K, .  FR,) and the state variables that give rise to a failure mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(CEO. T .  
FRJ. 

Each one of the failure modes affects almost all the symp- 
toms, that is, all six measured values, so that a specific failure 
mode can not be diagnosed directly from a single measure- 
ment. Moreover, it is possible for the failure modes to occur 
not just singly but simultaneously, and for the effects of 
simultaneous failure modes to compensate in the sensor val- 
ues, or  contrarily to amplify each other synergetically. 

Which network architecture was chosen in this case? Be- 
cause six real measured values are to be input, six input units 
are required. Likewise the number ofoutput neurons chosen 
was six; for each of the three crucial inlet parameters (C,,,, 
T,, and FR,) one neuron for a deviation over the normal 
value and one for a deviation below it. Thus if any of the six 
failure modes occurs the corresponding output neuron 
should also be activated. Five neurons in a hidden layer 
complete this multilayered net (Fig. 34). 

high low high low high low 

input 
units 

hidden 
layer 

output 
neuron 

Fig. 34. Neural network for diagnosing failure modes of the chemical reactor 
depicted in Figure 33. 

Accordingly for this neural network 6 x 5 + 5 x 6 = 60 
weights were to be determined. Twelve individual failure 
modes were deliberately produced, and the network trained 
by using the sensor data measured from them on application 
of the back-propagation algorithm. The network so trained 
was able to identify sensor data from the reactor running 
normally (data which were not used in the training process) 
as undisturbed behavior. Furthermore, when four multiple 
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failure modes were produced the neural net was likewise able 
to derive these correctly from the sensor data taken at the 
time. 

Neural networks will certainly become very important in 
the area of process control. It should also be possible to take 
a neural network that has been trained on a specific process, 
hard-code this onto a chip, and build this chip into the con- 
trol process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.3. The Relationship between Structure 

and Infrared Spectra 

In the examples from Sections 7.1 and 7.2, rather simple 
neural networks with relatively few weights were used. For 
the following application a considerably larger network with 
almost 10000 weights was developed. 

Modern structure elucidation is based on spectroscopic 
methods. However, as the relationships between the struc- 
ture of an organic compound and its spectroscopic data are 
too complex to be captured by simple equations, there are a 
multitude of empirical rules. The enormous amount of spec- 
troscopic data thus available fulfills an important precondi- 
tion for the training of neural networks. The first steps to 
store the relationships between structure and spectroscopic 
data in neural networks have already been taken. Neverthe- 
less, as we shall see, there is still much development to be 
done in this area. 

Munk et al.1421 investigated to what extent conclusions 
could be drawn by a neural network about the substructures 
contained in a particular compound from an infrared spec- 
trum. The range of an infrared spectrum between 400 and 
3960 cm-' was divided into 256 intervals, and each of these 
intervals assigned to an input element. If an absorption band 
was found in such an interval, its intensity was fed into the 
input element. The neural network had 36 output neurons, 
each of which was responsible for one of 36 different func- 
tional units (primary alcohol, phenol, tertiary amine, ester 
etc.). If a functional unit was present in the compound under 
investigation, then the corresponding neuron received the 
value one, otherwise the value zero. Further, an intermediate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

256 mput 
UnltS 

34 hidden 
neurons 

36 output 
neurons 

Fig. 35. Neural network to learn the relationships between the infrared spec- 
trum of a compound and the substructures present in it. 

layer containing 34 hidden neurons was used, which required 
265 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 34 + 34 x 36 = 9928 weights to be determined for this 
multilayered network. The basic procedure and the architec- 
ture of the neural network are sketched in Figure 35. 

To determine the weights of the neural network, 2499 in- 
frared spectra together with their structures, which were bro- 
ken down into their functional units, were learned through 
the back-propagation algorithm. Then 41 6 spectra were used 
to test the predictive ability of the net. A single cycle through 
all spectra required 10 min CPU time on a VAX 3500; for a 
training session with many cycles (called epochs-typically 
100 epochs were necessary) a Cray supercomputer was used. 

For each functional group the quality of the results was 
measured by a number, named the A50 value. This value 
represents the precision at 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYO information return, that is, 
the precision with which a functional group can be ascer- 
tained when the threshold value is set to the mean of the 
distribution curve. 

Figure 36 shows a typical result, in this case for primary 
alcohols. The threshold value here lay at  an output value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

60 

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.0 0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.L 0.6 0.8 1.0 - 
Y 

Fig. 36. Percent distribution of the output values Y of the neural network for 
primary alcohols. The solid line represents compounds which are primary alco- 
hols, the shaded line all other compounds. The mean of the output values for 
primary alcohols is 0.86. 

0.86. At this value 132 of the 265 primary alcohols contained 
in the training set are correctly identified, but 34 compounds 
are incorrectly classified as primary alcohols as well. The 
A50 value for this group is therefore 132/(132 + 34) = 

79.5 YO. This value was still deemed to be good. Thirty of the 
36 functional groups were able to be predicted with similar 
or better precision. 

The results from this network, which contained a hidden 
layer, were compared with classification capabilities of a 
network without a hidden layer.'431 The hidden layer 
brought about a considerable improvement in results. 

