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Abstract

The classical development of neural networks

has been primarily for mappings between a

finite-dimensional Euclidean space and a set

of classes, or between two finite-dimensional

Euclidean spaces. The purpose of this work is

to generalize neural networks so that they can

learn mappings between infinite-dimensional

spaces (operators). We formulate approxima-

tion of the infinite-dimensional mapping by

composing nonlinear activation functions and

a class of integral operators. The kernel in-

tegration is computed by message passing on

graph networks. This approach has substantial

practical consequences which we will illustrate

in the context of mappings between input data

to partial differential equations (PDEs) and

their solutions. In this context, such learned

networks can generalize among different ap-

proximation methods for the PDE (such as fi-

nite difference or finite element methods) and

among approximations corresponding to dif-

ferent underlying levels of resolution and dis-

cretization. Experiments confirm the purposed

graph kernel network does have the desired

properties and show competitive performance

compared to the stat of the art solvers.

1 INTRODUCTION

There are numerous applications in which it is desirable

to learn a mapping between Banach spaces. In partic-

ular, either the input or the output space, or both, may

be infinite dimensional. The possibility of learning such

mappings opens up a new class of problems in the de-

sign of neural networks, with widespread potential ap-

plicability. New ideas are required to build on tradi-

tional neural networks which are mappings from finite

dimensional Euclidean spaces into classes, or into an-

other finite-dimensional Euclidean space. We study the

development of neural networks in the setting in which

the input and output spaces comprise real-valued func-

tions defined on a bounded open set D in R
d.

1.1 Our Contributions

We introduce a new neural network architecture which is

appropriate for the learning of mappings between spaces

of functions defined on bounded open subsets of Rd.

• Unlike existing methods, our approach is demon-

strably able to share a single set of neural network

parameters between methods based on different ap-

proximation methods and different grids.

• A Nyström extension connects the neural network

on function space to families of GNNs on arbitrary,

possibly unstructured, grids.

• The method is demonstrated to have competitive ap-

proximation accuracy, as shown in the experiments.

• The ability of transfer learning between different

discretizations with one set of parameters .

• The ability of semi-supervised learning that learns

from data at a few points and the generalizes to the

whole domain.

These concepts are illustrated in the context of a family

of elliptic PDEs prototypical of a number of problems

arising throughout the sciences and engineering.

2 PROBLEM SETTING

Our goal is to learn a mapping between two infinite di-

mensional spaces by using a finite collection of observa-

tions of input-output pairs from this mapping: supervised



learning. Let A and U be separable Banach spaces and

F† : A → U a (typically) non-linear map. Suppose we

have observations {aj , uj}Nj=1 where aj ∼ µ is an i.i.d.

sequence from the probability measure µ supported on A
and uj = F†(aj) is possibly corrupted with noise. We

aim to build an approximation of F† by constructing a

parametric map

F : A×Θ → U (1)

for some finite-dimensional parameter space Θ and then

choosing θ† ∈ Θ so that F(·, θ†) ≈ F†.

This a natural framework for learning in infinite-

dimensions as one could define a cost functional C :
U × U → R and seek a minimizer of the problem

min
θ∈Θ

Ea∼µ[C(F(a, θ),F†(a))]

which directly parallels the classical finite-dimensional

setting [Vapnik, 1998]. Showing the existence of min-

imizers, in the infinite-dimensional setting, remains a

challenging open problem. We will approach this prob-

lem in the test-train setting in which empirical ap-

proximations to the cost are used. We conceptual-

ize our methodology in the infinite-dimensional set-

ting. This means that all finite-dimensional approxima-

tions can share a common set of network parameters

which are defined in the (approximation-free) infinite-

dimensional setting. To be concrete we will consider

infinite-dimensional spaces which are Banach spaces of

real-valued functions defined on a bounded open set in

R
d. We then consider mappings F† which take input

functions to a PDE and map them to solutions of the

PDE, both input and solutions being real-valued func-

tions on R
d.

