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Abstract 

For molecules with more than three atoms, it is difficult to fit or interpolate a potential energy 

surface (PES) from a small number of (usually ab initio) energies at points. Many methods have 

been proposed in recent decades each claiming a set of advantages. Unfortunately, there are few 

comparative studies. In this paper, we compare neural networks (NN) with Gaussian process (GP) 

regression. We re-fit an accurate PES of formaldehyde and compare PES errors on the entire point 

set used to solve the vibrational Schrödinger equation, i.e. the only error that matters in quantum 

dynamics calculations. We also compare the vibrational spectra computed on the underlying 

reference PES and the NN and GP potential surfaces. The NN and GP surfaces are constructed 

with exactly the same points and the corresponding spectra are computed with the same points and 

the same basis. The GP fitting error is lower and the GP spectrum is more accurate. The best NN 

fits to 625/1250/2500 symmetry unique potential energy points have global PES root mean square 

errors (RMSE) of 6.53/2.54/0.86 cm-1, whereas the best GP surfaces have RMSE values of 

3.87/1.13/0.62 cm-1, respectively. When fitting 625 symmetry unique points, the error the first 100 

vibrational levels is only 0.06 cm-1 with the best GP fit, whereas the spectrum on the best NN PES 
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has an error of 0.22 cm-1, with respect to the spectrum computed on the reference PES. This error 

is reduced to about 0.01 cm-1 when fitting 2,500 points with either NN or GP. We also find that 

the GP surface produces a relatively accurate spectrum when obtained based on as few as 313 

points.  

 

Introduction 

Most calculations of observables such as reaction rates or vibrational spectra require a 

potential energy surface (PES). The PES is a consequence of the Born-Oppenheimer 

approximation. To construct a PES, one must either interpolate between potential energy points in 

a multi-dimensional configuration space or find a suitable analytical representation of the global 

PES. There are many common fitting and interpolation methods and it is impossible to cite them 

all. Some representative references are Refs. 1-5. To compute a spectrum of spectroscopically 

useful accuracy (e.g. errors smaller than 1 cm-1), it is necessary to obtain a very accurate (errors 

on the order of 1 cm-1) representation of the PES. For molecules with more than three atoms this 

is difficult due to a large number of ab initio points required and the complexity of multi-

dimensional PES.6-7 It can be argued that, for complex molecules, methods based on machine 

learning designed for fitting multi-dimensional functions are particularly appealing due to their 

flexibility and potentially favorable dimensionality scaling. In particular, representing PES by 

artificial neural networks (NN) has become popular in recent years. An alternative class of methods 

for constructing a PES is based on Bayesian inference, leading to a non-parametric description of 

potential energy points as draws from probability distributions. One example of such methods is 

kriging, a kernel interpolation method representing the potential surface with a Gaussian process 

(GP) determined by covariances between potential energy points. Although GP regression does 

not provide an analytical PES function, there is evidence that GP makes it possible to do dynamics 

calculations using only a small number of potential energy points.6-10 In this paper, we compare 

GP regression and neural network (NN) fitting methods to compute the vibrational spectrum of 

formaldehyde.  

All of the common PES fitting methods have advantages and disadvantages. Naturally, 

scientists tend to prefer methods they developed or methods they are familiar with. In previous 

papers, we pursued NN-based approaches because (i) NN theorems guarantee the universal 

approximator quality of a single-hidden layer NN.11-12 (ii) an NN can be used to produce sum-of-
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product PESs which facilitate the use of quantum dynamics methods,13-16
 (iii) NNs can be easily 

used as building blocks in conjunction with other approaches such as HDMR (High Dimensional 

Model Representation) or the multimode expansion17-20 and (iv) NNs easily allow the realization 

dimensionality reduction21-22 which is advantageous when data are very sparse.21,23 Very 

importantly, NNs have an important advantage that there are user-friendly and readily available 

packages in environments such as Matlab, R, Octave, and Python. In most cases, one can get a 

good NN fit by changing a single parameter – the number of neurons. In principle, one can also 

select the shape of the neuron.24 But in practice this is not required, as sigmoid neurons provide 

the best fit quality for most systems (and for all systems we have studied).25 An exponential neuron 

is required to obtain the sum-of-product form.13-14 In Refs. 26 and 13, it was shown for the first 

time that NNs can provide spectroscopically accurate potentials, and potentials in sum-of-product 

form with a reasonably small number of terms, respectively. NNs also have disadvantages: they 

extrapolate poorly (which is true for most black-box methods) and require non-linear fitting, which 

is costlier than linear fitting. Neither of these is severe. At most several hours are needed with the 

largest NNs we used, including those in this paper, when using modern computers (including 

multicore desktop workstations). 

