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Abstract

This paper divides neural networks into categories based on their structures and
training methods and describes examples in each category. The paper outlines
broad groups of engineering applications of neural networks, cites different
applications in the major engineering disciplines and presents some recent
applications investigated in the author's laboratory.

Introduction

Neural networks are computational models of the brain. There are over 50
different neural network models, some based more closely on current
understanding of the brain operation than others. However, in general neural
networks all have two of the brain's important characteristics: a parallel and
distributed architecture and an ability to learn.

This paper aims to give a bird's eye view of the technology of neural
computing and its engineering applications. The paper initially divides existing
neural networks into categories according to their structures and learning
methods and considers specific examples in each category. It then outlines broad
groups of engineering applications of neural networks, cites different
applications in the major engineering disciplines and presents some recent
applications investigated in the author's laboratory.
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where r\ is a parameter called the learning rate and 8, is a factor depending on
whether neuron j is an output neuron or a hidden neuron. For output neurons,

<*"-*>

and for hidden neurons,

In eqn (3(a)), net, is the total weighted sum of input signals to neuron j and
y.(t) is the target output for neuron j.

As there are no target outputs for hidden neurons, in eqn (3(b)), the
difference between the target and actual output of a hidden neuron j is replaced
by the weighted sum of the 6^ terms already obtained for neurons q connected to

the output of j.
Thus, iteratively, beginning with the output layer, the 5 term is computed for

neurons in all layers and weight updates determined for all connections.
Another learning algorithm suitable for training MLPs is the GA (see

Figure 2). This is an optimisation algorithm based on evolution principles. The
weights of the connections are considered genes in a chromosome. The
goodness or fitness of the chromosome is directly related to how well trained the
MLP is. The algorithm starts with a randomly generated population of
chromosomes and applies genetic operators to create new and fitter populations.
The most common genetic operators are the selection, crossover and mutation
operators. The selection operator chooses chromosomes from the current
population for reproduction. Usually, a biased selection procedure is adopted
which favours the fitter chromosomes. The crossover operator creates two new
chromosomes from two existing chromosomes by cutting them at a random
position and exchanging the parts following the cut. The mutation operator
produces a new chromosome by randomly changing the genes of an existing
chromosome. Together, these operators simulate a guided random search
method which can eventually yield the optimum set of weights to minimise the
differences between the actual and target outputs of the neural network.

Learning vector quantization (LVQ) network
Figure 3 shows an LVQ network which comprises three layers of neurons: an
input buffer layer, a hidden layer and an output layer. The network is fully
connected between the input and hidden layers and partially connected between
the hidden and output layers, with each output neuron linked to a different
cluster of hidden neurons. The weights of the connections between the hidden
and output neurons are fixed to 1. The weights of the input-hidden neuron
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connections form the components of "reference" vectors (one reference vector is
assigned to each hidden neuron). They are modified during the training of the
network. Both the hidden neurons (also known as Kohonen neurons) and the
output neurons have binary outputs. When an input pattern is supplied to the
network, the hidden neuron whose reference vector is closest to the input
pattern is said to win the competition for being activated and thus allowed to
produce a "1". All other hidden neurons are forced to produce a "0". The output
neuron connected to the cluster of hidden neurons that contains the winning
neuron also emits a "1" and all other output neurons a "0". The output neuron
that produces a "1" gives the class of the input pattern, each output neuron being
dedicated to a different class. The simplest LVQ training procedure is as
follows:-

(i) initialise the weights of the reference vectors;
(ii) present a training input pattern to the network;
(iii) calculate the (Euclidean) distance between the input pattern and each

reference vector;
(iv) update the weights of the reference vector that is closest to the input

pattern, that is, the reference vector of the winning hidden neuron. If the
latter belongs to the cluster connected to the output neuron in the class that
the input pattern is known to belong to, the reference vector is brought
closer to the input pattern. Otherwise, the reference vector is moved away
from the input pattern;

(v) return to (ii) with a new training input pattern and repeat the procedure
until all training patterns are correctly classified (or a stopping criterion is
met).

For other LVQ training procedures, see for example [Pham and Oztemel, 1994].

Group method of data handling (GMDH) network
Figure 4 shows a GMDH network and the details of one of its neurons. Unlike
the feedforward neural networks previously described which have a fixed
structure, a GMDH network has a structure which grows during training. Each
neuron in a GMDH network usually has two inputs Xj and \2 &nd produces an
output y that is a quadratic combination of these inputs, viz.

y = w<, + W,X, + W%X^ + W^XjX^ + W4X7 + WgXj (4)

Training a GMDH network consists of configuring the network starting with
the input layer, adjusting the weights of each neuron, and increasing the number
of layers until the accuracy of the mapping achieved with the network
deteriorates.

