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SUMMARY 
 
Early locating and identifying basic weak-points (sharp-edge 
corona, polluted-insulator "baby arcs" and loose contact 
arcing) in electrical power systems significantly decrease the 
imminent failure, outage time and supply interruption. We 
previously introduced a method for detecting the basic weak-
points based on sound/waveform patterns and frequency 
analysis of their ultrasonic emissions. However, non-
stationary patterns of the basic weak-points’ emitted signals 
and background noise frequently led to confusing 
discrimination. Therefore, this paper develops an effective 
pattern recognition scheme, employing wavelet feature 
extraction and Artificial Neural Network (ANN) 
classification, to identify the basic weak-points and two weak-
point combinations (polluted insulator stressed by a 
transmission line with a sharp-edge and multiple sharp-edges 
on the same line), based on their modulated ultrasonic 
emissions. Extensive testing proved that the proposed scheme 
achieved average recognition rate of 98% when tested using 
weak-points underneath 33-kV and 132-kV transmission lines 
with 2-second detected signals. Moreover, increasing the 
acquisition time (>30 seconds) and classifying the weak-
points based on majority voting over the ANN’s responses of 
multiple (15) consecutive sections, consistently led to 100% 
successful recognition of the considered weak-points. 
 
INTRODUCTION 
 
Electrical transmission lines and insulators are widely used 
in electrical power transmission and distribution networks 
that have been serving for many years. The insulation 
deteriorates under normal operating conditions, and this 
deterioration is accelerated due to short or long term 
overloads, lightning or switching surges, moisture 
condensation, and vibration or other climatic and 
mechanical stresses. These factors also may lead to other 
serious weak points such as poor/loose connections with 
subsequent arcing and micro roughness over line 
conductors. Hence, the basic weak points in electrical 
power networks are sharp-edges corona, polluted-insulators 
"baby arcs"  and loose-contacts arcing [1]. Early locating 
and identifying such weak-points in electrical power 
systems significantly decrease the imminent failure, outage 
time and supply interruption that critically reflect the 
operability and reliability of the electrical power 
networks/systems [1-7].  
In general, the basic weak points (sharp-edges, baby-arcs 
and loose-contacts) generate audio noise, radio interference 
complaints and/or ultrasonic noise emissions. Therefore, 
there are several types of sensors to detect and locate them 
[2-4]. The ability to locate and identify the weak points 

guides the maintenance staff to take a proper action such as 
hot washing of lines and insulators, short-circuiting the gaps 
by better bonding or tightening the connections, and by 
smoothening the coronating points to suppress corona 
activity. Thus, major reduction in the outage time, 
impending failure, equipment damage and supply 
interruption can be attained. 
Several techniques for partial discharge identification [5] 
using artificial neural network (ANN) , in case of various 
power components,  have been proposed based on various 
feature extraction methods such a segmented time domain 
data compression [6] and short duration Fourier transform [7]. 
Alternatively, the wavelet transform (WT) [8], a mathematical 
tool developed in the 1980s, has been recently applied to 
many problems in power systems, such as analysis and 
visualization of electrical transients [9].  
Previously, we introduced a method for detecting the three 
basic weak-points based on sound/waveform patterns and 
frequency analysis of their ultrasonic emissions [4]. However, 
non-stationary patterns of the basic weak-points’ emitted 
signals and background noise frequently led to confusing 
discrimination/misclassification that was a strong motivation 
to automate the discrimination process. Hence, this paper 
develops an efficient pattern recognition scheme, employing 
wavelet feature extraction and ANN classification, to identify 
not only the basic weak-points but also two weak point 
combinations (polluted insulator stressed by a transmission 
line with a sharp-edge and multiple sharp-edges on the same 
line), based on their modulated ultrasonic emissions. 
The rest of the paper is organized as follows: Background 
on the WT and ANN is first presented. Next, the proposed 
methodology is introduced. Then, details on the 
experimental set-up and data assembly are given. Next, the 
design of the ANN used is presented. The detailed results 
and discussion are presented and finally followed by the 
conclusion.  
 