A common instantiation of the preceding problem is the

approximation of the second order elliptic PDE

−∇ · (a(x)∇u(x)) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(2)

for some bounded, open set D ⊂ R
d and a fixed

function f ∈ L2(D;R). This equation is prototyp-

ical of PDEs arising in numerous applications includ-

ing hydrology [Bear and Corapcioglu, 2012] and elastic-

ity [Antman, 2005]. For a given a ∈ A = L∞(D;R+)∩
L2(D;R+), equation (2) has a unique weak solution

u ∈ U = H1
0 (D;R) [Evans, 2010] and therefore we can

define the solution operator F† as the map a 7→ u. Note

that while the PDE (2) is linear, the solution operator F†

is not.

Since our data aj and uj are , in general, functions, to

work with them numerically, we assume access only to

point-wise evaluations. To illustrate this, we will con-

tinue with the example of the preceding paragraph. To

this end let PK = {x1, . . . , xK} ⊂ D be a K-point

discretization of the domain D and assume we have ob-

servations aj |PK
, uj |PK

∈ R
K , for a finite collection of

input-output pairs indexed by j. In the next section, we

propose a kernel inspired graph neural network architec-

ture which, while trained on the discretized data, can pro-

duce an answer u(x) for any x ∈ D given a new input

a ∼ µ. That is to say that our approach is independent of

the discretization PK and therefore a true function space

method; we verify this claim numerically by showing in-

variance of the error as K → ∞. Such a property is

highly desirable as it allows a transfer of solutions be-

tween different grid geometries and discretization sizes.

3 GRAPH KERNEL NETWORK

We propose a graph kernel neural network for the solu-

tion of the problem outlined in section 2. As a guiding

principle of our architecture, we take the following ex-

ample. Let La be a differential operator depending on a

parameter a ∈ A and consider the PDE

(Lau)(x) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(3)

for a bounded, open set D ⊂ R
d and some fixed func-

tion f living in an appropriate function space determined

by the structure of La. The elliptic operator La· =
−div(a∇·) from equation (2) is an example. Under fairly

general conditions on La [Evans, 2010], we may define

the Green’s function G : D × D → R as the unique

solution to the problem

LaG(x, ·) = δx

where δx is the delta measure on R
d centered at x. Note

that G will depend on the parameter a thus we will

henceforth denote it as Ga. The solution to (3) can then

be represented as

u(x) =

∫

D

Ga(x, y)f(y) dy. (4)

Generally the Green’s function is continuous at points

x 6= y, for example, when La is uniformly ellip-

tic [Gilbarg and Trudinger, 2015], hence it is natural to

model it via a neural network. Guided by the representa-

tion (4), we propose the following iterative architecture



for t = 0, . . . , T − 1.

vt+1(x) =σ

(

Wvt(x)

+

∫

D

κφ(x, y, a(x), a(y))vt(y) νx(dy)

)

(5)

where σ : R → R is a fixed function applied element-

wise, νx is a fixed Borel measure for each x ∈ D and

W ∈ R
n×n, together with the parameters φ entering ker-

nel κφ : R2(d+1) → R
n×n, are to be learned from data.

We model κφ as a neural network mapping R
2(d+1) to

R
n×n.

Discretization of the continuum picture may be viewed

as replacing Borel measure νx by an empirical approx-

imation based on the K grid points being used. In this

setting we may view κφ as a K×K kernel block matrix,

where each entry κφ(x, y) is itself a n× n matrix. Each

block shares the same set of network parameters. This is

the key to making a method which shares common pa-

rameters independent of the discretization used.

Finally we observe that, although we have focussed on

neural networks mapping a to u, generalizations are pos-

sible, such as mapping f to u, or having non-zero bound-

ary data g on ∂D and mapping g to u. More generally

one can consider the mapping from (a, f, g) into u and

use similar ideas. To illustrate ideas we will consider

the mapping from f to u below (which is linear and for

which an analytic solution is known) before moving on

study the (nonlinear) mapping from a to u. Since in the

setting f is fixed, our iterative kernel integration convo-

luted with representation v instead of f .

