
Neural networks in the CSA model

E. Eberbach

Jodrey School of Computer Science, Acadia

University Wolfville, Nova Scotia, Canada BOP

ABSTRACT

Neural Networks provide a powerful tool for new generation computers. The
biggest problem of neural networks is the lack of representational power. We
propose to analyze neural networks using the approach which is more general than
neural networks. A Calculus of Self- modifiable Algorithms is a universal model
for intelligent and parallel systems, integrating different styles of programming.
and applied in different domains of future generation computers. Applying this
model to neural networks gives some hints how to increase a representational
power of neural networks.

INTRODUCTION

Neural Network processing provides a new way of thinking about perception,
memory, learning and thinking [19]. Artificial Intelligence community is split be-
tween advocates of powerful symbolic representations that lack efficient learning
procedures, and advocates of connectionist ideas which provide relatively simple
learning procedures that lack the ability to represent complex structures effec-
tively [9].

We believe that both approaches, a symbolic conventional computing and
neural network processing are, in fact, compatible [6,7]. However they use differ-
ent techniques, models, terminology, and representation. The differences lead to
the situation that some classes of problems are easier to express in a connectionist
model, other using a symbolic approach. The relations of symbolic computing
with neural nets have been discussed in more details in [6,7].

The paper suggests a very general notation for describing neural networks
and explains how various aspects of neural nets map into this notation. The
notation seems appropriate for describing systems of a large number of interacting
and fairly complex modules. For this purpose the Calculus of Self-modifiable
Algorithms has been applied.

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

292 Artificial Intelligence in Engineering

The Calculus of Self-modifiable Algorithms (CSA for short) [1-7] is a univer-
sal theory for parallel and intelligent systems. It integrates different styles of
programming and is applied in various domains of future generation computers.

In section 2 we briefly outline CSA. In section 3 we present neural networks in
the CSA interpretation. In section 4 we demonstrate how neural networks work
as self-modifiable algorithms. For the illustration the most popular type of neural
networks has been chosen: a multi-layer perception using the back propagation
learning algorithm.

A CALCULUS OF SELF-MODIFIABLE ALGORITHMS

A Calculus of Self-modifiable Algorithms (CSA [1-7]) is a universal theory for
parallel and intelligent systems, integrating different styles of programming and
applied in various domains of future generation computers. We will decipher
its name. The name "Calculus" should be understood rather not in the pure
mathematical sense, but by the analogy to Milner's Calculus of Communicat-
ing Systems [16] and Hoare's Communicating Sequential Processes [10]. The
second part "Self-modifiable Algorithms" does not mean pure algorithms only.
Self-modifiable Algorithms model adaptive computer systems (programs, formal
languages, architectures) and their name is by an analogy to the mathematical
models of programs without self-modifiability, so-called Mazurkiewicz algorithms
[15].

To basic notions of the CSA belong: Extended Boolean Algebra formulas
(EB A-formulas), Self-Modifiable Algorithm net (SMA-net), a cost system, ex-
tended regular expressions, and self-modifiable algorithm itself. EB A-formulas
are a basic construct of the SMA-net, which in turn provides a formal environ-
ment for self-modifiable algorithms. Two special cases of the SMA-net are the
Rule-Based and Logic net, and the Neural Network and Connectionist net. A
cost system is used for the solution of the optimization process of self-modifiable
algorithms (in particular for learning or fault-tolerance). Extended regular ex-
pressions are a special case of the SMA-net. Self-modifiable algorithms are a
mathematical abstraction of adaptive computer systems. The input-output be-
havior of self-modifiable algorithms is described as the solutions (the fixed points)
of some sets of equations over SMA-net. The equations are built using the SMA-
net control states as variables, transits as parameters, and SMA-net operators as
equation continuous operators.

The scope of potential and realized applications of CSA is very wide, includ-
ing expert systems, machine learning, adaptive systems, neural networks, fault-
tolerant systems, robot plan generation, distributed and concurrent computing,
and new generation computer architectures and languages [2-7].