The number of neurons in the first layer depends on the number of external
inputs available. For each pair of external inputs, one neuron is used.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



10 Artificial Intelligence in Engineering

Note: Each GMDH neuron is an N-Adaline, which is an Adaptive Linear Element
with a nonlinear preprocessor

(a) A trained GMDH network

nonlinear
preprocessor

desired output

(b) Details of A GMDH Neuron

Figure 4 A GMDH network after training and

details of a GMDH neuron

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Artificial Intelligence in Engineering 1 1

Training proceeds with presenting an input pattern to the input layer and
adapting the weights of each neuron according to a suitable learning algorithm,
such as the delta rule (see for example [Pham and Liu, 1994]), viz.

yZ-W^xJ (5)

where W^, the weight vector of a neuron at time k, and X^ the modified input
vector to the neuron at time k, are defined as

W% = [WQ w, w% w% W4 Wg] T (6)

Xt=[l x, x,% x^^ x^x^T (7)

and y%is the desired network output at time k.
Note that, for this description, it is assumed that the GMDH network only

has one output. Eqn (5) shows that the desired network output is presented to
each neuron in the input layer and an attempt is made to train each neuron to
produce that output. When the sum of the mean square errors S% over all the
desired outputs in the training data set for a given neuron reaches the minimum
for that neuron, the weights of the neuron are frozen and its training halted.
When the training has ended for all neurons in a layer, the training for the layer
stops. Neurons that produce S% values below a given threshold when another set
of data (known as the selection data set) is presented to the network are selected
to grow the next layer. At each stage, the smallest S% value achieved for the
selection data set is recorded. If the smallest S% value for the current layer is less
than that for the previous layer (that is, the accuracy of the network is
improving), a new layer is generated, the size of which depends on the number
of neurons just selected. The training and selection processes are repeated until
the SE value deteriorates. The best neuron in the immediately preceding layer is
then taken as the output neuron for the network.

Hopfield net
Figure 5 shows one version of a Hopfield network. This network normally
accepts binary and bipolar inputs (+1 or -1). It has a single "layer" of neurons,
each connected to all the others, giving it a recurrent structure, as mentioned
earlier. The "training" of a Hopfield network takes only one step, the weights
Wjj of the network being assigned directly as folio ws:-

N ' ^ (8)

= 0 i = j
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where w^ is the connection weight from neuron i to neuron j, and x^ (which is

either +1 or -1) is the ith component of the training input pattern for class c, P
the number of classes and N the number of neurons (or the number of
components in the input pattern). Note from eqn (8) that Wy = w- and w-- = 0, a
set of conditions that guarantee the stability of the network. When an unknown
pattern is input to the network, its outputs are initially set equal to the
components of the unknown pattern, viz.

y;(0) = X; l < i < N (9)

Starting with these initial values, the network iterates according to the
following equation until it reaches a minimum "energy" state, i.e. its outputs
stabilise to constant values:-

(io)
.1=1

where f is a hard limiting function defined as

f(x) = -] x<0
= 1 x>0 (11)

Elman and Jordan nets
Figures 6(a) and (b) show an Elman net and a Jordan net, respectively. These
networks have a multi-layered structure similar to the structure of MLPs. In
both nets, in addition to an ordinary hidden layer, there is another special hidden
layer sometimes called the context or state layer. This layer receives feedback
signals from the ordinary hidden layer (in the case of an Elman net) or from the
output layer (in the case of a Jordan net). The Jordan net also has connections
from each neuron in the context layer back to itself. With both nets, the outputs
of neurons in the context layer, are fed forward to the hidden layer. If only the
forward connections are to be adapted and the feedback connections are preset
to constant values, these networks can be considered ordinary feedforward
networks and the BP algorithm used to train them. Otherwise, a GA could be
employed [Pham and Karaboga, 1993]. For improved versions of the Elman
and Jordan nets see [Pham and Liu, 1992; Pham and Oh, 1992].

Kohonen network
A Kohonen network or a self-organising feature map has two layers, an input
buffer layer to receive the input pattern and an output layer (see figure 7).
Neurons in the output layer are usually arranged into a regular two-dimensional
array. Each output neuron is connected to all input neurons. The weights of the

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



14 Artificial Intelligence in Engineering

outputs

inputs

(a) An Elman Network

hidden

input
units

Output

Hidden

feedback
Input

(b) A Jordan Network

Figure 6 An Elman network and
a Jordan network

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Output
neurons /

Input
neurons

Artificial Intelligence in Engineering 15

\ \:̂ >\ /c/̂ 7\ Reference

\ \/̂ \""̂  %̂̂ V̂  /_̂ ZẐ  vector
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connections form the components of the reference vector associated with the
given output neuron.