Algorithmic Framework. The initialization v0(x) to

our network (5) can be viewed as the initial guess we

make for the solution u(x) as well as any other depen-

dence we want to make explicit. A natural choice is to

start with the coefficient a(x) itself as well as the position

in physical space x. This (d+1)-dimensional vector field

is then lifted to a n-dimensional vector field, an operation

which we may view as the first layer of the overarching

neural network. This is then used as an initialization to

the kernel neural network, which is iterated T times. In

the final layer, we project back to the scalar field of in-

terest with another neural network layer.

Due to the smoothing effect of the inverse elliptic oper-

ator in (2) with respect to the input data a (and indeed

f when we consider this as input), we augment the ini-

tialization (x, a(x)) with a Gaussian smoothed version

of the coefficients aǫ(x), together with their gradient

∇aǫ(x). Thus we initialize with a 2(d+ 1)-dimensional

vector field. Throughout this paper the Gaussian smooth-

ing is performed with a centred isotropic Gaussian with

variance 5. The Borel measure νx is chosen to be the

Lebesgue measure supported on a ball at x of radius r.

Thus we have

v0(x) = P (x, a(x), aǫ(x),∇aǫ(x)) + p (6)

vt+1(x) = σ
(

Wvt(x)

+

∫

B(x,r)

κφ

(

x, y, a(x), a(y)
)

vt(y) dy
)

(7)

u(x) = QvT (x) + q (8)

where P ∈ R
n×2(d+1), p ∈ R

n, vt(x) ∈ R
n and

Q ∈ R
1×n, q ∈ R. The integration in (7) is approx-

imated by a Monte Carlo sum via a message passing

graph network with edge weights (x, y, a(x), a(y)). The

choice of measure νx(dy) = 1B(x,r)dy is two-fold: 1) it

allows for more efficient computation and 2) it exploits

the decay property of the Green’s function.

Message Passing Graph Networks. Message passing

graph networks comprise a standard architecture em-

ploying edge features [Gilmer et al., 2017]. If we prop-

erly construct the graph on the spatial domain D of the

PDE, the kernel integration can be viewed as an aggre-

gations of messages. Given node features vt(x) ∈ R
n,

edge features e(x, y) ∈ R
ne , and a graph G, the message

passing neural network with averaging aggregation is

vt+1(x) = Wvt(x) +
1

|N(x)|
∑

y∈N(x)

κφ

(

e(x, y)
)

vt(y)

(9)

where W ∈ R
n×n, N(x) is the neighborhood of x ac-

cording to the graph, κφ

(

e(x, y)
)

is a neural network

taking as input edge features and as output a matrix in

R
n×n. In relation to (7), e(x, y) = (x, y, a(x), a(y)) ∈

R
2(d+1).

Graph Construction. To use the message passing

framework (9), we need to design a graph which con-

nects the physical domain D of the PDE. The nodes are

chosen to be the K discretized spatial locations. Here

we work on a standard uniform mesh, but there are many

other possibilities such as finite-element triangulations.

The edge connectivity is then chosen according to the in-

tegration measure in (7). In particular, each node x ∈ R
d

is connected to all neighboring nodes which lie within

the ball B(x, r), defining the neighborhood set N(x).
Then for each neighbor y ∈ N(x), we assign the edge

weight e(x, y) = (x, y, a(x), a(y)). Equation (9) can

then be viewed as a Monte Carlo approximation of (7).

This local structure allows for more efficient computa-

tion while remaining invariant to mesh-refinement. In-

deed, since the radius parameter r is chosen in physical



space, the size of the set N(x) grows as the disretization

size K grows. This is a key feature which makes our

methodology mesh-independent.