BACKGROUND 
 
In pattern recognition, the extracted features should 
preserve as much of the original information of the signal 
of interest as possible while eliminating redundant and 
irrelevant information that could cause extraneous noise 
[10]. Given a zero-mean, finite energy wavelet mother 
function h(t), a set of functions  hs,τ(t) can be generated 
from the single wavelet mother function by dilations and 
translations. The functions  hs,τ(t), for all possible scales s 
and shifts τ, are referred to as the wavelets. The continuous 
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WT of a signal  f(t) decomposes the signal  f(t)  into 
frequency components using the wavelets  hs,τ(t). In wavelet 
analysis, the signal  f(t) looks like as a signal passing 
through 2 perfect reconstruction quadrature mirror filters, 
low pass and high pass filters, followed by down sampling 
by a factor of 2 [8]. Multiple levels of the WT involves 
successively decomposing the low pass band only at each 
level. Alternatively, decomposing both the low and high 
bands of the transformed signal at all levels of the wavelet 
tree, results in the wavelet packets (WP) [8,11] that allows 
higher resolution at high frequencies. 
Inspired by biological nervous systems, ANNs are 
composed of interconnected simple processing elements 
(artificial neurons). A weighted sum of the neuron’s inputs 
subjected to a linear or nonlinear (typically sigmoid-
shaped) activation function constitutes an artificial neuron. 
ANNs are trained to perform pattern recognition tasks by 
adjusting the (synaptic) weights of the connections [10] 
using a representative training set of input feature vectors 
and their corresponding target vectors. The generalization 
capability of a neural network is evaluated by its ability to 
recognize patterns that were not encountered during the 
training stage. The common advantages of using ANN in 
pattern recognition (compared to statistical methods) are its 
capability of implementing much more complex 
partitioning of the feature space and amenability to parallel 
processing. 
The multi-layer perceptron (MLP) is a feed-forward ANN 
(FFANN) with one input layer, one or more hidden layers 
and one output layer. The power of MLPs, rather than 1-
layer multi-linear perceptron, comes from the theory that 
states: 2-layer FFANN with sufficiently many neurons in 
the single hidden layer is sufficient to classify linearly non-
separable sets [10,12,13]. 
   
PROPOSED METHODOLOGY 
 
An ANN pattern recognition scheme is developed to 
identify the basic weak points based on WP features. So, 
the proposed methodology consists of three main stages: 
Sensing of weak points and preprocessing, feature 
extraction using wavelet packets and weak point 
discrimination using ANN.  
The set used for sensing weak points in power systems is 
the ultraprobe2000 set, which detects ultrasonic frequencies 
between 20kHz and 100kHz. The optimum frequency 
corresponds to the maximum reading is 32kHz [14]. To 
provide more reliable and robust features to the 
classification stage, the sections of the detected signal are 
preprocessed. Each 16384-sample windowed section x of 
the sensed signals is preprocessed as follows: 

1- Elimination of any DC distortion in the processed 
section x, to get a zero-mean signal x1. 

2- Low pass filtering followed by down sampling x1 
using a half-band low pass filter to obtain a smoothed 
signal x2. 

3- Power normalization of x2 to get a unity power signal 
xn =  x2 / m2(x2)1/2, where m2(x2) denotes the estimated 

2nd order central moment of  x2, mainly to avoid the 
undesirable effects of parameters such as the applied 
voltage value, distance, sensitivity of the Ultraprobe 
set, orientation, relative position, ….etc. which may 
badly affect the classification decision.                         

Three-level WP decomposition with a Daubechies’ 
mother function, has been applied to xn. This chosen size 
of the wavelet tree was experimentally sufficient to result 
in discriminating features as illustrated later. The 
following features are used to constitute a 17×1 feature 
vector: 
 The mean of the absolute value of xn, i.e. m1(|xn|).  This 
feature mainly emphasizes the time diversity of weak 
point waveforms shown in Fig.1. 
 The 2nd order central moments of the leaves’ wavelets 
coefficients of the wavelet tree, providing information 
on the power distribution among the leaves of the tree. 
 The 3rd order central moments of the wavelet 
coefficients of the leaves of the wavelet tree which are 
added to improve the classification as mentioned later. 

Extracted features are initially used to train a 2-layer MLP 
using error back-propagation (BP) algorithm [10]. Then the 
trained ANN is used in weak points recognition. 
 

 

 

 
Time normalized by the sampling interval 

 

           Fig. 1.:  Time domain waveform of:  a. Sharp-edge. 
           b. Baby-arc.    c. Loose-contact.    The Y-axis gives   
           the signal amplitude in voltage.  
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EXPERIMENTAL SET-UP AND DATA ASSEMBLY 
 

The expected basic weak points in the high voltage power 
network, namely sharp-edges, polluted insulators and 
loose-contacts shown in Fig.2, were simulated and stressed 
in the laboratory by AC voltage. Precautions have been 
made to avoid the occurrence of partial discharge on high 
voltage connections. This is why all circuit connections 
were made from thick straight conductors with copper 
spheres at ends. In case of sharp-edge weak point, different 
sharp-edges with different edge diameters (for example 
0.5mm, 1mm and 1.8mm) were used to make sure that the 
obtained neural network is more general irrespective of the 
sharpness of weak point. Two weak-point combinations, 
polluted insulator stressed by a transmission line with a 
sharp-edge and multiple sharp-edges on the same line, were 
also simulated. Different applied voltage values were 
attempted starting from 10kV until 105kV. 
A total of 5100 data sections of each weak point type have 
been recorded (during a long period, over 10 months, and at 
various weather conditions: atmospheric temperature and 
humidity percentage) and preprocessed, and their 5100 
17x1 feature vectors are computed as explained in the 
previous section. 
 