Training a Kohonen network involves the following steps:

(i) initialise the reference vectors of all output neurons to small random
values;

(ii) present a training input pattern;
(iii) determine the winning output neuron, i.e. the neuron whose reference

vector is closest to the input pattern. The Euclidean distance between a
reference vector and the input vector is usually adopted as the distance
measure;

(iv) update the reference vector of the winning neuron and those of its
neighbours. These reference vectors are brought closer to the input vector.
The adjustment is greatest for the reference vector of the winning neuron
and decreased for reference vectors of neurons further away. The size of
the neighbourhood of a neuron is reduced as training proceeds until,
towards the end of training, only the reference vector of a winning neuron
is adjusted.

In a well-trained Kohonen network, output neurons that are close to one
another have similar reference vectors. After training, a labelling procedure is
adopted where input patterns of known classes are fed to the network and class
labels are assigned to output neurons that are activated by those input patterns.
As with the LVQ network, an output neuron is activated by an input pattern if it
wins the competition against other output neurons, that is, if its reference vector
is closest to the input pattern.

ART network
There are different versions of the ART network. Figure 8 shows the ART-1
version for dealing with binary inputs. Later versions, such as ART-2, can also
handle continuous-valued inputs.

As illustrated in Figure 8, an ART-1 network has two layers, an input layer
and an output layer. The two layers are fully interconnected, the connections are
in both the forward (or bottom-up) direction and the feedback (or top-down)
direction. The vector Wj of weights of the bottom-up connections to an output
neuron i forms an exemplar of the class it represents. All the Wj vectors
constitute the long-term memory of the network. They are employed to select
the winning neuron, the latter again being the neuron whose Wj vector is most
similar to the current input pattern. The vector Vj of the weights of the top-
down connections from an output neuron i is used for "vigilance" testing, that is,
determining whether an input pattern is sufficiently close to a stored exemplar.
The vigilance vectors Vj form the short-term memory of the network. Vj and
Wj are related in that Wj is a normalised copy of Vj, viz.
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W = (12)

where 8 is a small constant and V-, the jth component of Vj (i.e. the weight of
the connection from output neuron i to input neuron j).

Training an ART-1 network occurs continuously when the network is in use
and involves the following steps :-

(i) initialise the exemplar and vigilance vectors W- and Vj for all output
neurons, setting all the components of each V- to 1 and computing Wj
according to eqn (12). An output neuron with all its vigilance weights set
to 1 is known as an "uncommitted" neuron in the sense that it is not
assigned to represent any pattern classes;

(ii) present a new input pattern x;
(iii) enable all output neurons so that they can participate in the competition for

activation;
(iv) find the winning output neuron among the competing neurons, i.e. the

neuron for which x.Wj is largest; a winning neuron can be an
uncommitted neuron as is the case at the beginning of training or if there
are no better output neurons;

(v) test whether the input pattern x is sufficiently similar to the vigilance
vector Vj of the winning neuron. Similarity is measured by the fraction r
of bits in x that are also in Vj, viz.

x V
r = ̂ i- (13)

ZXj

x is deemed to be sufficiently similar to Vj if r is at least equal to
"vigilance threshold" p (0 < p < 1);

(vi) go to step (vii) if r >p (i.e. there is "resonance"); else disable the winning
neuron temporarily from further competition and go to step (iv) repeating
this procedure until there are no further enabled neurons;

(vii) adjust the vigilance vector Vj of the most recent winning neuron by
logically ANDing it with x, thus deleting bits in Vj that are not also in x;
compute the bottom-up exemplar vector Wj using the new Vj according to
eqn (12); activate the winning output neuron;

(viii)go to step (ii).

The above training procedure ensures that if the same sequence of training
patterns is repeatedly presented to the network, its long-term and short-term
memories are unchanged (i.e. the network is "stable"). Also, provided there are
sufficient output neurons to represent all the different classes, new patterns can
always be learnt, as a new pattern can be assigned to an uncommitted output
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neuron if it does not match previously stored exemplars well (i.e. the network is
"plastic").

Neural network applications

Types of applications
Neural networks have been employed in a wide range of applications. These
can be grouped into six general types which are [NeuralWare, 1993]:-

Modelling and prediction A modelling neural network essentially acts as a
mapping operator or transfer function. It models a process or system, taking
inputs which are normally fed to that process or system and computing its
predicted output values. For example, a neural network modelling an electric
furnace might receive values of the input currents supplied to the furnace and
produce the corresponding furnace temperature values. The input-output
mapping can be static or dynamic. The most commonly used neural network for
static mapping applications is the MLP. MLPs, GMDH networks and recurrent
networks such as the Elman and Jordan nets have been employed for dynamic
mapping applications.