This experiment has, of course, not solved the problem of 
resolving the relationships between infrared spectrum and 
structure. For the most part, work concentrated on a few 
important functional groups, and the molecular skeleton 
was ignored. Even for those groups the predictions were only 
of moderate quality; to recognize 132 out of 265 primary 
alcohols in addition to 34 false assignments is disappointing. 
If one sets the threshold value even higher one can determine 
to a high degree of certainty whether a functional group is 
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present or absent, but a large range of compounds remains 
for which no reliable predictions can be made. In an auto- 
matic structure4ucidation system, however, these kinds of 
predictions allow a considerable reduction of the search 
space. Herein lies the value of these results. 

This is not the last word on the relationship between struc- 
ture and infrared data. Further experiments should attempt 
to classify vibrations of the skeleton. This would, however, 
necessitate a change in the way structures are coded. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7.4. The Relationship between Structure 

and Mass Spectra 

The relationships between mass spectra and structure are 
even more complex than those between infrared spectra and 
structure. Nevertheless, this problem also has already been 
approached with neural networks. 

In this case, too, a multilayered network containing a hid- 
den layer was trained with the back-propagation al- 
g ~ r i t h m . ' ~ ~ ]  The mass spectra were described by 493 fea- 
tures; these included the logarithms of the intensity of the 
peaks between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm/z 40 and 219, the logarithms of the neutral 
losses between m/z 0 and 179, autocorrelation sums, modu- 
10-14 values. etc. The values for these 493 spectral character- 
istics were fed into the same number of input units. 

Here too the structure of an organic compound was char- 
acterized by 36 substructures which, however, differed partly 
from those used in the study on infrared Spectra. Thirty-six 
output neurons were needed for this. As the number of neu- 
rons in the hidden layer was 80,493 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 80 + 80 x 36 = 42 320 
weights had to be determined. 

Correspondingly larger data sets were investigated: with 
31 926 mass spectra for training and 12671 mass spectra for 
testing. With such large data sets and a network with so 
many weights, the learning process (the back-propagation 
algorithm was also used here) required a great deal of time. 
One epoch (that is the process of passing all 32000 spectra 
once through the net) needed 6 h on a HP 9000/370 or SUN-4 
workstation. Typically 50 epochs were needed; thus training 
alone required two weeks computing time on a high-perfor- 
mance workstation. 

The results of the classification from the fully trained neu- 
ral network, MSnet, were compared with results from 
STIRS.[451 STIRS, from the group led by McLafferty, is a 
powerful expert system for determining the presence of func- 
tional groups from mass spectra. 

The classification results from MSnet were somewhat bet- 
ter than those from STIRS. MSnet offers a few additional 
advantages however: 1) A probability value can be given for 
the assignment of a compound to a particular class. 2) Not 
only the presence but also the absence of a functional group 
can be diagnosed. 3) The computing time required for 
queries to MSnet is two orders of magnitude lower than for 
STIRS. 

The following point must be emphasized: Even though the 
training of a neural network may require a great deal of CPU 
time. a fully trained neural network can make predictions in 
minimal time. 

In order to satisfy as general a requirement as representing 
or learning the relationship between molecular structure and 

spectroscopic data for the entire domain of organic chem- 
istry, we must confront a fundamental problem. the statisti- 
cal distribution of data. For example, the data set of 32000 
compounds contains 33 phthalic acid esters, which give a 
very characteristic peak at m/z 149. However, most of the 
spectra which have a peak at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm/z 149 happen not to be 
phthalic acid esters because there are only very few of them 
in the total set. As a consequence phthalic acid esters are not 
recognized. 

In this paper[441 an interesting attempt is made to over- 
come this general problem: a hierarchy of neural networks is 
proposed (Fig. 37). A preliminary network first undertakes 
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80 hidden neurons 

36 functional groups 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-c, group 

0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u 

493 MS features 

36 hidden neurons 

22 0-C=O subclasses 

Fig. 37. Hierarchy of neural networks for deriving substructures from mass 
spectra. 

the partitioning according to the most important functional 
groups, while specialized neural networks carry out further 
refinements of the compound classes. Thus a special network 
was developed which divided compounds containing the 
0-C=O group into 22 subclasses (saturated esters, aromat- 
ic esters, lactones, anhydrides etc.). 

This idea of using a hierarchy of neural networks could 
prove very useful in other problem areas. 

7.5. Secondary Structure of Proteins 

In the example from the previous section we were still 
dealing with a rather simple network architecture. We now 
move on to describe cases with a rather extensive coding of 
the input data. The neural network involved is correspond- 
ingly complex, with a large number of weights. 

To gain a deeper insight into the physiological characteris- 
tics of proteins one must know their secondary structure. 
For this reason there has been no scarcity of attempts to 
derive the secondary structure of proteins from their primary 
structures (that is, from the sequence of amino acids). Chou 
and F a ~ m a n [ ~ ~ ]  introduced a method which is much used 
today to decide from the sequence of amino acids what sec- 
ondary structure the individual parts of a protein will as- 
sume. This procedure is able to predict with 50-53% accu- 
racy for the individual amino acids in a protein whether they 
take part in an cc-helix, a-sheet o r  an irregular coiled struc- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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t ~ r e . [ ~ ’ ]  Over the past few years a series of papers have ap- 
peared in quick succession[48- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA561 on applications of neural 
networks to predict the secondary or  even tertiary structure 
of particular sections of a protein from the sequence of 
amino acids. Our intention is to demonstrate the principal 
procedure based on the work of Qian and Sejnow~ki.[~’] 
Most of the other  investigation^[^^-^^] have chosen a very 
similar strategy. 