Unfortunately, there are very few truly comparative studies of fitting methods. One such 

comparative study is Ref. 27. There, we compared an NN committee fit,25 a interpolated moving 

least squares (IMLS) with permutationally invariant polynomials (PIP) fit, and a combined PIP-

NN fit of the nine-dimensional PES of methane (fit in the ten-dimensional space of interatomic 

distances). State-of-the-art ab initio points were used to fit the PES, and the PESs fitted with 

different methods were used to compute accurate vibrational levels. The root mean square error 

(RMSE) of the PES representation for energies up to 20,000 cm-1 above the minimum with 

NN/PIP-NN/PIP-IMLS was 2.47/1.58/0.85 cm-1. These are test-set errors, where a small subset of 

points was selected as the test set from the total set of about 100,000 ab initio energies. With PIP-

NN, the test set was 5% of the total dataset, with PIP-IMLS, 25%, and with NN fits, 20%. The 

quality of the levels was remarkably similar among the PESs fit with the three methods: the 

difference in the equilibrium CH bond length was about 0.00001 Å and differences in fundamental 

frequencies were on the order of 1 cm-1. Moreover, the RMSE of the first 36 transitions with 

respect to experimental values was 4.24 cm-1 with PIP-IMLS and 3.55/3.82 cm-1 with NN 

committees with 3/26 NNs (the last two numbers were not included in Ref. 27). The RMSE of the 
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spectra computed with all three methods differ by less than 0.5 cm-1. NN fitting therefore appears 

to work well. We note, however, that neither the size of the test set, nor the size of the total ab 

initio dataset were sufficient to densely sample the nine-dimensional space. This is almost always 

the case when a PES for a molecule with more than three atoms is fitted. Because it is now possible 

to compute vibrational levels of molecules with more than three atoms,28-32 it is important to test 

the most promising methods for fitting or interpolating surfaces.  

In this paper, we point out that it is possible to compute very accurate levels with a quantum 

dynamics method that uses PES points with the same distribution as the fitting set and identical to 

those in the test set. If instead, as is common, one uses a direct product Gauss quadrature, then the 

PES is evaluated at points far from equilibrium and in regions in which there are few or no fitting 

(or test) points. Due to disparity of the fitting and evaluation distributions, the RMSE of a PES fit 

at test points provides an incomplete picture.  

Recently, Gaussian processes (GP) regression has been proposed as an efficient PES 

representation tool.6-10,33,34 Like NNs, GPs have the advantages of generality and ease of use. There 

are GP software packages for Matlab, R, Octave, and Python. GP regression is a non-parametric 

interpolation method; in the version presented here, it is trained by finding maximum likelihood 

estimates of a small number of hyper-parameters. To obtain and use a GP representation of a 

surface, one selects an appropriate correlation function. It was recognized in Ref. 7 that the best 

function is system dependent; that is also our experience (see below). It was also noted in Ref. 7 

that a specific selection of fitting points may be required to get a good fit; this is not the case with 

NNs, where any random point selection with a given distribution results in similar errors. For the 

formaldehyde PES, we show here that a random selection of GP fitting points is sufficient to yield 

an accurate PES. In Ref. 7, it was suggested that the dimensionality scaling of GP is so good that 

“a 6D PES can be obtained with only 60 quantum chemistry calculations”. It was also stated that 

“Artificial neural networks are expected to require many more ab initio points”. Here, we directly 

test these propositions.  