Nyström Approximation of the Kernel. While the

aforementioned graph structure severely reduces the

computational overhead of integrating over the entire

domain D (corresponding to a fully-connected graph),

the number of edges still scale like O(K2). To over-

come this, we employ a random Nyström-type approx-

imation of the kernel. In particular, we uniformly sam-

ple m ≪ K nodes from the original graph, construct-

ing a new random sub-graph. This process is repeated

l ∈ N times, yielding l random sub-graphs each with

m nodes. This can be thought of as a way of reduc-

ing the variance in the estimator. We use these sub-

graphs when evaluating (9) during training which gives

the more favorable scaling O(lm2). Indeed, numerically

we find that l = 4 and m = 200 is sufficient even when

K = 4212 = 177, 241. In the evaluation phase, when

we want the solution on a particular mesh geometry, we

simply partition the mesh into sub-graphs each with m

nodes and evaluate each separately.

We will now demonstrate the quality of this kernel ap-

proximation in a RHKS setting. A real Reproducing Ker-

nel Hilbert Space (RKHS) (H, 〈·, ·〉, ‖ · ‖) is a Hilbert

space of functions f : D → R where point-wise evalua-

tion is a continuous linear functional, i.e. |f(x)| ≤ C‖f‖
for some constant C ≥ 0, independent of x. For every

RHKS, there exists a unique, symmetric, positive definite

kernel κ : D × D → R, which gives the representation

f(x) = 〈f, κ(·, x)〉. Let T : H → H be a linear operator

on H acting via the kernel

Tf =

∫

B(·,r)

κ(·, y)f(y)ν(dy).

Let Tm : H → H be its m-point empirical approxima-

tion

Tm =

∫

B(·,r)

κ(·, y)f(y)νm(dy)

hence

νm(dy) =
1

m

m
∑

k=1

δyk
(dy),

Tmf =
1

m

m
∑

k=1

κ(·, yk)f(yk).

The error of this approximation achieves the Monte

Carlo rate O(m−1/2):

Proposition 1. Suppose Ey∼ν [κ(·, y)4] < ∞ then there

exists a constant C ≥ 0 such that

E‖T − Tm‖HS ≤ C√
m

where ‖ · ‖HS denotes the Hilbert-Schmidt norm on op-

erators acting on H.

4 EXPERIMENTS

In the following section, we compare kernel networks

with different benchmarks on Darcy Equation. The net-

work is trained and evaluated on the same full grid. The

results are presented in Table 1. NN is a simple point-

wise feedforward neural network. It is mesh-free, but

perform badly due to lack of neighbor information. FCN

is the state of the art neural network method based on

Fully Convolution Network [Zhu and Zabaras, 2018]. It

has a dominating performance for small grids s = 61.

But fully convolution networks are mesh-dependent and

therefore their error grows when moving to a larger grid.

PCA+NN is an instantiation of the methodology pro-

posed in [Bhattacharya et al., 2020]: using PCA as an

autoencoder on both the input and output data and in-

terpolating the latent spaces with a neural network. The

method provably obtains mesh-independent error and

can learn purely from data, however the solution can only

be evaluated on the same mesh as the training data. RBM

is the classical Reduced Basis Method (using a PCA ba-

sis), which is widely used in application and provably

obtains mesh-independent error [DeVore, 2014]. It has

the best performance but the solutions can only be evalu-

ated on the same mesh as the training data and one needs

knowledge of the PDE to employ it. KernelGNN stands

for our graph kernel network. It enjoys competitive per-

formance against all other methods while being able to

generalize to different mesh geometries.