The EB A-formulas are useful to deal with systems with incomplete informa-
tion, and such systems are characteristic for AI and neurocomputing. Some basic
elements of self-modifiable algorithms, i.e. control states, pre- and postcondi-
tions in transits are predicates taking values in the Extended Boolean Algebra
(EBA-formulas). EBA-formulas are in some extent similar to the predicate cal-
culus used in logic programming. The main differences are that predicates can
take three and not two values, namely: true, false and unknown; and that be-

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 293

sides traditional disjunction, conjunction, and negation operators, there are new
"dynamic" operators verification of matching, strings, updating condition, and
describing sequential and parallel behavior.

A SMA-net (from: Self-Modifiable Algorithm net) defines a mathematical
environment for self-modifiable algorithms. Two special cases of the SMA-net are
an RBL-net (from: Rule-Based and Logic net) and an NNC-net (from: Neural
Network and Connectionist net). The SMA-net provides the means for procedural
and data abstraction, i.e. the way how to build the algorithm from lower-level
elements using basic programming operators. Elements of SMA-net consist of
preconditions PRE, activity ACT and postcondition POST. We assume that
an element of SMA-net PRE -+ ACT -+ POST matches if its precondition is
true. In other words, if EBA-formula in precondition has value 1, action ACT can
be executed. If PRE is equal 0, ACT cannot be executed; and if PRE is unknown
then there are two possibilities: either suspension or conditional execution with
verification of PRE during or after execution. This has an analogy with the
reasoning by default from logic programming. After correct termination of action
ACT, POST becomes true.
By a SMA-net we mean the following system:

(X, {pre, act,post}, { U , U, n, o, ,,»,!}, {_L, T,s, 7}), where

(a) X is a set of atomic elements, called a universum (domain) of the net.
X = 3> x $ x 4>, where $ are EBA-formulas. In other words, elements
of X are triples in the form (^i,<fa,<fcj), where <j>i is a precondition, d)? is
an activity, and </>3 is a postcondition. Atomic elements connected by the
SMA-net operators form SMA-expressions Exp(X).

(b) for every SMA-expression of Exp(X) pre, act,post are the projection
functions allowing to find precondition, activity, and postcondition, respec-
tively,

(c) U , U, fl, o, ,,%,! are the operators allowing to build higher-order elements,
and
y is a nondeterministic choice,
U is a general choice,
n is an intersection,
o is a sequential composition,
, is a parallel composition,
ft is a general recursion,
! is a skip operator,

(d) J_, T,£,7 G X are distinguished elements of X, and _L is a zero element, T
is top, £ is a sequential unity, and 7 is a parallel unity. Q

As a special case of recursion % operator there are distinguished different types
of iteration operators. In particular we can distinguish a (sequential) iteration

* , a modifiable iteration * , a partation (parallel iteration) - , and a

modifiable partation & - .D

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

294 Artificial Intelligence in Engineering

A more complete formal definition of the SMA-net operators and their interpre-
tations can be found in [4,7].

Self-modifiable algorithms are a mathematical model of processes (programs)
with possibilities of modifications to its behavior. They describe a single (re-
cursive or iterative) modifiable program or systems of cooperating modifiable
programs. An articulation of a self-modifiable algorithm has been introduced in
[1], and the current definition is based on [6,7]. Self-modifiable algorithms have
many different roots, but undoubtedly their nearest analogue was a mathematical
model of programs without self-modifiability, so-called Mazurkiewicz algorithm
[15].

A self-modifiable algorithm, due to its open structure (based on frames,
records, and objects), the ability to remember the history of its previous re-
alizations and built-in the "optimization mechanism" that rules directions of
modifications, possesses a certain self-knowledge. By the SMA model we can
express and investigate both parallelism, nondeterminism, recursion, operations
on data and instructions, learning and fault-tolerance.

The main idea of the "self-modifiable algorithm" depends on goal-directed
modifications, which are able to create a completely new form of algorithm. Mod-
ifications are a kind of "vital engine" searching for the best structure of algorithm
(in the sense of minimal costs) to achieve the assumed goal.