In this paper, we compare NN and GP for the purpose of obtaining a PES accurate enough 

that vibrational levels computed on it have errors of less than 1 cm-1. Errors on GP PESs reported 

previously are rather large. For example, Ref. 7 reports an RMSE of about 500 cm-1 with 2,400 

fitting points for a four-atom molecule (N4) in an energy range of about 35,000 cm-1. In Ref. 6, a 

test RMSE of about 17/7 cm-1 (fit/prediction) was obtained with a GP PES for a triatomic molecule 
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with 3,741 data points – a rather dense set in 3D. Reducing the number of fitting points to 1,000 

increases the error to about 24/35 cm-1. To put these numbers in perspective, in Ref. 26 we obtained 

a median test error of 0.5 cm-1 (fit RMSE 1 cm-1) with 1,500 points in 3D (for H2O) in a range 

20,000 cm-1. In 6D, for H2O2 (using 5,000 points up to 15,000 cm-1) and for H2CO (using 2,500 

points  up to 17,000 cm-1), we obtained median test errors on the order of 1 cm-1 (fit RMSE 2 cm-

1 for both molecules). The GP fits cited above were mostly employed with classical dynamics and 

3D quantum reaction dynamics calculations, where the accuracy requirements are not as strict as 

for vibrational calculations. The 6D NN fits of Ref. 26 were done with a two-stage NN to avoid 

holes in the PES, which further complicates comparisons. In summary, with the available numbers, 

it is hard to assess the utility of GP PESs for vibrational calculations.  

In this paper, we make a direct comparison by using GP and NN to re-fit a reference PES 

for H2CO. We compare vibrational spectra computed on the NN and GP PESs. Levels are 

computed with the method of Manzhos and Carrington that uses a space-fixed Cartesian kinetic 

energy operator and Gaussian basis functions.35 It allows us to compare directly levels computed 

on the two fitted PESs with those computed on the reference PES from which they are obtained. 

We confirm that the GP PES has somewhat smaller errors than the NN PES obtained using the 

same set of fit points and the same set of 120,000 test points; enough points are chosen to make 

both PESs spectroscopically accurate. 

 

Methods 

The GP and NN PESs of this paper are obtained by re-fitting the PES of Ref. 36. We note 

that although GP regression is not a fitting technique, we will in the following use the words “fit” 

and “fit error” when discussing both the NN and GP PES. The vibrational spectrum computed on 

this reference PES is close to the experimental spectrum.35 Both the GP and the NN PESs are 

constructed from a set of points in bond coordinates	࢞ ൌ

ሺܱܥ, ,ଵܪܥ ,ଶܪܥ ,ଵܪܥܱ∠ ,ଶܪܥܱ∠  ଶis the dihedral angle between theܪܱܥଵܪ∠ ଶሻ, whereܪܱܥଵܪ∠

OCH planes. The points are a pseudo-random Sobol sequence37 and we accept points if  

 

௏೘ೌೣି௏ሺ࢞ሻା୼

௏೘ೌೣା୼
൐  (1)    , ݀݊ܽݎ
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where rand is a (uniformly distributed) random number in [0, 1]. We use ௠ܸ௔௫ ൌ 17,000 cm-1 and 

Δ ൌ 500 cm-1. The coordinate ranges are determined by	࢞࢔࢏࢓ ൌ ሺ1.03, 0.84, 0.84, 83, 83, 105ሻ, 

࢞ࢇ࢓࢞ ൌ ሺ1.50, 1.69, 1.69, 162, 162, 255ሻ, where bond lengths are in Å and angles in degrees. We 

and others have shown previously that with this point selection scheme it is possible to obtain an 

accurate PES and accurate vibrational spectra.26,35 In this way, a data set of 120,000 points was 

produced distributed over energy values as shown in Fig. 1. 

 

 

Figure 1. Distribution of energy values of the PES dataset. 

 

We will refer to the potential energy points used to “train” the NN or GP models for 

constructing the PES as the “training set” or the “fitting points”. The training sets are small subsets 

of the 120,000-point set, and PES errors are computed on the entire set. The training sets are drawn 

randomly using a uniform distribution, i.e. they maintain the distribution of Eq. (1). As the full 

dataset is sufficient to produce an accurate vibrational spectrum, the errors we report characterize 

the region of the PES required to compute the lowest vibrational states. In both the NN and GP 

fits, we augment both the training and test sets with symmetrically equivalent points obtained by 

flipping the dihedral angle around the planar equilibrium geometry. The numbers of training points 

we report is the number of symmetry unique points (only they must be computed ab initio). In 
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both NN and GP fits, we average PES values at symmetry unique points and image points. This 

slightly decreases the error of the PESs and of the vibrational levels. We report NN results obtained 

by averaging over 10 NNs, each with a different set of initial parameters and fitting different 

(randomly drawn) sets of points. This is referred to as a committee of 10. The averaging removes 

the random component of the fitting error.25 In the GP case, we also averaged over 10 fits. The 

different GP fits differ by the choice of the training points.  