Table 1: Scaling of different network architectures

Networks 141 211 421

NN 0.1716 0.1716 0.1716
FCN 0.0493 0.0727 0.1097
PCA+NN 0.0298 0.0298 0.0299
RBM 0.0251 0.0255 0.0259
KernelGNN 0.0332 0.0342 0.0369
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Neural Operator: Graph Kernel Network for Partial Differential Equations

Abstract

The classical development of neural networks

has been primarily for mappings between a

finite-dimensional Euclidean space and a set

of classes, or between two finite-dimensional

Euclidean spaces. The purpose of this work is

to generalize neural networks so that they can

learn mappings between infinite-dimensional

spaces (operators). The key innovation in our

work is that a single set of network parame-

ters, within a carefully designed network ar-

chitecture, may be used to describe mappings

between infinite-dimensional spaces and be-

tween different finite-dimensional approxima-

tions of those spaces. We formulate approxi-

mation of the infinite-dimensional mapping by

composing nonlinear activation functions and

a class of integral operators. The kernel in-

tegration is computed by message passing on

graph networks. This approach has substantial

practical consequences which we will illustrate

in the context of mappings between input data

to partial differential equations (PDEs) and

their solutions. In this context, such learned

networks can generalize among different ap-

proximation methods for the PDE (such as fi-

nite difference or finite element methods) and

among approximations corresponding to dif-

ferent underlying levels of resolution and dis-

cretization. Experiments confirm the purposed

graph kernel network does have the above de-

sired properties and show competitive perfor-

mance compared to the stat of the art solvers.

1 INTRODUCTION

There are numerous applications in which it is desirable

to learn a mapping between Banach spaces. In partic-

ular, either the input or the output space, or both, may

be infinite dimensional. The possibility of learning such

mappings opens up a new class of problems in the de-

sign of neural networks, with widespread potential ap-

plicability. New ideas are required to build on tradi-

tional neural networks which are mappings from finite

dimensional Euclidean spaces into classes, or into an-

other finite-dimensional Euclidean space. We study the

development of neural networks in the setting in which

the input and output spaces comprise real-valued func-

tions defined on a bounded open set D in R
d
.

1.1 Literature Review And Context

We formulate a new class of neural networks, which

are defined to map between spaces of functions on R
d.

Such neural networks, once trained, have the impor-

tant property that they are discretization invariant, shar-

ing the same network parameters between different dis-

cretizations. In contrast, standard neural network archi-

tectures depend heavily on the discretization and have

difficulty in generalizing between different grid repre-

sentations. Our methodology has an underlying Nyström

approximation formulation [Nyström et al., 1930] which

links different grids to a single set of network param-

eters. We illustrate the new conceptual class of neural

networks within the context of partial differential equa-

tions, and the mapping between input data (in the form

of a function) and output data (the function which solves

the PDE). Both supervised and semisupervised settings

are considered.

In PDE applications, the defining equations are often

local, whilst the solution operator has non-local effects

which, nonetheless, decay. Such non-local effects can be

described by integral operators with graph approxima-

tions of Nyström type [Belongie et al., 2002] providing a

consistent way of connecting different grid or data struc-

tures arising in computational methods. For this reason,

graph networks hold great potential for the solution op-



erators of PDEs, which is the departure for our work.

Partial Differential Equations (PDEs). A wide range

of important engineering and physical problems are gov-

erned by PDEs. Over the past few decades, significant

progress has been made on formulating [Gurtin, 1982]

and solving [Johnson, 2012] the governing PDEs in

many scientific fields from micro-scale problems (e.g.,

quantum and molecular dynamics) to macro-scale ap-

plications (e.g., civil and marine engineering). Despite

the success in the application of PDEs to solve real-

life problems, two significant challenges remain. First,

identifying/formulating the underlying PDEs appropri-

ate for the modeling of a specific problem usually re-

quires extensive prior knowledge in the corresponding

field which is then combined with universal conservation

laws to design a predictive model; for example, mod-

elling the deformation and fracture of solid structures re-

quires detailed knowledge on the relationship between

stress and strain in the constituent material. For compli-

cated systems such as living cells, acquiring such knowl-

edge is often elusive and formulating the governing PDE

for these systems remains prohibitive; the possibility of

learning such knowledge from data may revolutionize

such fields. Second, solving complicated non-linear PDE

systems (such as those arising in turbulence and plastic-

ity) is computationally demanding; again the possibility

of using instances of data from such computations to de-

sign fast approximate solvers holds great potential. In

both these challenges, if neural networks are to play a

role in exploiting the increasing volume of available data,

then there is a need to formulate them so that they are

well-adapted to mappings between function spaces.