By a self-modifiable algorithm SMA over a SMA-net (X, {pre, act, post},
{ y ,U,n, o, , ,&, !},{-L, T,e,7}) we mean any pair:

SMA = (5,T) , where

5 - is a nonempty set of control states. Control states have the form of
EBA-formulas. S is dynamic, in the sense that during execution there
are created new and destroyed existing control states. At the beginning,
usually, 5 = {cr,w}, where a is the initial control state, and w is the
terminal control state (goal) of the algorithm.

T - is a set of transits . T C X X R™, where X is the domain of the net, and
R™ is the set of so called beyond-real numbers (in particular, real numbers).
During execution of SMA new transits are created, some are modified and
some destroyed. Transits consist of data D , actions A , and modi-
fications M (T = D U A(J M). The main criterion in the distinction
between data, actions and modifications is a domain in which a given set
operates. Actions A operate on data D exclusively. Modifications M
are a generalization of actions and the essence of SMA , and they operate
on data, actions and modifications. Every transit t € T has the form of a
quadruple t = (pre(t),act(t),post(t),cost(t)) , where pre(t) and post(t)
are precondition and postcondition in the form of EB A-formulas, act(t)
denotes an activity (contents) of the transit, and cost(t) is the transit
weight in the form of a certain real (beyond-real) number, pre and post are
responsible for pattern matching, i.e. for binding control states with appro-
priate transits, and cost is used as a criterion for adaptation and learning
of SMA. The structure of transits is open in the sense that it is possible
to extend it by adding new components as, for instance, generalizations of

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 295

transits, specializations, domain, analogies, history, informal definition, etc.
The design or work of SMA (design because SMA modifies itself) consists
of 3 phases: select, examine, and execute, and is based on the optimization
mechanism with the use of the costs of transits. D

A self-modifiable algorithm with the empty set of modifications (M = 0)
is simply a traditional algorithm (conventional program) and will be called a
modified algorithm (by other algorithms, if such exist). A self-modifiable
algorithm with the empty sets of data and actions (A U D = 0) will be called
a modifying algorithm (modifying other algorithms). It is possible to define
various systems of cooperating self-modifiable algorithms.

Data can be simple (as for example integer or real numbers, characters, logi-
cal values) or they may be structured (as arrays, records, symbolic data (strings,
trees), relations, etc.). Data are passive but they can change between particular
control states. Actions are active and they operate exclusively on data D; and
at the same time, they can be data themselves for modifications M. The set of
actions can be identified with instructions of "classic" imperative programming
languages. Modifications are active and operate upon data, actions and modifica-
tions. The foregoing means that modifications are applicable to actions and that
there exist modifications applicable both to actions and to data. Modifications
are simply a generalization of actions. They cause generation of new instruc-
tions and change old instructions (actions and modifications) of the algorithm.
Analogues of modifications can be found in knowledge representation languages
(see e.g. Lenat's RLL metarules [13], updating weight functions in neurocomput-
ing [14], Holland's genetic algorithms [11], or compiler instructions transforming
other instructions).

One of the important components of transits is the cost, which represents
the weight of a transit. The costs, represented by real numbers (more precisely
beyond-real numbers [1]), can have different interpretations, such as, for in-
stance, weights in the neural-computing sense, values of transits, time of execu-
tion, real cost of execution, probability, beliefs, Lenat's level of interestingness
[13], penalty, subjective impression, payoff from the game theory, Holland's fit-
ness from genetics [11], reward from psychology, time or space complexity, a linear
composition of all of the above factors, and so on. The beyond-real numbers are
similar to complex numbers, and were introduced in order to specify the cost of
iteration (recursion) with an unknown number of repetitions. The cost of iter-
ated and non-iterated parts of the program are then represented by a beyond-real
number, consisting of two ordered real numbers, respectively [1],

The input-output behavior of self-modifiable algorithms is described as the
solutions (the fixed points) of some sets of equations. The equations are built
using the SMA control states as variables, transits as parameters, and SMA-net
operators as equations' continuous operators. Two SMA-net operators used in the
construction of the equations (general choice U and intersection!~! are at the same
time the least and greatest upper bounds in complete lattices [4], respectively.
Thus we can solve such sets of equations in the sense of the least and the greatest
fixed points (as in the classic recursive functions theory).