Classification and pattern recognition A classification neural network
receives input patterns describing an object or situation and outputs the category
of that object or situation. In the case of a fault diagnosis application, for
instance, input patterns might be symptoms and test data and the network
output, the fault type. Again MLPs have been used for classification tasks.
Another frequently adopted classification network is the LVQ network.

Association Neural networks can be employed as pattern associators and auto-
associative content-addressable memories. An associative network is taught
associations of ideal noise-free data and subsequently can classify data that is
corrupted by noise. For example, the network learns a number of ideal patterns
and recognises a noisy input pattern as one of the taught ideal patterns. This
recognition process can involve completing a corrupted input pattern by
replacing its missing parts. Historically, a well-known associative network is
the Hopfield net although the related Hamming net [Lippmann, 1987] is a faster
and more accurate network with a higher storage capacity. An MLP can also be
used as an auto-associative network by arranging for the input and output layers
to have the same number of neurons and making the target output the same as
the input for all training examples.

Clustering This type of application is normally implemented with
unsupervised neural networks such as the ART network and Kohonen's self-
organising feature map. Input vectors representing the attributes or features of
different objects or situations are supplied to a clustering network to analyse.
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Based on correlations in the input vectors, the network groups them into
categories. For example, input vectors can encode the geometrical features and
machining requirements of workpieces and the network arranges them into
group technology families.

Signal processing This class of applications includes data compression and
noise filtering, both of which can be realised using MLPs in the auto-associative
mode mentioned previously. Compression is achieved by adopting fewer
hidden neurons than input and output neurons. Smoothing of a signal is
implemented by first compressing and then reconstructing it.

Optimisation This can be carried out using a neural network designed
inherently to minimize an energy function, such as the Hopfield net. The
objective function and constraints of an optimisation problem are coded into the
energy function of the network which aims to reach a stable state where its
outputs yield the desired optimum parameters. Another optimisation approach
can involve first training a neural model of the process to be optimised, using a
suitable network such as an MLP, and then adapting the inputs to the model to
produce the optimum process output. The input adaption procedure can be the
same as that for weight adaptation during the training of the neural model.

Engineering applications
Applications of neural networks have been developed for problems in all major
engineering disciplines. The following is a non-exhaustive list of applications
in chemical and process engineering, civil and structural engineering, electrical
and electronic engineering, manufacturing and mechanical engineering and
systems and control engineering.

Chemical and process engineering
• predicting the colour of a product such as paint from the concentrations of

the colorants used [Bishop et al, 1991];
• selecting chemical reactors [Buisari and Saxen, 1992];
• diagnosing faults in dynamic processes [Vaidyanathan and

Venkatasubramanian, 1992];
• estimating the melt flow index in industrial polymerisation [Peel et al,

1993];
• modelling an industrial fermentation process [Tsaptsinos et al, 1993];
* designing distillation columns [Mogili and Sunol, 1993];
• estimating microbial concentrations in a biochemical process [Bulsari,

1994].

Civil and structural engineering
• resource levelling in PERT analysis for construction projects [Shimazaki et

al, 1991];
• controlling the discharge from a reservoir [Sakakima et al, 1992];
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• classifying river water quality using biological data [Ruck et al, 1993];
• estimating the velocity, axle spacings and axle loads of a passing truck

from strain response readings taken from the bridge it passes over [Gagarin
etal, 1994];

# predicting the flow of a river from historical river flow data [Karunanithi et
al, 1994];

« modelling a finite-element-based structural analysis procedure [Rogers,
1994];

. detecting flaws in the internal structure of construction components [Flood
andKartam, 1994].

Electrical and electronic engineering
• monitoring the alarm state of critically ill patients [Dodd, 1991];
• enhancing noisy images [Shih et al, 1992]
• compressing images [Lu and Shin, 1992];
• filtering noise and extracting edges from images [Pham and Bayro-

Corrochano, 1992];
. detecting features in pulsed-radar backscatter waveforms [Mesher and

Poehlman, 1992];
. estimating harmonic components in a power system [Osowski, 1992];
# forecasting daily peak loads in power systems [Ishibashi et al, 1992];
. allocating channels in mobile communication systems [Fritsch et al, 1993].
. classifying objects from their ultrasonic signatures [Smith et al, 1993];
. preprocessing images for an optical character recognition system [Holeva

and Kadaba, 1993];

Manufacturing and mechanical engineering
. controlling the feedrate of a metal cutting machine tool [Epstein and

Wright, 1991];
. monitoring tool wear by sensing acoustic emission and tool forces [Burke

and Rangwala, 1991] and power consumption and tool acceleration [Wu,
1991];

. designing group-technology part families for cellular manufacturing
[Malave and Ramachandran, 1991];