We first outline two major neural network based ap-

proaches for PDEs. We consider PDEs of the form

(Lau)(x) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D,
(1)

with solution u : D → R, and parameter a :
D → R entering the defintion of La. The domain

D is discretized into K points (see Section 2) and

N training pairs of coefficient functions and (approx-

imate) solution functions {aj , uj}
N
j=1

are used to de-

sign a neural network. The first approach parametrizes

the solution operator as a deep convolutional neural

network between finite Euclidean space F : R
K ×

Θ → R
K [Guo et al., 2016, Zhu and Zabaras, 2018,

Adler and Oktem, 2017, Bhatnagar et al., 2019]. Such

an approach is, by definition, not mesh independent

and will need modifications to the architecture for dif-

ferent resolution and discretization of K in order to

achieve consistent error (if at all possible). We demon-

strate this issue in section 4 using the architecture of

[Zhu and Zabaras, 2018] which was designed for the so-

lution of (3) on a uniform 64×64 mesh. Furthermore this

approach is limited to the discretization size and geom-

etry of the training data hence it is not possible to query

solutions at new points in the domain. We show both in-

variance of the error to resolution and our method’s abil-

ity to transfer the solution between meshes in section 4.

The second approach directly parameterizes the solution

u as a neural network F : D×Θ → R [E and Yu, 2018,

Raissi et al., 2019, Bar and Sochen, 2019]. This ap-

proach is, of course, mesh independent since the solution

is defined on the physical domain. However the para-

metric dependence is accounted for in a mesh-dependent

fashion. Indeed, for any given new equation with new co-

efficient function a, one would need to train a new neural

network Fa. Such an approach closely resembles classi-

cal methods such as finite elements, replacing the linear

span of a finite set of local basis with the space of neural

networks. This approach suffers from the same computa-

tional issue as the classical methods: one needs to solve

an optimization problem for every new parameter. Fur-

thermore, the approach is limited to a setting in which the

underlying PDE is known; purely data-driven learning of

a map between spaces of functions is not possible.

Our methodology can be understood as a generaliza-

tion of the above approaches. It most closely resem-

bles the classical reduced basis method [DeVore, 2014]

or the method of [Cohen and DeVore, 2015]. Our

method, to the best of our knowledge, is the

first practical deep learning method that is able

to learn maps between infinite dimensional spaces.

It remedies the mesh-dependent nature of the ap-

proach in [Guo et al., 2016, Zhu and Zabaras, 2018,

Adler and Oktem, 2017, Bhatnagar et al., 2019] by pro-

ducing a quality of approximation that is invariant to

the resolution of the function and having the abil-

ity to transfer solutions between meshes. More-

over, it needs to only be trained once on the equa-

tions set {aj , uj}
N
j=1

and obtaining a solution for

a new a ∼ µ only requires a forward pass of

the network, alleviating the major computational is-

sues incurred in [E and Yu, 2018, Raissi et al., 2019,

Herrmann et al., 2020, Bar and Sochen, 2019]. Lastly,

our method requires no knowledge of the underlying

PDE; the true map F† can be treated as a black-box,

perhaps trained on experimental data or on the output of

a costly computer simulation which is not necessarily a

PDE.

Graph Neural Networks. Graph neural network

(GNNs), a class of neural networks that apply on

graph-structured data, have recently been developed

and seen a variety of applications. Graph networks



Figure 1: Train On 16× 16, Test On 241× 241

Graph kernel network is invariant of resolution. It can train on
small resolution and generalize to large resolution, thereby
avoid the large complexity scaling on grid size. Error is the

squared l2 absolute error on Darcy Equation.

incorporate an array of techniques such as graph

convolution, edge convolution, attention, and graph

pooling [Kipf and Welling, 2016, Hamilton et al., 2017,

Gilmer et al., 2017, Veličković et al., 2017,

Murphy et al., 2018]. GNNs have also been ap-

plied to the modeling of physical phenomena such as

molecules [Chen et al., 2019] and rigid body systems

[Battaglia et al., 2018], as these problems exhibit a

natural graph interpretation: the particles are the nodes

and the interactions are the edges.