For the description of NN and GP regression methods to fitting potential energy surfaces, 

see Refs. 25 and 6, 7 respectively. Here, we only provide details needed for reproducibility. The 

NN fits with single-hidden layer NNs with sigmoid neurons and linear output neurons are done 

using Matlab’s Neural Network Toolbox using the newfit and train functions, on data scaled to [0, 

1], as is customary. That is, we use a simple NN setup readily available in publically available 

software. Training was done for 2,000 epochs with the Levenberg-Marquardt algorithm. The GP 

fits are done in Python using the gaussian_process function from module sklearn. An initial set of 

hyper-parameters is optimized by maximizing the log likelihood function using optimizer 

fmin_cobyla from module scipy to find the best combination of hyper-parameters providing the 

estimates of the correlations between the potential energy points in the training set. The data are 

also scaled in the GP fits. Different kernel functions were tried. We find that the “squared 

exponential” kernel function yielded the best results. We thus used different software packages for 

NN and GP. Although both Matlab and Python have NN and GP capabilities, the errors we 

obtained with GP in Matlab were much larger than the GP errors in Python, and the errors we 

obtained with NN using Python modules were much higher than the errors obtained with Matlab. 

We used the best software for each method.  

Vibrational spectra were computed with the method of Manzhos and Carrington that uses 

the space-fixed Cartesian kinetic energy operator and Gaussian basis functions.35 We shall refer to 

this as the SFGB (Space-Fixed Gaussian Basis) method. The SFGB method allows us to compute 

the vibrational spectrum using (only) the 120,000 points from which the fitting points are selected. 

We used 40,000 Gaussian basis functions centered on the first 40,000 points. The widths of all 

basis functions were the same and are chosen as described in Ref. 35. We computed the first 100 

vibrational levels. Spectra computed on the NN and GP PESs were compared to a reference 

spectrum computed on the PES of Ref. 36 with a variational method. The description of the 
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variational method is in Ref. 35. In this paper, we use more quadrature points and basis functions 

than in Ref. 35.  

 

Table 1. RMSE (test errors computed on 120,000 points) of the PES obtained with the NN and 

GP methods for different numbers of (symmetry unique) fitting points Npts, with single NN/GP fits 

and with a committee of 10 fits (<10 NN/GP>). The NN RMSE values separated by “/” are for 

100/150/250 neurons per NN for 2,500 points, 70/100/150 neurons per NN for 1,250 points 

50/75/100 neurons for 625 points, and 20/30/40/50 neurons for 313 points. The values are in cm-

1. 

No. of fit points 

Npts 

 NN GP 

 1 NN <10 NN> 1 GP <10 GP>

313  198.00/103.93/87.77 119.11/53.97/43.90 29.09 17.18 

625  21.12/12.91/12.03 13.36/7.52/6.53 5.98 3.87 

1,250  9.29/5.74/4.38 5.74/3.36/2.54 2.17 1.13 

2,500  4.59/2.43/1.12 2.27/1.23/0.86 1.08 0.62 

 

Results 

The errors of the PESs obtained with the NN and GP methods, when fitting with different 

numbers of points, are given in Table 1. These errors are computed by averaging over all the points 

used to solve the Schrödinger equation. It is errors at these points, and only errors at these points 

that determine the accuracy of the energy levels. When fitting with NN or GP regression, the 

RMSE changes from fit to fit (due to random selection of fitting points and, in the case of NN, 

random parameter initialization). For GP, the RMSE of different fits differ by only about ±10% or 

on the order of 1 cm-1. For NN, the difference between errors from fit to fit is about 30%. When 

Npts = 313, the fit-to-fit RMSE variation is larger; this and the large magnitude of RMSE values 

indicate that 313 points are not sufficient. The numbers in the second and fourth columns are the 

RMSE for the first of the 10 fits. The numbers in the third and fifth columns are average errors. 