• planning collision-free paths for moving objects [Lee and Park, 1991];
. predicting chip breakability and surface finish in metal machining [Yao

and Fang, 1993];
• optimising machining parameters [Wang, 1993];
# classifying machine faults [Huang and Wang, 1993];
. determining the external heat transfer across a one-dimensional body from

the temperature history at internal points [Dumek et al, 1993];
. designing the configuration of aircraft wing box structures [Wang et al,

19931
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Systems and control engineering
• modelling the forward and inverse dynamics of plants and processes

[Pham and Liu, 1992; Pham and Oh, 1992; Pham and Oh, 1993];
• controlling a flexible robot arm [Li et al, 1992];
• controlling the hovering of a model helicopter [Pallett and Ahmad, 1992];
• coordinating the trajectories of multiple robots [Srinivasan et al, 1992];
• controlling fluid levels in a two-tank system [Evans et al, 1993];
• controlling the batch quality in a distillation process [Cressy et al, 1993];
• measuring and controlling the depth of anaesthesia [Linkens and Rehman,

1993];
* determining an optimal path for a robot [Houillon and Caron, 1993];
* controlling the temperature of a water bath [Khalid et al, 1994].

Example applications
This section describes three applications recently investigated in the author's
laboratory.

Control chart pattern recognition A control chart for monitoring process
parameters can exhibit different types of patterns. The six most common types
are: normal patterns with random variations of a process parameter about a
steady mean value, increasing or decreasing trends, increasing or decreasing
shifts and cyclic patterns. It is useful to be able to recognise these patterns as
they can indicate the long-term health of a process. Before neural networks
were used, other methods of pattern recognition had been employed, including
methods based on statistical analysis and expert system rules [Pham and
Oztemel, 1992a]. However, the detection accuracy achieved had not been very
high for patterns not clearly belonging to one of the known types. Figure 9
shows a three-layer MLP configured to recognise patterns that are time-series of
60 consecutive samples. The MLP has 60 input neurons (one for each sample),
35 hidden neurons and six output neurons (one for each pattern type). The MLP
was trained on a set of 498 known patterns and tested on 1002 previously
unseen patterns. Its best detection accuracy, achieved after 400 sequential
presentations of the complete training set, was 96% [Pham and Oztemel,
1992b].

Figure 10 shows a system comprising three MLP pattern recognition
modules coordinated by a rule-based module. Due to "synergy" between the
modules, the best detection accuracy increased to 97.1% [Pham and Oztemel,
1992b]. Subsequent work has achieved even greater accuracies through
combining different types of pattern recognition modules, for example, rule-
based and MLP modules [Pham and Oztemel, 1993].

Automotive valve stem seal inspection As critical components in a car engine,
valve stem seals require 100% inspection. It is desirable to automate the
inspection process because of the high production volume involved and the
difficulty of achieving consistent results with human operators. A neural-
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network based system for automated visual inspection of up to 10 million seals
per year is under development. The hardware of the system, depicted in Figure
11, comprises four CCD cameras linked to a vision computer. The cameras
capture different views of a seal. Each camera image is processed using a
conventional algorithm (histogram-based thresholding, connectivity analysis,
labelling and Laplacian edge detection) to obtain a binary outline image. A two-
layer perceptron with a competitive (MAXNET) layer and an accumulative layer
is then employed to extract features of objects in the outline image (Figure 12a).
The function of the neural feature extractor is to produce a signature for each
object. This signature is a vector of 20 components each giving the number of
times a particular geometric feature is present on the object contour (Figure
12b). Two other neural networks are employed to handle two inspection tasks,
perimeter inspection and surface inspection. The perimeter inspection neural
network is a three-layer MLP with 20 input neurons (for the 20 components of
the signature vector), 10 hidden neurons and three output neurons (for the three
possible types of seal perimeters). The surface inspection neural network is a
three-layer MLP with 25 input neurons (for the 20 components of the signature
vector plus five additional geometric parameters), 10 hidden neurons and three
output neurons (for the three possible types of seal surface flaws). Preliminary
tests have yielded a detection accuracy of 83% and 93% in the perimeter and
surface inspection tasks respectively [Pham and Bayro-Corrochano, 1994].