The sets of equations can be built starting from the initial control state (for-

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

296 Artificial Intelligence in Engineering

ward equations) or from the terminal control state (backward equations). Their
solutions contain redundant threads of transits; therefore they are optimized by
removing operators connected with nondeterminism (for instance: by removing
nondeterministic choice, modifiable iteration and modifiable partation). Opti-
mization uses the costs of transits and operations as the main criterion to find
the best algorithm to realize a given goal.

Self-modifiable algorithms can be hierarchically ordered according to the num-
ber of transit levels, which operate one upon another. It is useful, in particular,
for the definition of necessary and sufficient conditions for learning or adapta-
tion. It also permits one to understand the nature of "intelligent" behavior of
self-modifiable algorithm programs compared to traditional ones. According to
research orientation, it seems that the CSA is competent to deal with theoret-
ical analysis and development of general learning algorithms independently of
application. There is no restriction on the type of algorithm developed.

NEURAL NETWORKS IN THE CSA APPROACH

Neural computers are parallel computer architectures which emulate the organiza-
tion and function of neurons and which provide the means for pattern processing.
Neural Network Processing Element is the basic element of neural computers.
Neural net models are specified by the net topology, node characteristics, and
training or learning rules. These rules specify an initial set of weights and indi-
cate how weights should be adapted during use to improve performance [14,19].
A neural network that learns patterns, does so by adjusting the weights between
neurons, analogous to synaptic weights. Through these adjustments a neural
network exhibits properties of generalization and classification.

Neural Network Processing Elements or nodes used in neural net models are
nonlinear, and typically analog. The simplest node sums N weighted inputs and
passes the result through a nonlinearity. The node is characterized by an internal
threshold and the type of nonlinearity (hard limiters, threshold logic elements,
and sigmoid functions). More complex nodes may include temporal integration
or other types of time dependencies and more complex mathematical operations
than summation.

A neural network processing element has 3 components: precondition PRE,
activity ACT and postcondition POST. Precondition consists of input signals
X, weights W, an activity F(X,W) performs different transformations on inputs
and weights, and postcondition consists of outputs Y and updated weights W\
A neuron performs the transformation F(X,W)=(Y,W), where some sets can be
empty.

In the literature (see for instance [19]) there are distinguished a transfer func-
tion, which defines the relation between the inputs and the output of a neuron,
and a learning function, which processes a state of a neuron. The transformation
F is universal in the sense that it subsumes the transfer function where W is
empty (for instance, the transfer function F can be of the form f(̂ XW) = Y,
where f is a threshold function) and the learning function with empty Y (with
F, for instance, of the form W - W -f cAV). Compared to a natural neuron,
in our approach there is more than one output signal. This allows to use the

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 297

same model for higher-order neurons, i.e. neural networks having more than one
output signal.

Using EBA-formulas, the three steps of the formal neuron computation can
be described as

if (X = Xo) A (W = Wo), then F(JT, W), n (Y = %) A (W = ̂).

The uniform artificial neuron is presented in figure 1. Such neurons can be con-
nected in higher-order neurons. Neural networks are just higher-order neurons.

PRE ACT POST

inputs j ;
X \

weights f ;
F(X,W)

: -\ OUtpUtS
': rf Y
} updated

weignts
W'

Figure 1. Neural Network Processing Element

Neural net models are specified by the net topology, node characteristics, and
training or learning rules. These rules specify an initial set of weights and indi-
cate how weights should be adapted during use to improve performance [16]. A
neural network that learns patterns, does so by adjusting the weights between
neurons, analogous to synaptic weights. Through these adjustments a neural net-
work exhibits properties of generalization and classification. Typically in neural
networks neurons are organized into layers, with each neuron in one layer hav-
ing a weighted connection to each neuron in the next layer. This organization
of neurons and weighted connections creates a neural network, also known as an
artificial neural system (ANS).