Averaging improves the NN errors somewhat more when the number of points is smaller. The 

numbers of neurons N for all NN fits in Table 1 are such that all parameters are well determined 

(the number of parameters is smaller than the number of data). The number of parameters is 
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(d+2)×N+1 with d=6 the dimensionality and N the number of neurons; the number of fitted data is 

Npts×2 (due to symmetry equivalents). A high-quality PES can be obtained with Npts = 625 or more 

symmetry unique points. The distributions of the errors for Npts = 625 are shown in Fig. 2. They 

are qualitatively similar for other values of Npts. It is clear from Table 1 and Fig. 2 that GP is able 

to achieve a smaller error with each of the fitting point sets. NN requires more fitting data to 

achieve a similar error. Furthermore, this error can be substantially reduced (by up to a factor of 

two) by using a committee of NN or GP fits. With 2,500 points, NN fits are practically as good as 

GP fits.  

 

 

Figure 2. Distributions of the errors obtained with 100-neuron NN (top) and GP (bottom) fits to 

650 points, for single-NN/GP fits as well as for committees of 10 fits. 

 

 A comparison of level errors on the GP and NN PESs is given in Table 2. All PESs are 

obtained from 625 symmetry unique points. The levels are calculated with the SFGB method. The 

errors in the top part of the table are computed with respect to levels calculated on the reference 

PES by using a quadrature-based variational method that uses a large basis, a direct product Gauss 
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quadrature grid, and the Lanczos algorithm.26 The errors in the bottom part of the table are 

computed with respect to levels calculated on the reference PES by using the SFGB method. The 

errors in columns 3-6 in the top part of the table conflate errors in the SFGB method and errors in 

the fitting of the PESs. In the bottom part of the table, the errors are due entirely to errors in the 

fitting of the PESs. A list of all 100 levels and errors, for different Npts, is given in Supplementary 

Material. Absolute errors in differences between levels and the corresponding ZPEs are shown in 

Fig. 3. Similar plots for other Npts are given in Supporting Material. The GP fits significantly 

outperform the NN fits. When the same method is used to compute the spectra on both the 

reference PES and the fitted (to 625 points) PES, the RMSE of the 100 lowest vibrational levels is 

only 0.06 cm-1 on the 10-member GP PES. The corresponding ZPE error is 0.1 cm-1. With a single 

GP, the errors are even smaller. Therefore, although the RMSE is reduced by averaging, the levels 

are not improved (they are slightly improved when using more points, see Supplementary 

Material). This is also seen in Fig. 3. The level errors are higher with NN: a 10 NN committee has 

an error for the lowest 100 levels of 0.22 cm-1 and a ZPE error of 0.07 cm-1. The NN committee 

much improves the spectrum quality over a single NN.  

Although with 625 symmetry unique points the GP is certainly superior, all of the NN and 

GP errors are very low. We have confirmed that, as could be surmised from the PES errors, with 

2,500 symmetry unique points, an NN PES is at least as accurate as the GP PES with 625 points. 

The RMSE for the lowest 100 levels is 0.024/0.017 cm-1 with 1/10 NNs and 0.005/0.003 cm-1 with 

1/10 GPs; see the Supplementary Material. Comparing the top and bottom parts of the table reveals 

that the errors introduced by GP and NN PES fitting methods are much smaller than the difference 

between the SFGB and the variational method of computing the spectrum, which is itself small, 

on the order of 1 cm-1 RMSE. With GP regression, it is possible to maintain an accurate spectrum 

when fitting as few as 313 points:  with 1/10 GP, we obtain errors of 1.97/1.57 cm-1 for 100 levels 

vs the variational calculation and 1.25/0.32 cm-1 vs the reference PES. Much larger errors are 

obtained when fitting 313 points with NNs, although an NN committee is able to produce a 

relatively accurate PES: 10.3/1.87 cm-1 vs the variational calculation and 10.5/1.22 cm-1 vs the 

exact PES are obtained with 1/10 NNs, see Supplementary Material.  
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Table 2. The RMSE (in cm-1) of the first 50 and 100 vibrational levels of H2CO with respect to 

reference levels. Npts = 625 for both the NN and GP surfaces. For all levels except the ZPE, errors 

of differences from ZPEs are presented. 