Both the Chou and Fasman method[461 and the applica- 
tion of neural networks are based on the assumption that the 
amino acid (AA) itself and its immediate surroundings (that 
is, the amino acids immediately before and after it in the 
sequence) decide which secondary structure it will adopt. 

In order to take the dependence of the secondary structure 
on the sequence into account, the amino acid under exami- 
nation will be fed into the net along with the six amino acids 
preceding and the six following it in the sequence. Thus from 
the amino acid sequence, a “window” of 13 amino acids is 
extracted every time. This window is pushed in steps of single 
AAs down the entire length of the amino acid sequence, so 
that each individual AA in turn may find itself in the center. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
... Tyr Cys Asn Leu Thr Lys Asp Pro Val Asn Thr Phe Val His Glu er Leu 

- 

How are the individual amino acids coded? For each AA 
in the window of 13 AAs a bit vector of length 21 is used. For 
each of the 20 naturally occurring amino acids a particular 
position in the bit vector is reserved (e.g., the 14 th bit is set 
to 1 when the AA proline is present). A last bit is required in 
order to mark that the window is at the beginning or  end of 
the protein and thus that there are no more AAs at  one of its 
ends. Thirteen input units are needed for the size of the 
window and 21 for the identity of the AA, thus 13 x 21 = 273 
input units altogether; each feeds only one bit, a zero or a 
one, into the network. 

The network had three output neurons: one for the pres- 
ence of an a-helix, one for a 8-sheet, and one for a coiled 
structure. After experimenting with between 0 and 80 hidden 
neurons, a hidden layer of 40 neurons was chosen as optimal 
for the net, which meant that 273 x 40 + 40 x 3 = 11 040 
weights were to be determined. Again in this case the back- 
propagation learning algorithm was chosen. The overall 
architecture is pictured in Figure 39. 

The network was trained with 106 proteins containing a 
total of 18 105 amino acids. The efficacy of the net was tested 
with 15 additional proteins, which comprised 3250 AAs in 
total. A prediction accuracy -of 62.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYO was achieved. 

Thus one could say with 62.7% certainty whether an 
amino acid was part of an a-helix, a 8-sheet or a coiled 
structure. This is a noticeable improvement over traditional 
methods for predicting secondary structures but still leaves 
something to be desired. I t  is therefore understandable that 
this area is being researched so actively.[48- 561 

.. TyrCysAsn ..... ProValAsn ..... GlySerLeu ... 

\ i /  moving 
window of 

13 amino acids 
- +: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

+\21 -4 \ 
input m . . . o  ........_...... w . . . o  

~~~1~ i/y3x%:73 
~~~ 

a-helix ’1 \oil 

hidden 
layer OCTXXXXX)-O 0 to 80 neurons 

output layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcco 

P-sheet 

Fig. 39. Neural network for deriving the secondary structure of a protein from 
the seauence of amino acids. 

7.6. Summary 

These applications from very different branches of chem- 
istry serve to underline the broad range of possibilities which 
neural networks offer for classification. In every one of the 
examples portrayed, a multilayered network was used that 
was trained by the back-propagation learning process. 

The number of neurons in the hidden layer is usually de- 
termined by a systematic series of experiments. With too few 
neurons a problem can not be correctly learned; the larger 
the number of neurons the smaller the error in learning, but 
the longer the training times. Too many neurons and too 
long a training period can lead to another problem: over- 
training. This means that a neural net has been trained for so 
long that, although it can reiterate the training set without 
error, it may give bad predictions when faced with new data. 
Multilayered networks usually have many weights, and 
therefore many degrees of freedom in adapting to a data set. 
This presents the danger that one might fall into an erro- 
neous local minimum in training, thus reducing the ability to 
make predictions based on new data. 

The complexity of the neural net (mainly the number of 
weights and the number of training data used) can bring with 
it a large increase in the training time. One should not be 
discouraged too much by long training times, however, be- 
cause ideally a network needs to be trained only once. Once 
it has finished learning, predictions on new data can be made 
very rapidly, because these data only have to be passed 
through the fully trained net once. 

In the case of classification problems it is desirable to 
obtain values of one or  zero in the output neurons so that an 
object belongs unambiguously to a category or  not. In reality 
values between one and zero are obtained, and decisions are 
made on the basis of threshold values (e.g., 0.8 or 0.2) 
whether an object belongs to that category. These numeric 
output values can also be interpreted as probabilities. and as 
such may be used in a decision support system. 

The numerical output clearly points to the transition to 
modeling problems, which are the subject of the next section. 
In modeling tasks it is desirable to obtain function values, 
(i.e., real data). These can be produced by taking those val- 
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ues between zero and one and transforming them through 
mathematical functions. 

In summary, the most important task when implementing 
a neural network is to find a suitable representation for the 
input and output data. The hierarchical ordering of multiple 
networks (Section 7.4) and the movable window from Sec- 
tion 7.5 demonstrates that the technology sets no limits to 
the imagination. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Modeling 

We have already seen that even in the case of classification 
a neural network returns values between zero and one, that 
is. a continuum of values. It is also possible, however, to 
train a neural network with real expectation values and to 
use the output values in their real magnitudes, just as one 
might normally calculate the value of a function from a series 
of variables. This task of using data about an object (com- 
pound. reaction. spectrum) and deriving other characteris- 
tics of the object from them has commonly come to be called 
"modeling". and is what we shall use the term to mean in the 
following sections. The neural network therefore assumes 
the task of using input variables (data) from an object to find 
the value of some dependent characteristic (or even several 
of them). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA neural network offers the advantage of not re- 
quiring an explicit formulation of the relationship as a math- 
ematical equation. It expresses this relationship implicitly in 
the connections between the individual neurons. 