The Neural Network and Connectionist net allows us to build higher-order
neurons using operators of compositions, choices, recursion, etc. The advantage
of this abstract approach is that using operators rather typical for programming
languages, instead of hardware-like wiring of neuron connections, we obtain the
common model both for hardware design and for a programming language for
neurocomputers.

By an NNC-net (Neural Network and Connectionist net) we mean the fol-
lowing SMA-net:

(N, {pre, act,post}, { U , U, n, o, ,,*,!}, {l, T, £,7}),

where N is a set of neurons (neural network processing elements). D
We can distinguish the following network models: Hopfield/Kohonen associa-

tive memories [12], Single-Layer Perception [17], Delta Rule Single-Layer Percep-
tron, called also Widrow-Hoff [14], Back Propagation [18], Boltzmann Machine
[18], Counter Propagation [14], Self-organizing Map [14], and Neocognitron [8].
All these types of neural networks can be described using the same SMA-model.
It has been demonstrated that Neural Networks are a subclass of self-modifiable
algorithms, i.e. SMAs over the NNC-net.

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

298 Artificial Intelligence in Engineering

Neural Networks are the SMAs over the NNC-net with the set of control states
S represented by values of input, output and weight signals, and transits in the
form of neurons. Data D are unity neurons with preconditions and postconditions
from the set of input, output and weight signals, and the identity relation as the
set of transforming functions. Actions A are represented by neurons performing
transfer functions of inputs and weights onto outputs. Modifications M are neu-
rons performing learning and error functions, i.e. updating weights and checking
the end of training. The costs of neurons are elements to calculate the neural
network error function, responsible for the termination of the learning process
(weight modifications). The SMA optimization mechanism minimizes the error
function to terminate the training phase.

A BACK PROPAGATION AS A SELF-MODIFIABLE ALGORITHM

For illustration of neural networks, we will consider the Back Propagation
Multi-Layer Perceptron.

Figure 2. A two-layer perception using Back Propagation
algorithm

denotes data (datum d in the SMA example)

are actions (action a in the SMA example)

are modifications (modification ro in SMA)

The Back Propagation network is currently the most popular multi-layer per-
ceptron system that employs supervised learning based on the generalized delta
rule [18]. The basic idea of the Back Propagation model is to propagate errors
backwards to hidden units that receive no direct feedback from training patterns

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 299

in the outside world. Output neurons calculate their errors based on the differ-
ence between the target output and the computed output, and on the derivative
of the threshold function. These errors are then backpropagated to the hidden
neurons and used to evaluate their errors. The Back Propagation model uses a
sigmoid threshold function and accepts continuous input values. Unsimilar to a
single-layer perception [17], there is no guarantee that the Back Propagation will
converge, but if it converges, according to the Kolmogorov theorem [14,18,19], it
can model an arbitrary complex mapping.

By the Multi-Layer Perception using the Back Propagation Learning
Algorithm we mean the following self- modifiable algorithm over the NNC-net

(5,r) , where

5 = {(7,w,cr',w'}

w = end. of .execution
a' - (set.of-inputs-xo, x\, ..., z/v-i, -desired. outputs. do, d\, ..., ̂ M-

weights.woo,WQi,...,WK-\K-i A a.cost > <=) V (a.cost < e)
u/ — a.cost < £
/* a.cost denotes the cost of action a and e is a very small positive real
number*/

datum(d) /* a set of inputs, weights and desired outputs */

pre: set .of -inputs jx^x\, ..., zjv-i, -de sired .output s.d®, d\, ...,

dM-ii-and.weights.woQ,woi,...,WK-iK-i A a.cost > e

act: /* empty activity */

post : set.ofJnputs-XQ, xi, ..., z,v-i, -de sired .out puts .da, d\, ...,

^M-IJ -and.weights-WQQ, WQI, ..., WK-IK-I

cost: /* empty */

dztum(SET-EQ) /* set of equations for the select phase */
pre: a/Urâ .̂exc/Wm̂ ET̂ Q̂ F/X.OPTĴ /X̂ EI,