The work [Alet et al., 2019] performed an initial study

that employs graph networks on the problem of learn-

ing solutions to Poisson’s equation among other physical

applications. They propose an encoder-decoder setting,

constructing graphs in the latent space and utilizing mes-

sage passing between the encoder and decoder. However

their model uses a nearest neighbor structure that is un-

able to capture non-local dependencies as the mesh size

is increased. In contrast, we directly construct a graph in

which the nodes are located on the spatial domain of the

output function. Through message passing, we are then

able to directly learn the kernel of the network which ap-

proximates the PDE solution. When querying a new lo-

cation, we simply add a new node to our spatial graph

and connect it to the existing nodes, avoiding interpola-

tion error by leveraging the power of the Nyström exten-

sion for integral operators.

Continuous Neural Networks. The concept of

defining neural networks in infinite-dimensional

spaces is a central problem that long been studied

[Williams, 1996, Neal, 1996, Roux and Bengio, 2007,

Globerson and Livni, 2016, Guss, 2016]. The gen-

eral idea is to take the infinite-width limit which

yields a non-parametric method and has connec-

tions to Gaussian Process Regression [Neal, 1996,

Matthews et al., 2018, Garriga-Alonso et al., 2018,

Rasmussen and Williams, 2005]. Such methods have

never been applied to PDE problems and have thus

far not yielded efficient numerical algorithms that

can parallel the success of convolutional or recurrent

neural networks in finite dimensions. For an overview

of non-parametric methods applied to PDE(s) see

[Dunlop et al., 2018] and references therein. Another

idea is to simply define a sequence of compositions

where each layer is a map between infinite dimensional

spaces with a finite-dimensional parametric dependence.

This is the approach we take in this work, going a step

further by sharing parameters between each layer.

1.2 Our Contributions

We introduce a new neural network architecture which is

appropriate for the learning of mappings between spaces

of functions defined on bounded open subsets of Rd.

• Unlike existing methods, our approach is demon-

strably able to share a single set of neural network

parameters between methods based on different ap-

proximation methods and different grids, as demon-

strated in Figure 1.

• A Nyström extension connects the neural network

on function space to families of GNNs on arbitrary,

possibly unstructured, grids.

• The method is demonstrated to have competitive ap-

proximation accuracy, as shown in the experiments.

• The ability of transfer learning between different

discretizations with one set of parameters .

• The ability of semi-supervised learning that learns

from data at a few points and the generalizes to the

whole domain.

These concepts are illustrated in the context of a family

of elliptic PDEs prototypical of a number of problems

arising throughout the sciences and engineering.

2 PROBLEM SETTING

Our goal is to learn a mapping between two infinite di-

mensional spaces by using a finite collection of observa-

tions of input-output pairs from this mapping: supervised

learning. Let A and U be separable Banach spaces and

F† : A → U a (typically) non-linear map. Suppose we

have observations {aj , uj}
N
j=1

where aj ∼ µ is an i.i.d.

sequence from the probability measure µ supported on A
and uj = F†(aj) is possibly corrupted with noise. We

aim to build an approximation of F† by constructing a

parametric map

F : A×Θ → U (2)

for some finite-dimensional parameter space Θ and then

choosing θ† ∈ Θ so that F(·, θ†) ≈ F†.