 

 Ref. PES
NN GP 

1 NN <10 NN> 1 GP <10 GP> 

RMSE with respect to variational spectrum on the Ref. PES 

ZPE error -0.23 -0.41 -0.17 -0.16 -0.13 

rmse 100 levels 0.82 0.82 0.83 0.82 0.81 

rmse 50 levels 0.47 0.43 0.47 0.46 0.45 

RMSE with respect to SFGB spectrum on the Ref. PES 

ZPE error  -0.18 0.07 0.07 0.10 

rmse 100 levels  0.30 0.22 0.05 0.06 

rmse 50 levels  0.21 0.16 0.04 0.04 

 

 Why is it that with only 625 symmetry unique points it is possible to make PESs on which 

levels have sub-cm-1 errors, whereas in a previous NN fit for formaldehyde26 more than 2,000 

points were required to achieve similar level errors? In Ref 26 a much better (hence more points) 

PES was required because the levels were computed using a quadrature grid most of whose points 

are in regions where the density of fitting/test points is low. To account for this disparity of the 

fitting point and evaluation point distributions, it is necessary to use more fitting points. None of 

the numbers in columns 3-6 are affected by this disparity because the fitting points are a subset of 

points used by the SFGB method, and all points used by the SFGB method are included in the test 

RMSE calculation. When this is the case, level errors are much smaller than PES RMSEs.  
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Figure 3. Absolute errors on transition frequencies computed on PESs fitted to 625 points with 

different methods (NN: top half, GP: bottom half) vs the spectrum computed on the reference PES. 

Similar plots for PESs obtained with 313 and 2500 training points are shown in Supplementary 

Material.  

 

Discussion and conclusions 

We have presented the first comparison of the neural network and Gaussian process 

regression approaches for representing a potential energy surface. The two methods were used 

under exactly the same conditions to build six-dimensional PESs of formaldehyde, from a 

reference PES. Vibrational spectra were computed on the NN and GP PESs with a method that 

uses the same point distribution as that used to fit the PES. The points used to fit the PESs are a 

subset of those used to compute the vibrational levels, and all points used to compute the 

vibrational spectrum are included in the RMSE calculation of the PES fits.  

The accuracy of the NN and GP PESs is assessed in two ways: 1) we computed the RMSE 

on the entire set of 120,000 points used to compute the spectrum; 2) we compared energy levels 

calculated on the NN and GP PESs with levels computed on the reference PES. We find that GP 

outperforms NN for formaldehyde. Fitting only 625 symmetry-unique points with GP, a global 

RMSE of about 6 cm-1 can be achieved and reduced to about 4 cm-1 by using a committee of 10 
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GP fits. NN fits to the same data result in rmse values of about 12 and 7 cm-1 for a single NN and 

a committee of 10 NNs, respectively. Increasing the number of points to 1,250 decreases the NN 

RMSE to about 4 and 2 cm-1 with a single NN and a committee of 10 NNs, respectively. 

The relative performance of the two methods with respect to the quality of the spectrum 

reflects that of the PES RMSEs. The error (rmse) of the lowest 100 vibrational levels of H2CO on 

a GP PES fitted to 625 points is only 0.05 cm-1. Little improvement is observed with a committee 

of 10 GP fits. In the NN case, the error for a single NN is 0.3 cm-1 and the error for the committee 

of 10 is 0.2 cm-1. Spectra accurate to 0.01 cm-1 can be obtained by fitting 2,500 points. When fitting 

625 or more points, both fitting methods thus resulted in a PES on which the spectrum is quite 

accurate and both spectra deviate by a similar amount from the reference spectrum obtained with 

a variational method, by about 1.6/0.9 cm-1 RMSE for the first 100/50 levels. With GP regression, 

it is possible to maintain an accurate spectrum when fitting as few as 313 points, with spectral 

errors on the order of 1 cm-1. When the sampling density is this low, the quality of the spectrum 

on NN-fitted PESs is degraded: errors are on the order of 10 cm-1 for single-NN fits, although a 

committee of NN is able to reduce the error toward 1 cm-1.  