8.1. HPLC Analysis 

A simple example shall serve to represent the potential of 
this technique in analytical chemistry. 

In the HPLC analysis of Spanish wines, the dependence of 
the separation of the components (expressed as the selectivi- 
ty factor SF)  on the ethanol content (10,20, or 30%) and the 
pH value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.0.5.5, or  5.6) of the liquid phase was determined. 
These nine experimental points were fitted to a quadratic 
equation with standard modeling techniques.[s71 The result 
is given in Equation (r), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= % ethanol and 
.v2 = pH value. This functional relationship is also repre- 
sented in Figure 40 in the form of lines of the same selectivity 
fact or. 

SF = 0.018 .x: - 1.42.~: + 0.015 X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2 - 0.995 X ,  

+ 1 6 . 1 6 ~ ,  - 31.86 ( 4  

6.0 

f 
mdX 

5.5 

10 20/ 30 
s.0 

Fig. 40. HPLC analysis of Spanish 
wines: Shown is the dependence of the 
selectivity factor SF on the ethanol con- 
tent Y~ and on the pH value x2 of the 
liquid phase. The curved arrows high- 
light the maximum (left) and minimum 

min *' SF (bottom) 
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The same nine experimental data were built into a neural 
network with two input units (one for the ethanol content 
and one for the pH value), one output neuron (for the selec- 
tivity factor), and six neurons in a hidden layer, which was 
trained with the back-propagation algorithm.[s8] 

Values for the ethanol content and the pH were fed into 
the network and the results entered into the diagram in Fig- 
ure 41. Here too, just as in Figure 40, lines of the Same selec- 
tivity factor were drawn in. A comparison between Fig- 
ures40 and 41 shows that both standard modeling and 
neural network techniques arrive at quite similar results. In 
particular, the positions for the minimum and the maximum 
values of the selectivity factor are very similar. 

Fig. 41. The results obtained from a 
neural network (shown at the top) on 
the selectivity of the HPLC analysis of 
Spanish wines: dependence of SF on  
the ethanol content and on the pH val- 

6.0 

f 
max zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.5 

I0 2OrJ 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.O 

min "1  ue. See also Figure 40. 

The advantage of the neural network is clear: in statistical 
modeling the mathematical form of the functional relation- 
ship (here a quadratic equation) had to be given explicitly. 
With the neural network this is not necessary; i t  finds the 
relationship by itself, implicitly, by assigning appropriate 
weights. 

8.2. Quantitative Structure-Activity Relationships 

(QSAR) 

The search for quantitative structure-activity relation- 
ships (QSARs) is one of the most important application 
areas for modeling techniques. A great deal of trouble and 
effort has been invested, especially in the prediction of phar- 
macological and biological data. It is therefore all the more 
surprising that as yet very few studies have been published 
which employ neural networks to provide quantitative rela- 
tionships between structure and biological activity.[", ''I A 

typical study shall briefly be described here. 
For this study a data set that had already been investigated 

with statistical modeling techniques (a multilinear regression 
analysis) was deliberately chosen in order to compare the 
performance of a neural network against a standard method 
from the field of QSAR. The data set comprised 39 para- 
quinones, some of them anticarcinogenic (Scheme 2). 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scheme 2. para-Benzoquinones containing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i N A R 2  

two aziridine substituents, a class of com- 
pounds which includes some anticarcino- 
genic members. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR2 are, for instance, 

0 CH,. C,H,, etc. 

The influence of the substituents R' and RZ was described 
by six physicochemical parameters: the contribution of R' 
or  of both substituents to the molar refractivity index, MR, 
and MR,. z, their contribution to the hydrophobicity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, and 
n,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  the substituent constants of the field effect (F ) ,  and the 
resonance effect (R) .  Accordingly for a description of the 
influences of the substituents, six input units were required 
(Fig. 42). 

The neural network was intended to yield the minimum 
effective dosage of the medication for a single injection. This 
minimum effective dosage is given by the amount of sub- 
stance (as lg l/c) that leads to a 40% increase in length of life. 
A single neuron was present in order to output the value of 
Ig Ijc. A hidden layer of 12 neurons completed the network 
architecture (Fig. 42). 

t 
Iglk 

Fig. 42. Neural network for predicting the anticarcinogenic activity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApara- 
benzoquinones. 

Thirty-five benzoquinones were used to train the multilay- 
ered network with the back-propagation algorithm. The val- 
ues for lg l / c  obtained from the network were compared with 
the results calculated from an equation determined by multi- 
linear regression analysis. In 17 cases the results from the 
neural network were better, for 6 more or less as good, and 
for 12 worse. In other words, the results from the neural 
network are significantly better. Nevertheless this problem 
can be solved quite well by a linear method that leaves little 
room for improvement by a neural network. In the case of 
QSAR problems containing nonlinear relationships more 
might be gained by using neural networks. 