 
 

Fig. 2. Laboratory simulation of different weak points.    
(a) Loose contact  (b) Polluted insulator.  (c) Sharp edge. 

 
DESIGN OF NEURAL NETWORK STRUCTURE 
 
To design a 2-layer FFANN having a 17-M-3 structure, i.e., 
17 inputs, M hidden neurons and 3 output neurons, we first 
set the desired output (Target) corresponding to the various 
basic weak point types to be {+1 -1 -1}, {-1 +1 -1} and {-1 
-1 +1} for sharp-edge, baby-arc, loose-contact weak points, 
respectively.  
Then, to properly size the hidden layer, we adopted a 
network growth procedure guided by both the network’s 
training and validation performance (as a good estimate of 
it generalization capabilities). The procedure finds the 
experimentally optimum number of hidden neurons as 
follows:  Disjoint training and validation sets constituting 
50% and 20% of the overall data set, respectively, have 
been uniformly randomly selected. Then, starting with a 
small number (4 neurons), the number of hidden neurons 
has been successively incremented and each new network 
structure has been trained using error BP algorithm. To 
conditionally stop the training procedure, a training 

performance goal 0f 0.01 (mean square error) and 350 
maximum number of epochs have been chosen.  The rates 
of correctly classified validation patterns have been 
computed for the trained ANN. When the average rate of 
correct validation classification manifested no further 
improvement or even started going down, we stopped 
enlarging the size of the hidden layer. The procedure has 
been repeated 12 times. On the average, it has been 
experimentally found that learned networks with a number 
of  hidden neurons > 15, did not significantly improve the 
rate of the correctly classified validation patterns. 
Consequently,  15 hidden neurons are used. 
After optimally choosing the ANN structure (17-15-3), 
66% of the data sections (10098 sections, 3366 for each 
weak point type and 16384 samples each) were uniformly 
randomly selected and used to train the selected structure.  
 
RESULTS AND DISCUSSION 
 
Table I summarizes the average (over 10 random 
experiments, for both training and testing) testing results 
(±standard deviation) of successfully trained ANNs using a 
total of 5202 sections of basic weak-points’ signals; 1734 
representing sharp-edge weak points, 1734 representing 
baby-arc weak points and 1734 representing loose-contact 
weak points. Fig. 3 depicts the simulation results when 
concatenating the feature vectors of the three weak points 
and sequentially applying the 5202 17×1 feature vectors to 
the trained ANN. To get robust and more reliable network 
decisions, we considered the outputs laying in between -0.3 
and 0.3 as zero, meaning that  the ANN “cannot identify” 
the weak point type. In case of sharp-edge weak point, 
97.23 % identification rate was obtained, indicating that 
1686 out of 1734 were recognized correctly. In case of 
baby-arc weak point, 96.19 % identification rate was 
obtained, indicating that 1668 out of 1734 were recognized 
correctly. In case of loose-contact weak point, 96.42 % 
identification rate was obtained, indicating that 1672 out of 
1734 were recognized correctly. 
 

Table. I. The details of weak points data used for ANN training/testing 
     and results of testing. 

Weak point type Sharp-
edge 

Baby-
Arcs 

Loose-
contact 

Total Data Sections 5100 5100 5100 
Sections 3366 3366 3366 Training 

Data  
% 66 66 66 

Sections 1734 1734 1734 Testing 
Data  % 34 34 34 

Sections 1686 
± 9.037 

1668 
± 9.39 

1672 
± 10.05 

Recognized 
Data 

% 97.23 
± 0.52 

96.19 
± 0.54 

96.42 
± 0.6 

Error % 0.39 2.51 2.87 
Cannot be 
Identified 

% 2.35 1.25 0.66 

 
It should be mentioned that when the 3rd order central 
moments were excluded from the feature vector  (i.e., using 
only 9×1 vectors) the generalization capabilities of the 
designed ANN markedly degraded with a ~15% drop in the 
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average correct classification rate. On the other hand, the 
recognition rates for the basic weak points are improved 
and the average training time is reduced (by about 30%), in 
case of using zero-mean version of the rectified normalized 
signal |xn| instead of xn as an input to the WP analysis 
stage. Specifically, the identification rate has increased to 
98.56 % for sharp-edge weak points, 99.08 % for baby-arc 
weak points, and 99.08 % for loose-contact weak points.  