The GP regression and NN methods are conceptually different approaches. Whereas NNs 

fit a complex multi-dimensional function with superpositions of simple functions, GP regression 

can be viewed as a weighted average of the training points, with the weights determined by 

covariances between the ab initio points. It is thus instructive to discuss some of the most important 

relative advantages and disadvantages of the two methods. 

(i) Cost of evaluation. The NN fits are generally faster to evaluate. For a single-hidden-layer 

NN, the cost of evaluation at point x is dominated by the matrix-vector multiplication Wx 

with W of size N×d 25, where N is the number of neurons and d is the dimensionality of the 

configuration space. To evaluate a PES produced by GP regression at point x, one must 

evaluate a product k*K-1y, where K is the covariance matrix of size Npts×Npts, k* is the vector 

of covariances between x and all training points and y is the vector of the training points.6,7 

Thus, unless an NN representation requires a large number of neurons and/or multiple layers, 

the evaluation of a surface by GP regression will be slower. Moreover, the difference in the 

evaluation costs is expected to increase with the dimensionality of the system. When it is 

important to minimize the number of ab initio points, GP regression is a better choice. 

Nonetheless, NN provide an easy and general way to quickly build a good PES.  The 
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committee fits can be used to remove the random component of the error but require more 

data. They are recommended when ab initio calculations are relatively cheap. 

(ii) Overfitting. A major problem of black box fitting methods is overfitting.38 Both an NN fit 

and GP regression become more accurate when trained with more points. When fitting a PES 

with a NN, it is important to avoid overfitting. As the number or distribution of training 

points change, one needs to reevaluate the choice of the optimal number of neurons, and the 

layer structure of the NN if one needs to use a multi-layer NN. Overfitting is generally not a 

concern in GP regression. Once the optimal kernel function is chosen, the GP model of a 

PES can be trained with the same choice of the correlation function for any number and 

distribution of training points. The GP regression with the same kernel function is guaranteed 

to produce more accurate results when trained by more ab initio points. The comparative 

study performed here shows that GP is able to produce good potentials when using fewer 

data.  

(iii) Ease of fitting. When using GP regression, the input requires the choice of a simple 

mathematical function to represent covariances. For a fixed number of points, the errors of 

the ensuing PES may change several-fold for different choices of the covariance function. In 

some cases, K may be ill-conditioned, as is the case for rapidly varying data (see, for 

example, Ref. 9, where we used GP regression to describe resonant scattering of molecules). 

This should not happen for PESs, which are generally smooth functions of coordinates. It is 

necessary to ensure that the ab initio points in the training set are sufficiently far apart in 

order to avoid singularities in K-1. Proximity or overlap of points is not a problem for NN 

fits. In contrast, with NN, one must choose an appropriate number of neurons that achieves 

a good fit without overfitting. 

We have observed that levels computed on PESs obtained from only 625 symmetry unique 

points have sub-cm-1 errors, despite the fact that the fitting RMSE is on the order of 5 cm-1. The 

total number of points required when computing vibrational levels can be reduced by not using a 

direct product grid which ineluctably has points where the PES fitting error is large. Vibrational 

calculations with variational, quadrature based, methods, typically use large numbers of points 

distributed in areas of the configuration space where there are no or few fit or test errors; this 

means that the effective PES error may not be reflected in the “posted” RMSE. It is useful to use 

fitting points and evaluation points chosen from the same distribution, as is done here.  
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We emphasize that the conclusions reached here are for the part of the PES that determines 

the bound states. More analysis of the relative performance of GP regression and NN fits is needed 

for reactive systems, where the relevant configuration space is larger, and for more complex 

molecular systems with more degrees of freedom. We also note that the potential energy sampling 

scheme used in this study was not optimized for a specific PES or observable, and one can expect 

better performance of both methods with an optimized sampling of ab initio points. This is 

confirmed by our upcoming study,39 where we show that accurate reaction dynamics results can 

be obtained with GP models of PES obtained with only 37 ab initio points for a 3D reaction system 

and 290 ab initio points for a 6D reaction system..  
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