8.3. Chemical Reactivity 

Whereas in Section 7.1 we were satisfied with a yes/no 
decision on chemical reactivity (does a bond break easily in 
a polar manner or  not), here we wish to make a quantitative 
statement about the behavior of a chemical reaction. 

The electrophilic aromatic substitution of monosubstitut- 
ed benzene derivatives can lead in principle to three isomers : 
ortho, meta, and para products (Scheme 3). The dependence 

X 

x x 

Scheme 3. Isomeric distribution in electrophilic aromatic substitution 

of the isomer distribution on the nature of the substituents X 
is a classical problem in organic chemistry. Basically the 
substituents may be divided into two classes: electron-donat- 
ing substituents (inductive or mesomeric), which prefer to 
direct into o- and p-positions, and mesomeric electron accep- 
tors which steer towards the m-position. The factors that 
determine the o/p ratio are both steric and electrostatic in 
nature. 

In one study[611 into the product ratios for the nitration of 
monosubstituted benzene derivatives, the amounts of ortho 
and para products were combined. Accordingly, one output 
neuron was used for the o + p content and a second for the 
percentage of m-isomer. As already mentioned, the distribu- 
tion of product is determined by the nature of the sub- 
stituent, especially by the electronic effects which it pro- 
duces. In order to represent this, two codings of the input 
information were tested. In the first attempt the partial 
atomic charges on the six carbon atoms of the benzene ring 
as they are calculated in the semi-empirical quantum me- 
chanical program suite MOPAC[621 according to Mulliken 
population analysis were used as the six inputs. In addition 
an intermediate layer with 10 hidden neurons brought the 
total number of weights to be determined to 6 x 10 + 
10 x 2 = 80. 

As an alternative method the structure of the substituent 
was represented directly in the form of a connection table. 
This had dimensions of 5 x 5 ;  each row contained first the 
atomic number of the atom in question then the index of the 
atom itself followed by the index of the adjacent atom fur- 
ther away from the ring, the order of this bond, and the 
formal charge on the atom. For each atom of the substituent 
except a hydrogen atom a new row was used. The first row 
reflects the situation at  the atom which is directly bonded to 
the ring. With each successive row a further step is taken into 
the substituent (cf. Fig. 43). If the substituent had fewer than 
five non-hydrogen atoms then the rest of the 25 entries were 
filled with zeros. If it had more than five heavier atoms, those 
atoms which were further away from the point of attachment 
of the substituent on the ring (atom 1) were left out. Fig- 
ure 43 explains this coding by connection table for the ex- 
ample of acetanilide. For this coding 5 x 5 = 25 input units 
were required, the intermediate layer had five neurons, and 
the network thus 25 x 5 + 5 x 2 = 135 weights. 
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4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

relevant bond: 
atomic reference adjacent bond 
number atom atom order charge 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0 
6 3 2 1 0 

Fig. 43. Example illustrating the representation of monosubstituted benzene 
derivatives by a connection table of the substituent. 

The network was trained with 32 monosubstituted ben- 
zene derivatives and the back-propagation algorithm ; it was 
then tested with 13 further benzene derivatives. In this ex- 
ample the enormous number of 100000 epochs or training 
cycles was necessary before the error in the training data set 
had been reduced to a sufficient degree. 

Of the two forms ofcoding with their networks, the second 
version-that is, the input of the substituent by means of a 
connection table+learly produced the better results. Only 
the percentages of the metu products (Table 2) are necessary 

Table 2 Results of attempts at predicting the amount of rnrta-product in the 
nitration of monosubstituted benzene derivatives. The size of the error In the 
prediction is quoted [%I. 

Method Training data Test data 
(32 compounds) (13 compounds) 

network based on charge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2 

network based on connection table 0.3 
CAMEO 18.0 
estimate by chemists - 

19.8 
12.1 
22.6 
14.7 

to judge the quality of the results. The training data set was 
able to be learned down to an average error of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.3 YO for the 
m-isomer content. For the network obtained from the charge 
values the average error was 5.2%. With the test data of 13 
compounds that the network had not seen before, the con- 
nection table coding gave an average error of 12.1 % in pre- 
dicting the percentage of m-product. For the atomic charge 
representation the error was noticeably higher at 19.8% 

The results from these two neural networks were com- 
pared to values produced by an expert system 
for predicting reactions. They were in every respect better 
than those produced by CAMEO. Finally the 13 monosub- 
stituted benzene derivatives were given to three organic 
chemists to predict the expected percentage of rn-product 
from the nitration. The values they gave were averaged; this 
gave an error of 14.7%. The chemists were thus better than 
the neural network with charge-coding and better than 
CAMEO, but were beaten by the neural network with the 
connection-table input! 

Though the results for predicting the product ratios from 
the nitration of monosubstituted benzene derivatives with a 
neural network based on the coding of the substituents by a 
5 x 5 connection table are very encouraging, they do deserve 

more detailed comment. First, it is not surprising that the 
coding by the partial charges on the six ring atoms was rather 
unconvincing. Apart from the known inadequacies of Mul- 
liken population analysis, the ground-state charge distribu- 
tion is only one of the factors (not even the most important 
electroiiic effect) that influences the product ratios in elec- 
trophilic aromatic substitution. For these reasons the charge 
values can not represent the benzene derivatives sufficiently 
well to explain the product ratios from nitration. 