Adaptive control of a robot arm A robot arm is a multi-input-multi-output
time-variant dynamic system. Effective control of a robot arm requires a multi-
variable controller capable of adapting to unpredictable changes in the robot
dynamics. Figure 13(a) shows such an adaptive controller for a two-joint
SCARA robot [Pham and Oh, 1994 a and b]. The controller incorporates three
neural networks for on-line direct learning of the robot forward and inverse
dynamics. All three neural networks are based on the modified Jordan network
described in [Pham and Oh, 1992] (see Figure 13(b)). The first neural network
(\|/) learns to model the forward dynamics of the robot. \j/ has two input neurons
(one for each of the joint torques), two output neurons (one for each of the joint
actuator rotation angles) and twelve hidden and context neurons. The second
neural network (())) learns to model the inverse dynamics of the robot, ty has four
input neurons (two for the joint rotation angles and two for errors in rotation
angles), two output neurons (for the two joint torques) and ten hidden and
context neurons. The third neural network (cj)̂) acts as a feedforward controller.
(j)̂  is a copy of (j). The decision as to when to update ^ with the most recent
version of (]) is made by an adaptation critic. A conventional feedback controller
is also employed to compensate for imperfections in the inverse dynamics
model. The design of the feedback controller can be accomplished almost
arbitrarily, unlike the case when the neural controller is not in use. Figure 14
shows simulation results which demonstrate the control system successfully
handling a sudden change in its payload.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Artificial Intelligence in Engineering 25

Vision system
Ethernet link

' r

"CD cameras
( 512 resolution

*\ /

Host
PC

Bowl Back
feeder lighting

Rework \ / ^ Reject
Indexing machine ̂ Hr____

Databus

Material handling
and lighting
controller

Figure 11 Automated visual inspection system

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



26 Artificial Intelligence in Engineering

Feature signature
(20 attributes)

t i l l 1 1 1 1 1 1 1 1 1
for read
and reset

Array of neurons
for accumulation
of maxnet outputs

MAXNET
( 20 neurons )

(a)

m ̂  m g m g rn ,

HHHH

fflfflfflS
m,. m14 '"16

3&E

Straight lines

Curves

Corners

(b)

Figure 12 (a) Feature extraction neural network
(b) Elementary geometric features to

be detected

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Artificial Intelligence in Engineering 27

r Controller I

Robot
with

minor-loop

Feedback
Controller

%

Critic U=

<$=,
_i —H_ JL

*1

Figure 13 (a) Control system for a two-joint
SCARA robot

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



28 Artificial Intelligence in Engineering

Figure 13 (b) Modified Jordan networks for (i)
forward and (ii) inverse dynamics
modelling
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Figure 14 (a) Response of the robot joint actuators
immediately after a load change

(b) Response after adaptation to the load
change
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Conclusion

Neural networks are computational systems that do not require programming in
a conventional sense, but can learn and generalise from training examples.
Neural computing is therefore potentially simple to apply and has generated a
great deal of interest in engineering. Several applications of this technology
have been proposed, although the majority of them are still in laboratory stages.
A very large number of applications remain to be exploited and implemented in
practice once neural computing has become more accessible to the wider
audience of engineers in industry. In spite of the many different neural network
paradigms in existence, as can be seen in this paper, they can be grouped into a
small number of categories, which should facilitate familiarisation with the
technology.

Finally, though powerful as it is, neural computing should not be regarded as
a panacea for all problems. It is likely that future applications would benefit
from judiciously combining neural computing and other AI technologies
including expert systems, machine induction and fuzzy logic.

Acknowledgements

The author would like to thank the UK Science and Engineering Research
Council and the Higher Education Funding Council for Wales for supporting the
research reported in this paper.

References

Bishop, J.M., Bushnell, M.J., Usher, A. and Westland, S. Neural networks in
the colour industry. In: Applications of Artificial Intelligence in Engineering VI,
(eds G. Rzevski and R.A. Adey), Computational Mechanics, Southampton, 423-
434, 1991.

Bulsari, A.B. and Saxen, H. Implementation of a chemical reactor selection
expert system in an artificial neural network, Eng. App. of Artificial Intelligence,
5(2), 113-119, 1992.

Bulsari, A.B. Applications of artificial neural networks in process engineering,
J. of Systems Engineering, 4(2), 1994 (in press).

Burke, L.I. and Rangwala, S. Tool condition monitoring in metal cutting : a
neural network approach, /. of Intelligent Manufacturing, 2(5), 269-279, 1991.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Artificial Intelligence in Engineering 31

Carpenter, G.A. and Grossberg, S. The ART of adaptive pattern recognition by
a self-organising neural network, Computer, March 1988, 77-88.

Cottrell, G.W., Munro, P. and Zipser, D. Learning internal representations from
gray-scale images : an example of extensional programming, Proc. 9th Annual

of f&f CogAi/n'va Sc/fMcg 5Wzry, Seattle, 461-473, 1987.

Cressy, D.C., Nabney, IT. and Simper, A.M. Neural control of a batch
distillation, Neural Computing and Applications, 1(2), 115-123, 1993.

Dodd, N. Artificial neural network for alarm-state monitoring. In: Artificial
Intelligence in Engineering VI, (eds G. Rzevski and R.A. Adey), Computational
Mechanics, Southampton, 623-631, 1991.