EX AM, EXEC

act: /* empty activity */

post : set. of .equations

cost: /* empty */

datum (FLY) /* the least fixed point of the equations from the select
phase*/

pre: set. of .equations

act: /* empty activity */

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

300 Artificial Intelligence in Engineering

post : optimal J east. fixed. point

cost : /* empty */

datum(OPT_f7JO /* the optimal least fixed point (with the least cost)*/

pre : optimal J east. fixed. point

act: /* empty activity */

post: 1

cost : /* empty */

action(a) /* calculation of neurons' outputs */

pre: set .o f .input SJEQ, x\, ...,z_/v-i, -de sired .outputs .do, d\, ...,

act : forward propagation of input signals through layers to calcu-

late outputs 2/o,3/i,"--,#M-ii using the sigmoid nonlinearity

where x- are the inputs of internal hidden or output neurons,
y- are the outputs of internal hidden or output neurons. The
input vector can be new on each trial, or samples from a train-
ing set can presented cyclically until weights stabilize

post : calculated j)utputs.yj

cost : 22k 22 j \dkj - ykj | /* error function between desired and
calculated outputs for all outputs j of the output layer neurons
and input samples k */

modif ication(m) /* modifications updating neurons' weights */

pre: calculated j)utputs.yj'

act: back propagation of the new values of weights (adjusting
weights) starting from the output neurons to the input neurons
using the formula

w^ := Wij + c6jx\,
where w^ is the weight from hidden or input neuron i to neuron
j, x\ is the input of neuron i, c is a gain term, and 6j is an error
term for neuron j given by the following formulas:
if neuron j is an output neuron, then

where dj is the desired output of neuron j, and yj is the actual
output;
if neuron j is an internal hidden neuron, then

where k is over all neurons in the layers above neuron j;
update cost (error) for sample k

:= Ej \dkj ~ ykj\

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 301

post : set.of.inputs.XQ, x\, ..., z/v-i, jie sired. output s.d̂ , d\, ...
,dM-i,-and.weights.WQQ,WQi,...,WK-iK-i /\ a.cost > €

cost: /* empty */

modif ication(S£L) /* select phase */

pre: select

act : build the equations forward or backward with the initial con-
trol state a' and the terminal control state J

post : examine

cost: /* empty */

modif ication(£X/iA/) /* examine phase */

pre: examine
act : solve the equations from the select phase; calculate the costs

of the least fixed points; perform minimization of costs of a
subset of transits chosen for optimization (in our case, the cost
of neuron a); if the goal of optimization has been achieved (i.e.
a.cost < f), then remove modifications responsible for opti-
mization (m will be replaced by transparent £ and a,d,a',̂ '

modified), else wait and check the condition again

post: execute

cost: /* empty */

modif ication(£X£C) /* execute phase */

pre: execute

act : execute the least fixed point from the examine phase

post : end. of .execution

cost: /* empty */

In the above SMA transits SETJ1Q,FIX,OPTJIX,SEL,EXAM,EXEC be-
long to the inference engine of SMA and they are characteristic for all SMAs
independently of the task to solve. Remaining transits d, a, m are the proper
back-propagation multi-perceptron transits and are characteristic (this means
changeable) for each specific problem.

The inference engine of the SMA works in the following way:
x(ff) = (SEL,SET.EQ)ox(si)

where
a- = {select.all Jransits-excludingJSET^Q, FIX, OPT.FIX,SEL,EX AM,

EXEC}
s\ = {examine, set. of .equations}
si = {execute, optimal J east. fixed. point}
(jj = end.of .execution

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

302 Artificial Intelligence in Engineering

The solution of this set of equations describes a single loop of the SMA infer-
ence engine:

x(a) = (SEL , SET.EQ) o (EXAM , FIX)o (EXEC ,OPTJ?IX)

This means that modification SEL works in the select phase on its datum
SETJEQ building the set of equations by matching control states and transits.
Next, modification EXAM works on its datum FIX in the examine phase, (i.e.,
it solves the set of equations SET.EQ in the sense of the least fixed points,
optimizes the solution, and passes the optimal least fixed point OPT .FIX to
the execute phase. In the execute phase modification EXEC executes optimal
solution OPT-FIX.
In the general case, this loop is iterated, i.e.

z(<7) = ((.9E6 ,6"ET_EQ) o (EX/iAf , FAY) o (EXEC , Of T.FAY))*

This means that the problem to solve is subdivided into subproblems, which
are solved in successive inference engine loops.