As satisfactory as its results may be, the coding of the 
benzene derivatives by a 5 x 5 connection table can not 
provide an explanation for the effects responsible for re- 
gioselectivity, nor for the influence of the reaction condi- 
tions. Nor can it explain the product ratios from di- and 
polysubstituted benzene derivatives. To do this one must 
choose a different representation for the benzene com- 
pounds, which is indeed f e a ~ i b l e . 1 ~ ~ ~  The substituent should 
not be described globally. Rather its influence on the individ- 
ual positions on the aromatic ring should be represented 
directly: for each position on the ring a value for the reso- 
nance effect, the locaI electrostatic potential, and the steric 
effect should be given. Because this represents the influence 
of a substituent at every single position on the ring, we can 
extend inferences from monosubstituted benzene derivatives 
to di- and polysubstituted compounds. Then we can make 
predictions about isomer distributions in further substitu- 
tion. In addition, it is also possible to take account of the 
influence of the medium by providing a further input unit for 
the concentration of sulfuric acid. The network is trained 
with this alongside the descriptors for the influences of the 
subst i t~ents . [~~’  

8.4. Summary 

Modeling tasks are very common in many branches of 
chemistry. This opens up a wide area for the application of 
neural networks. At present this area is dominated almost 
exclusively by multilayered networks and the back-propaga- 
tion algorithm. This need not be the case. Other neural net- 
work architectures, especially the counterpropagation al- 
g~rithm,’”~ can certainly be used just as well for creating 
models. 

The deployment of neural networks for modeling (that is, 
for predicting some characteristic of an object from a series 
of other parameters or measurements from that object) 
should always be considered carefully in relation to the use 
of statistical methods. If one has a relatively clear idea which 
variables influence the feature sought, and if there is some 
largely linear relationship between them, then traditional 
methods, such as multilinear regression analysis clearly offer 
advantages: these methods are faster and require less com- 
puting time, they give measures for the quality of the discov- 
ered relationship, and, above all, the equation derived from 
the statistical modeling allows a clear interpretation of the 
individual effects of the feature sought. 

Neural networks should be used, however, if it is pre- 
sumed that nonlinear relationships exist between the depen- 
dent and the independent variables, and if it is not possible 
to specify exactly which parameters influence the character- 
istic under investigation. 
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Whether the choice falls on statistical methods or  neural 
networks, the success of a study depends crucially on the 
selection of the data set, on the representation of the infor- 
mation, and on the methods employed to validate the results. 
Moreover, when implementing neural networks, the follow- 
ing points are of crucial importance: 

the selection of a homogenous data set for training (e.g., 
by using experimental design techniques or  a Kohonen 
network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- see Section 10.1) 
the partitioning of the data set into training and test data 
sets 
the selection of suitable parameters as input data to de- 
scribe the objects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9. Association 

The capacity to associate is closely related to the recogni- 
tion of similarities between different objects. Neural net- 
works can also be conceived of as memories, because they 
store the information they have learned from the training 
data in the form of weights or “synaptic strengths”. Should 
a new object be fed into the neural network whose input data 
resemble those of an object used in training, some network 
architectures are able to recognize this and yield the stored 
object from the training phase as output. 

This ability of neural networks to associate, to recognize 
similarities in given data, has been exploited very little in 
chemistry up to now. Even the two studies presented here are 
essentially only feasibility studies. The basic solution to a 
problem is demonstrated here on small, simply structured 
data sets. For a real-world application however, larger sets 
of more complex data would have to be investigated. 

in this review that a real-world application would need a far 
higher resolution; thus the base lines would have to be repre- 
sented by a larger pixel matrix (e.g.. 20x250). However. 
because of the basic limitations on the storage capacity of 
Hopfield networks, and in order to make good predictions. 
2 x 10’ matrix elements would need to be checked. It only 
makes sense to carry out this task by hardware implementa- 
tions of parallel neural networks. 

Because of the storage and calculation problems presented 
by Hopfield networks, the Same task was also investigated 
with a Hamming network.[651 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Hamming network,[66’ 
which requires far less memory capacity, was in fact also able 
to be solve the problem. However, in this case too, only a 
7 x 20 matrix was used to represent the five types of base line; 
an application which uses experimental data with a high 
resolution has yet to appear. 

9.2. Identification of Spectra 

Another feasibility study was made into how slightly al- 
tered UV spectra (e.g., through the influence of solvents) 
might be re~ognized.~~’ ]  Prototypes of UV spectra were rep- 
resented by a sequence of points (pixels) in two 10 x 10 fields; 
the first field containing the band maxima was placed at  the 
input of an adaptive bidirectional associative memory 
(ABAM), and the second field, comprising the tailing por- 
tions, was placed at the output (Fig. 4521). Because of the 
bidirectional nature of the ABAM the terms input and out- 
put are of course purely arbitrary. 

a) 

9.1. Adjustment of Base Lines 

Systematic deviations from the base line may be observed 
in many spectra and could be caused by impurities, the influ- 
ence of solvents, or problems with technical equipment. Five 
different types of base line (normal, ascending, descending, 
concave, convex) were stored in a Hopfield network as 
simple black pixel-patterns in a matrix consisting of 6 x 20 

Then a simple, simulated spectrum which con- 
tained a convex base line was fed into the thus trained Hop- 
field network. After three iterations the pattern for this base- 
line was output by the network (Fig. 44). 