Dumek, V., Druckmuller, M. and Raudensky, M. Neural network, expert
system and inverse problems. In: Applications of Artificial Intelligence in
Engineering VIII, Vol.1, (eds G. Rzevski, J. Pastor and R.A. Adey),
Computational Mechanics, Southampton, 463-473, 1993.

Elman, J.L. Finding structure in time, Cognitive Science, 14, 179-211, 1990.

Epstein, H.A. and Wright, P.K. Intelligent machine tools : an application of
neural networks to the control of cutting tool performance. In: Artificial
Intelligence in Engineering VI, (eds G. Rzevski and R.A. Adey), Computational
Mechanics, Southampton, 597-609, 1991.

Evans, J.T., Gomm, J.B., Williams, D., Lisbon, P.J.G. and To, Q.S. A practical
application of neural modelling and predictive control. In: Application of
Neural Networks to Modelling and Control, (eds G.F. Page, J.B. Gomm and D.
Williams), Chapman and Hall, London, 74-88, 1993.

Flood, I. and Kartam, N. Neural networks in civil engineering n : systems and
application, /. of Computing in Civil Engineering, ASCE, 8(2), 149-162, 1994.

Fritsch, T., Mittler, M. and Tran-Gia, P. Artificial neural net applications in
telecommunication systems, Neural Computing and Applications, 1(2), 124-
146, 1993.

Gagarin, N., Flood, I. and Albrecht, P. Computing truck attributes with
artificial neural networks, J. of Computing in Civil Engineering, ASCE, 8(2),
179-200, 1994.

Goldberg, D. Genetic algorithms in search, optimisation and machine learning,
Addison-Wesley, Reading, MA, 1989.
Hecht-Nielsen, R. Neurocomputing, Addison-Wesley, Reading, MA, 1990.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



32 Artificial Intelligence in Engineering

Holeva, L.F. and Kadaba, N. An image filtering module using neural networks
for an optical character recognising system, Mathematical Modelling and

Compwfmg, 2, Section A, 504-510, 1993.

Holland, J.H. Adaptation in natural and artificial systems, University of
Michigan Press, Ann Arbor, MI, 1975.

Hopfield, J.J. Neural networks and physical systems with emergent collective
computational abilities, Proc. National Academy of Sciences, USA, April, 79,
2554-2558, 1982.

Houillon, P. and Caron, A. Planar robot control in cluttered space by artificial
neural network, Mathematical Modelling and Scientific Computing, 2,
Section A, 498-503, 1993.

Huang, H.H. and Wang, H.P. Machine fault classification using an ART 2
neural network, W. 7. /Wv. Mafzw/.' 7fc/zW%y, 8(4), 194-199, 1993.

Ishibashi, K., Komura, T., Ueki, Y., Nakanishi, Y. and Matsui, T. Short-term
load forecasting using an artificial neural network, Proc. 2nd Int. Conf. on
Automation, Robotics and Computer Vision, Vol.3, September 1992, Singapore,
INV-11.1.1-INV-11.1.5, 1992.

Jordan, M.I. Attractor dynamics and parallelism in a connectionist sequential
machine, Proc. 8th Annual Conf. of the Cognitive Science Society, Amherst,
MA, 531-546, 1986.

Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K. Neural networks for
river flow prediction, J. of Computing in Civil Engineering, ASCE, 8(2), 201-
220, 1994.

Khalid, M., Omatu, S. and Yusof, R. Adaptive fuzzy control of a water bath
process with neural networks, Engineering Applications of Artificial

f, 7(1), 39-52, 1994.

Kohonen, T. Self-organisation and associative memory (3rd ed), Springer-
Verlag, Berlin, 1989.

Lee, S. and Park, J. Neural computation for collision-free path planning, /. of
Intelligent Manufacturing 2(5), 315-326.

Li, Y., Wong, A.K.C. and Yang, F. Neural network control of flexible robot
arm. In: Artificial Intelligence in Engineering VII, (eds D.E. Grierson, G.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Artificial Intelligence in Engineering 33

Rzevski and R.A. Adey), Computational Mechanics, Southampton, 89-105,
1992.

Linkens, D.A. and Rehman, H.U. Neural network controller for depth of
anaesthesia. In: Application of Neural Networks to Modelling and Control,
(eds G.F. Page, J.B. Gomm and D. Williams), Chapman and Hall, London, 104-
115, 1993.

Lippmann, R.P. An introduction to computing with neural nets, IEEE ASSP
g, April, 4-22, 1987.

Lu, C.C. and Shin, Y.H. Neural networks for classified vector quantization of
images, Eng. Applications of Artificial Intelligence, 5(5), 451-456, 1992.

Malave, C.O. and Ramachandran, S. Neural-network based design of cellular
manufacturing systems, /. of Intelligent Manufacturing, 2(5), 305-314, 1991.