Data SETJEQ, FIX and OPT.FIX are modified during work by appropri-
ate transits SEL, EX AM and EXEC, and their transient values are presented
below.

Datum SETJZQ is built in the select phase of SMA by matching control
states (V, a, /3,...) with transits (d* a,...), which can be written in the form of the
below equations:

Select phase: matching control states with transits
z(</) = do z(a)Uz(w')
x(a) = ao x({3)
x((3) = mo z(cr')
z(w') = 6
where
or' — (set _o f .input S-Jio, x\,..., £yv-i, -desiredjoutputs.do, d\, ...,̂ M-i,

.and.weights-WQQ, u>oi,• ••, w/c-iA'-i A a.cost > f) V (a.cost < e)
a = set .of .inputs .XQ,XI, ...,XTV-I, .desired .output s.dQ^di, ...,dM-i,

.and.weights.WQQ, woi,..., WK-IK-I
/3 = calcul at ed .output s.yj'
(jj — a.cost < €

Examine phase: depends on the calculation of the fixed points, costs and
optimization. The process of the Multi-Layer Perceptron with the Back Propa-
gation learning has the symbolic form as the least fixed point (datum FIX) of
the above set of equations:

z(a') = (do ao m)*

Execute phase: the optimal least fixed point from the examine phase is
executed, i.e ra is removed, and c/,a,cr' and u/ are modified: d o a

Together this means that the whole work of our SMA, learning correct weigth
values, can be represented as follows:

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 303

x(0) = (SEL,SETJ£Q)o(EXAM , (doaom)*) o

the least fixed point

learning phase

o (EXEC, (Jo a))

optimal least fixed point

taught multi —layer perceptron
Note that the same formalism (symbolic equations, the least fixed points and

optimization), has been used to describe the work of the SMA inference engine,
and the learning neural network itself. In the optimization process, the cost
of only one transit a has been minimized (therefore costs of all other transits
were irrelevant-empty). In the general case, the SMA optimization mechanism
can minimize costs of all transits (including costs of transits from the inference
engine itself). This means that either partial or total optimization problems
are solved. The above also means that using self-modifiable algorithms we can
minimize costs of learning, i.e. we can consider learning on higher levels ("learn
how to learn").

Weight modification could be included to the modification EXAM, but then
it would be invisible, therefore it has been written separately as modification m.

From the example it follows that the CSA approach is more general than
neural networks. The open problems remains how to model the inference engine
of SMAs (transits SET.EQ, FIX, OPT.FIX, SEL, EXAM,
EX EC] as neurons. We believe that it is possible. If so then we obtain a powerful
tool to span conventional computing with parallel distributed processing.

CONCLUSIONS

In the present paper we show that the Calculus of Self-modifiable Algorithms
could be used for the design of neural networks. The SMA-net operators provide
the means to build higher order neurons, and existing neural network models do
not have such a hierarchical representation. We believe that such a representa-
tion is typical for human brain, because biological neurons form other higher-order
structures responsible for vision, motor skills, abstract thinking. Additionally, the
structuralization links connectionist ideas with symbolic computing. The sym-
bolic computing is so powerful because of the many levels of abstraction. Why do
not allow this for neural networks? Why should be separate neurons-hardware,
and powerful, but having an unknown representation, learning algorithms? The
current neural networks learning algorithms are not presented in the form of neu-
rons but also not as software, because according to connectionist ideas neural
networks do not require programming. What are they? Something beyond the
neuron model? The answer of CSA is simple and clear: learning algorithms are
also higher-order neurons. More precisely, neurons working upon other neurons,
i.e. SMA modifications. Neural networks learning algorithms are very simple: a
few synchronized steps of parallel operations repeated iteratively. In the CSA we
can express more complex learning algorithms. We can model neural networks
too. Thus we can conclude that in the connectionist approach there is still a room