 
Index of the tested signal section 

 
Fig. 3. ANN response for the basic weak-points. 

               Sharp-edge: 1→ 1734,   Baby-arc: 1735→ 3468 
               Loose-contact: 3469→ 5202.  From top to bottom,  
               responses of the 1st, 2nd & 3rd o/p‘s. 
 
Recognition of Basic and Combined Weak-Points 
 
Two additional types of weak points, which may be found 
in real practice, are also discussed, a combination of the 
basic sharp-edge and the baby-arc weak points (i.e., 
polluted insulator is stressed by a transmission line with a 
sharp-edge) and two-basic sharp edges spaced along 
transmission line by 2 cm. The features has been extracted 
from these combined weak points and fed to the neural 
network for recognition. The so-far trained ANN (using the 
3 basic weak points only) failed to identify the above-
mentioned weak point combinations with acceptable 
recognition rates. This calls for re-training the ANN to 
identify all the considered weak-points, namely, the three 
basic weak points and the two combined weak points. The 
target is properly selected being {-1 1 1} for the first 
combined weak point and {1 –1 –1} for the second 
combined weak point (which is the same as that for the 
basic sharp-edge weak point). Such good selection for the 
target states increases the ANN recognition rates at 
minimum training time. The ANN was trained using a total 
of 4845 data sections with 969 sections of each type of the 
considered basic and combined weak-points and tested 
using a total of 2805 data sections with 561 sections of each 
type. Table II summarizes the average (over 10 random 

training and testing procedures) recognition rates (±standard 
deviation) of the successfully trained ANNs. 
In general, it has been experimentally verified that 
increasing the acquisition time into ≥ 30sec. (i.e. > 14 
consecutive sections), individually processing each section 
and then classifying the weak point based on majority 
voting over the ANN’s responses of all sections, 
consistently resulted in 100% correct classifications. 
 
Table II Recognized data by the trained ANN in case of the 5 weak points. 

Weak-point type 
 

Sharp-edge Baby-arc Loose-
contact 

Sections 550 
± 9 

505 
± 22 

557 
± 2.2 

Recognized 
Data 

% 98.04 
± 1.6 

90.02 
± 3.9 

99.29 
± 0.39 

Error % 0.71 7.7 0.61 
Cannot be 
identified 

% 1.4 2.2 2.6 

Weak-point type 
 

Two-sharp 
Edge 

Combined of 
Sharp-edge 

And baby-arc 
Sections 547 

± 6.2 
478 
± 20 

Recognized 
Data 

% 97.5 
± 1.11 

85.02 
± 3.5 

Error % 0.42 11.7 
Cannot be 
identified 

% 2.16 5.9 

 

 
Weak-Points on Full Scale Transmission Lines 
 
Considering detection and classification of weak points 
encountered in case of full-scale overhead transmission 
lines, some problems may be faced such as the effect of 
surrounding noise due to wind and the long distance 
between the Ultraprobe and the transmission-line 
conductors. This is in addition to the measurement in 
uncontrolled conditions, which is different from that at 
controlled conditions in the laboratory. This part reports the 
results obtained using data recorded under transmission 
lines in the field and is considered as a real test to the 
proposed neural network after being trained.  
The ultrasound emission was recorded at two locations 
along 33-kVand 132-kV transmission-line conductors. The 
first outdoors location was at the mid-span between 
transmission-line towers, where one basic point is 
expected, namely, the sharp-edge weak point. The second 
outdoors location was very close to the tower where line 
conductors are suspended by (already cleaned) insulators. 
The proposed ANN, already trained using laboratory weak 
points, 98% succeeded to recognize these weak points as 
either sharp edges at the mid-span between transmission-
line towers or loose contacts between line conductors and 
insulators (at locations very close to the towers).  In 
addition, as previously mentioned, using an acquisition 
time ≥ 30 seconds and a majority voting over the ANN’s 
responses of all the 15 individual 2-second sections, 
consistently resulted in 100% correct classifications of the 
considered weak points. 
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CONCLUSION 
 
The proposed scheme, employing effective preprocessing, 
WP feature extraction and classification using the properly 
designed MLP ANN, has been proved to be very successful 
in achieving full recognition of the considered basic and 
combined weak points on laboratory-modeled and full-scale 
power transmission lines through their modulated 
ultrasound emissions.  
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