Mesher, D.E. and Poehlman, W.F.S. Interpretation of pulsed radar backscatter
waveforms using a knowledge based system. In: Artificial Intelligence in
Engineering VII, (eds D.E. Grierson, G. Rzevski and R.A. Adey),
Computational Mechanics, Southampton, 255-269, 1992.

Mogili, P.K. and Sunol, A.K. Machine learning approach to design of complex
distillation columns. In: Applications of Artificial Intelligence in Engineering
VIII, Vol.2, (eds G. Rzevski, J. Pastor and R.A. Adey), Computational
Mechanics, Southampton, 755-770, 1993.

Neural Ware Inc. Neural Computing : NeuralWorks Professional II/PLUS and
NeuralWorks Explorer, NeuralWare Inc., Pittsburgh, Pennsylvania, 1993.

Pallett, TJ. and Ahmad, S. Real-time neural network control of a miniature
helicopter in vertical flight. In: Artificial Intelligence in Engineering VII, (eds
D.E. Grierson, G. Rzevski and R.A. Adey), Computational Mechanics, 143-160,
1992.

Peel, C., Willis, M.J. and Tham, M.T. Enhancing feedforward neural network
training. In: Application of Neural Networks to Modelling and Control,
(eds G.F. Page, J.B. Gomm and D. Williams), Chapman and Hall, London, 35-
52, 1993.

Pham, D.T. and Bayro-Corrochano, E.J. Neural networks for noise filtering,
edge detection and feature extraction, J. of Systems Engineering, 2(2), 111-122,
1992.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



34 Artificial Intelligence in Engineering

Pham, D.T. and Bayro-Corrochano, EJ. Neural classifiers for automated visual
inspection, IMechE Proc., Part D, J. of Automobile Engineering, 208, 83-89,
1994.

Pham, D.T. and Karaboga, D. Dynamic system identification using recurrent
neural networks and genetic algorithms, Proc. 9th Int. Conf. on Mathematical
and Computer Modelling, San Francisco, July 1993 (in press).

Pham, D.T. and Liu, X. Dynamic system modelling using partially recurrent
neural networks, J. of Systems Engineering, 2(2), 90-97, 1992.

Pham, D.T. and Liu, X. Modelling and production using GMDH networks of
adalines with nonlinear preprocessors, Int. J. of Systems Science, (in press),
1994.

Pham, D.T. and Oh, S.J. A recurrent backpropagation neural network for
dynamic system identification, /. of Systems Engineering, 2(4), 213-223, 1992.

Pham, D.T. and Oh, S.J. Identification of plant inverse dynamics using neural
networks, Technical Report, Intelligent Systems Laboratory, School of
Electrical, Electronic and Systems Engineering, University of Wales, Cardiff,
UK. (1993).

Pham, D.T. and Oh, S.J. Adaptive control of a robot using neural networks,
Robotica, 12, 1994a (in press).

Pham, D.T. and Oh, S.J. Control of a two-axis robot using neural networks,
Proc. IMACS Int. Symp. on Signal Processing, Robotics and Neural Networks,
Lille, April 1994b (in press).

Pham, D.T. and Oztemel, E. A knowledge-based statistical process control
system, Proc. 2nd Int. Conf. on Automation, Robotics and Computer Vision,
Vol.3, Singapore, Sept. 16-18, INV-4.2.1-INV-4.2.6, 1992.

Pham, D.T. and Oztemel, E. Control chart pattern recognition using neural
networks, 7. ofSyjffm? Efzgmz e n'rzg, 2(4), 256-262, 1992.

Pham, D.T. and Oztemel, E. Combining multi-layer perceptrons with heuristics
for reliable control chart pattern recognition. In: Artificial Intelligence in
Engineering VIII, (eds G. Rzevski, J. Pastor and R.A. Adey), Computational
Mechanics, Southampton, 801-810, 1993.

Pham, D.T. and Oztemel, E. Control chart pattern recognition using learning
vector quantization networks, Int. J. Prod. Research, 32(3), 721-729, 1994.

                                                Transactions on Information and Communications Technologies vol 6, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 



Artificial Intelligence in Engineering 35

Rogers, J.L. Simulating structural analysis with neural network, J. of
' m Ov;VEA2gm^armg, ASCE, 8(2), 252-265, 1994.

Ruck, B.M., Walley, W.J. and Hawkes, H.A. Biological classification of river
water quality using neural networks. In: Arff/zcW Wf%f%cf m Bigmgen'Mg
W//, (eds G. Rzevski, J. Pastor and R.A. Adey), Computational Mechanics,

Southampton, 361-372, 1993.

Rumelhart, D.E. and McClelland, J.L. fara/M
^̂ Zomr/o/7̂  m r/zg mf'cm^fmcmrg of cogM/r/ô , MIT Press, Cambridge, MA,
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