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

304 Artificial Intelligence in Engineering

for more complex learning as well (if it is desirable). CSA provides the means
to believe that neurons perform recursive computations (a SMA-net general re-
cursion operator and its special cases: iterative operators). In the current state
of knowledge, we do not know however* how to build stable multi-layer recursive
neural networks. Maybe by adding the clocking signals like in conventional se-
quential circuits? CSA can be treated as a formal language for neural networks.
Because of such an abstract model, we obtain the conclusion that it is irrelevant
whether neural networks will be treated as hardware elements only, or also as
software-like constructs.

ACKNOWLEDGEMENTS
The work of the author was partially supported by a grant from the Natural
Sciences and Engineering Research Council of Canada, No. OGP0046501, and a
general NSERC grant.

REFERENCES

1. Eberbach E., Algorithms with Possibilities of Selflearning and Selfmodifi-
cation, Fundamenta Informaticae 6, 1 (1983), 1-44.

2. Eberbach E., Self-Modifiable Algorithms and Their Applications, Research
Note RN/88/27, Department of Computer Science, University College Lon-
don, (June 1988).

3. Eberbach E., Selected Aspects of the Calculus of Self-Modifiable Algorithms
Theory, Lect. Notes in Computer Science 468, Springer-Verlag, 1990, 34-43.

4. Eberbach E., CSA: Two Paradigms of the Language for Adaptive Expert
Systems, Proc. of the 19th Annual ACM Computer Science Conference
CSC'91, San Antonio, Texas, (1991), 570-581.

5. Eberbach E., Neural Network Processing Elements as a New Generation of
Flip-Flops, in: Advances in Computing and Information - ICCI'91, Lect.
Notes in Computer Science 497, Springer-Verlag, Ottawa, (1991), 687-698.

6. Eberbach E., Adaptive Expert Systems and Neural Networks Applications
of CSA, Proc. of the Fourth Intern. Conf. on Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems IEA/AIE-91, vol.1,
Koloa, Kauai, Hawaii, (1991), 365-374.

7. Eberbach E., Neural Networks and Adaptive Expert Systems in the CSA
Approach, Special Issue on Neural Networks, Intern. Journal of Intelligent
Systems, vol. 8 (4), 1993, in printing.

8. Fukushima K., A Neural Network for Visual Pattern Recognition, IEEE
Computer, March 1988, 65-75.

9. Hinton G.E., Connectionist Symbol Processing, MIT Press, 1991.

10. Hoare C. A. R., Communicating Sequential Processes, Prentice-Hall, 1985.

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 305

11. Holland J.H., Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelli-
gence, Univ. of Michigan Press, Ann Arbor, 1975.

12. Hopfield J.J., Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities, Proc.Nat.Acad.ScL, vol.79, 1982, 2554-2558.

13. Hayes-Roth F., Waterman D.A., Lenat D.B., Building Expert Systems,
Addison-Wesley, 1983.

14. Lippmann R.P., An Introduction to Computing with Neural Nets, IEEE
ASSP Magazine, April 1987, 4-22.

15. Mazurkiewicz A., Iteratively Computable Relations, Bulletin of the Polish
Academy of Sciences, Ser. Math. Astron. Phys., 20, 9, (1972), 799-803.

16. Milner R., A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science, vol.92, Springer-Verlag, 1980.

17. Rosenblatt R., Principles of Neurodynamics, New York, Spartan Books,
1959.

18. Rumelhart D.E., McClelland J.L., Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, MIT Press, Cambridge,Mass.,
vol. 1& 2, 1986.

19. Soucek B., Soucek M., Neural and Massively Parallel Computers. The Sixth
Generation, John Wiley & Sons, 1988.

 Transactions on Information and Communications Technologies vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