Afterwards therefore, a background correction could be 
undertaken for this spectrum. We have already pointed out 

1 2 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5 

10. Mapping 

Fig. 44. Five types of base lines of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa spectrum (top), a much simplified spec- 
trum with a concave baseline (bottom left) and the concave base line recognized 
by the neural network after three iterations (bottom right). 

b)  

Fig. 45. Grid representation of 
an ultraviolet spectrum (a) and 
fuzzy coded forms of this 
spectrum (gray dotted fields) (b) 

The ABAM was trained with five model UV spectra coded 
in this way. For testing fuzzy codings and slightly altered 
spectra were used (cf. Fig. 45 b). The recall capability of the 
ABAM was heavily dependent on the choice of various net- 
work parameters; however, in the end a set of parameters 
was found that was able to recall all five spectra learned from 
the input of its distorted counterpart. 

Many chemical phenomena are influenced simultaneously 
by a whole series of factors and depend on many parameters. 
These parameters can be seen as coordinates in a multidi- 
mensional space. Individual observations then represent 
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points in this multidimensional space. To visualize the struc- 
ture of this multivariate information in order to make visible 
the essential relationships between the individual data 
points, the dimensionality of the space has to be reduced to 
such a degree that it can be represented graphically and thus 
analyzed by the human eye. Such a mapping, say onto a 
two-dimensional plane, should preserve the essential rela- 
tionships between the individual data points as far as pos- 
sible. 

In Section 4.3 we saw how a three-dimensional space, the 
surface of a sphere, could be mapped by a Kohonen network 
onto the surface of a torus, and the neighborhood relation- 
ships between the points on the sphere were kept intact. In 
the following sections we present two examples for the map- 
ping of multidimensional chemical information by a Ko- 
honen network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10.1. Chemical Reactivity 

We wish once more to examine the data set introduced in 
Section 7.1, which classified a series of single bonds in aliphat- 
ic molecules according to whether they were easy or difficult 
to break h e t e r ~ l y t i c a l l y ~ ~ ~ ~  (cf. Figure 31). Each of the bonds 
was characterized by seven electronic and energetic parame- 
ters, such as difference in charge and polarizability, and bond 
dissociation energy (cf. Figure30). The rupture of a bond is 
thus represented by a point in a seven-dimensional space. 

The question now is, are the points with reactive bonds in 
this seven-dimensional space separated from those of the 
nonreactive bonds? Moreover, if this is the case, can this 
separation be retained in a map onto a two-dimensional 
surface by means of a Kohonen network? 

A Kohonen network consisting of 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 11 neurons was 
trained with the 149 bonds; the values of the seven electronic 
and energetic factors were used as input data (see Fig. 30). 

The results are shown in Figure 46. Indeed the reactive 
bonds do  find themselves predominantly in certain neurons, 
and the nonreactive bonds in different neurons. Additionally 
the neurons of the reactive bonds form a contiguous part of 
the Kohonen 

It may be concluded from this that the chosen parameters 
characterize the heterolysis of a bond well (because reactive 

and nonreactive bonds are separate) and that a Kohonen 
network is able to preserve this separation even when map- 
ping it onto a surface. It should be emphasized once again 
that the Kohonen network learns without supervision, and 
therefore that the information on the reactivity of a bond 
was not used during the learning process. 

Yet another conclusion may be drawn from Figure46. 
Bond cleavages that activate the same neuron ought also to 
contain more or less the same reactivity information; the 
interaction of the seven parameters ought to produce a sim- 
ilar net effect in reactivity. Accordingly, if the relationships 
between reactivity and the electronic and energetic parame- 
ters are to be investigated further, it is sufficient to choose a 
single bond out of the many that activate the same neuron. 
At the same time, at  least one bond should be chosen from 
each occupied neuron in order to cover as much as possible 
of the reactivity spectrum. In fact the data set that was 
learned by the back-propagation algorithm (see Section 7.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
was chosen with these considerations in mind. Thus two 
different neural network models were used: a Kohonen net- 
work for the selection of the data set and a multilayered 
neural network, trained by the back-propagation algorithm, 
for the task of classification.[291 

The Kohonen method can therefore be used to make bal- 
anced selections of data sets for investigations with statistical 
or pattern-recognition methods, or  even used with other neu- 
ral networks. 

10.2. Electrostatic Potential 

The electrostatic potential surrounding a molecule has a 
decisive influence on many physical, chemical, and biologi- 
cal properties. Electrostatic potentials are analyzed in detail, 
especially in investigations into the interactions between sub- 
strate and receptor, but also in studies into chemical reactivity. 

If one moves a probe charge, for example a positive unit 
charge in the form of a point, around a molecule, for every 
point in space the electrostatic potential may be determined 
by quantum mechanical or  classical electrostatic methods. 

Scheme 4 shows a three-dimensional molecular model of 
3-chloro-3-methylbutan-I -01, and Figure 47 the electrostatic 
potential that a positive point charge experiences on the van 
der Waals surface of this molecule. The magnitude of the 

Fig. 46. A Kohonen network that maps polar bond rupture characterized by 
seven electronic and energetic parameters. + indicates a reactive bond, - a 
nonreactive bond. and * a bond whose reactivity was not decided. Scheme 4. Molecular model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-chloro-3-methylbutan-1-01 
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Fig. 47. Electrostatic potential on the van der Wdals surface of 3-chIoro-3- 
methylbutan-1-01. Red regions possess a negative potential, and thus attract a 
positive charge; blue and violet regions repel this charge. 

electrostatic potential is translated into a color code: Strong- 
ly negative values of the electrostatic potential (positions to 
which a positive charge is attracted-that is, nucleophilic 
positions) are represented by red. Strongly positive values 
(positions from which a positive charge is repelled-that is, 
electrophilic positions) are marked in blue or violet. The 
intermediate values are represented by continuous blends of 
color. The electrostatic potential was calculated in the classi- 
cal way by summing the Coulomb interactions of the probe 
charge with the atomic charges as calculated by the PEOE 
procedure.[30. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA311 

Figure 47 represents a parallel projection of the distribu- 
tion of the electrostatic potential on the van der Waals sur- 
face of the molecule onto the plane of the graphics screen. Of 
course, only that part of the electrostatic potential that hap- 
pens to be visible to the observer can be shown. Thus for 
example, the chlorine atom can barely be seen in Figure 47. 
A complete view of the distribution of the electrostatic po- 
tential can only be obtained by taking a series of such map- 
pings from different observation points. The more complex 
the form of the van der Waals surface and the variation in 
electrostatic potential, the more mappings are required. For 
this reason it will be very difficult to obtain a complete im- 
pression of the distribution of the electrostatic potential and 
the relationships between all electrophilic and nucleophilic 
centers. 

The inadequacies of a parallel projection onto a plane 
(monitor screen) led us to look for other projection methods 

Fig. 48. Kohonen network of the electrostatic potential in Figure 47. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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that are capable of representing the essential aspects of the 
potentials on a molecular surface in a single mapping.[68] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

Kohonen network is one such projection method. 
Figure 48 shows the projection of the electrostatic poten- 

tial of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-chloro-3-methylbutan-1-01 from Figure 47 onto a 
Kohonen network. To obtain this mapping, 20000 points 
were chosen at random from the molecular surface and a 
Kohonen network of 60 x 60 neurons was trained with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  
y ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz coordinates of each point. After each point had been 
passed through the network the neurons were examined to 
see which points were assigned to which neurons. 

Points of the same or similar potential values were indeed 
found to be located in the same or neighboring neurons. The 
electrostatic potential on the van der Waals surface of a 
molecule had therefore been mapped onto the Kohonen 
map, and the neighborhood relationships on the van der 
Waals surface were largely preserved intact. 

We remind the reader once more that in the case of a 
Kohonen network the mapping takes place onto a torus, that 
is onto a surface without beginning or end (cf. Figure 24). 
The map in Figure 47 can therefore be shifted up, down, to 
the left or to the right. 

A comparison between Kohonen maps of electrostatic po- 
tentials of different molecules reflects the essential similari- 
ties of the electronic properties on the surface of the mole- 
cules, that is, at the places where molecules come into direct 
contact with their environment. The electrostatic potential 
on the surface of a molecule is a decisive factor in the inter- 
action of a substrate with a biological receptor. Kohonen 
maps of electrostatic potentials of different molecules that 
are bound to the same receptor should therefore indicate 
certain similarities. 

Indeed, it could be shown that Kohonen maps of the elec- 
trostatic potential of compounds that bind to the muscarinic 
receptor have common characteristics. Similarities are also 
perceived in the Kohonen maps of electrostatic potentials of 
molecules that bind to the nicotinic receptor, but these char- 
acteristics are different from those for molecules bound to 
the muscarinic receptor.[681 

Kohonen maps show in a single picture essential charac- 
teristics of electrostatic potentials. These characteristics are 
apparently responsible for the binding of a substrate to a 
biological receptor. 

11. Summary and Outlook 

Although the development of computational models of 
information processing in the human brain can look back on 
a history of almost 50 years, it is only in the last four to five 
years that neural networks have been applied widely to prob- 
lem solving. New, efficient algorithms have paved the way 
for a multitude of applications, and the use of neural net- 
works is still increasing-also in the field of chemistry-by 
leaps and bounds. 

The models of neural networks and their potential appli- 
cations of classification, modeling, association, and mapping 
are as diverse as the capabilities of the human brain are 
varied. The potential in neural networks for the processing 
of chemical information is very far from being exhausted. 

In chemistry the task is often to assign objects to certain 
categories or to predict the characteristics of objects. This 
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accounts for the dominance of the back-propagation al- 
gorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA whole series of other neural network models 
exists, however, which could be applied successfully to the 
field of chemistry. This should be explored more widely in 
future 

Undoubtedly, many of the problems that have been ap- 
proached with neural networks could also have been solved 
with statistical or pattern-recognition methods. Neural net- 
works, however, offer capacities which exceed the possibili- 
ties of traditional methods of data analysis. Of special im- 
portance is the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe relationship between input and 
output data need not be specified in mathematical form, but 
is derived from the data themselves and represented implicit- 
ly. This enables the modeling even of nonlinear relation- 
ships. 

The use of neural networks still requires much experimen- 
tation; guidelines to arrive as quickly as possible at a viable 
solution to a problem become apparent only gradually. Of 
crucial importance to the successful application of a neural 
network is the strategy for data representation; the better the 
chemical information to be examined is coded, the easier and 
better the problem may be solved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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