This a natural framework for learning in infinite-

dimensions as one could define a cost functional C :
U × U → R and seek a minimizer of the problem

min
θ∈Θ

Ea∼µ[C(F(a, θ),F†(a))]

which directly parallels the classical finite-dimensional

setting [Vapnik, 1998]. Showing the existence of min-

imizers, in the infinite-dimensional setting, remains a

challenging open problem. We will approach this prob-

lem in the test-train setting in which empirical ap-

proximations to the cost are used. We conceptual-

ize our methodology in the infinite-dimensional set-

ting. This means that all finite-dimensional approxima-

tions can share a common set of network parameters

which are defined in the (approximation-free) infinite-

dimensional setting. To be concrete we will consider

infinite-dimensional spaces which are Banach spaces of

real-valued functions defined on a bounded open set in

R
d. We then consider mappings F† which take input

functions to a PDE and map them to solutions of the

PDE, both input and solutions being real-valued func-

tions on R
d.

A common instantiation of the preceding problem is the

approximation of the second order elliptic PDE

−∇ · (a(x)∇u(x)) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(3)

for some bounded, open set D ⊂ R
d and a fixed

function f ∈ L2(D;R). This equation is prototyp-

ical of PDEs arising in numerous applications includ-

ing hydrology [Bear and Corapcioglu, 2012] and elastic-

ity [Antman, 2005]. For a given a ∈ A = L∞(D;R+)∩
L2(D;R+), equation (3) has a unique weak solution

u ∈ U = H1
0 (D;R) [Evans, 2010] and therefore we can

define the solution operator F† as the map a 7→ u. Note

that while the PDE (3) is linear, the solution operator F†

is not.

Since our data aj and uj are , in general, functions, to

work with them numerically, we assume access only to

point-wise evaluations. To illustrate this, we will con-

tinue with the example of the preceding paragraph. To

this end let PK = {x1, . . . , xK} ⊂ D be a K-point

discretization of the domain D and assume we have ob-

servations aj |PK
, uj |PK

∈ R
K , for a finite collection of

input-output pairs indexed by j. In the next section, we

propose a kernel inspired graph neural network architec-

ture which, while trained on the discretized data, can pro-

duce an answer u(x) for any x ∈ D given a new input

a ∼ µ. That is to say that our approach is independent of

the discretization PK and therefore a true function space

method; we verify this claim numerically by showing in-

variance of the error as K → ∞. Such a property is

highly desirable as it allows a transfer of solutions be-

tween different grid geometries and discretization sizes.

We note that, while the application of our methodology is

based on having point-wise evaluations of the function,

it is not limited by it. One may, for example, represent

a function numerically as a finite set of truncated basis

coefficients. Invariance of the representation would then

be with respect to the size of this set. Our methodology

can, in principle, be modified to accommodate this sce-

nario through a suitably chosen architecture. We do not

pursue this direction in the current work.

3 GRAPH KERNEL NETWORK

We propose a graph kernel neural network for the solu-

tion of the problem outlined in section 2. As a guiding

principle of our architecture, we take the following ex-

ample. Let La be a differential operator depending on a

parameter a ∈ A and consider the PDE

(Lau)(x) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(4)

for a bounded, open set D ⊂ R
d and some fixed func-

tion f living in an appropriate function space determined

by the structure of La. The elliptic operator La· =
−div(a∇·) from equation (3) is an example. Under fairly

general conditions on La [Evans, 2010], we may define

the Green’s function G : D × D → R as the unique

solution to the problem

LaG(x, ·) = δx

where δx is the delta measure on R
d centered at x. Note

that G will depend on the parameter a thus we will

henceforth denote it as Ga. The solution to (4) can then

be represented as

u(x) =

∫

D

Ga(x, y)f(y) dy. (5)

Generally the Green’s function is continuous at points

x 6= y, for example, when La is uniformly ellip-

tic [Gilbarg and Trudinger, 2015], hence it is natural to

model it via a neural network. Guided by the representa-

tion (5), we propose the following iterative architecture

for t = 0, . . . , T − 1.

vt+1(x) =σ

(

Wvt(x)

+

∫

D

κφ(x, y, a(x), a(y))vt(y) νx(dy)

)

(6)



where σ : R → R is a fixed function applied element-

wise, νx is a fixed Borel measure for each x ∈ D and

W ∈ R
n×n, together with the parameters φ entering ker-

nel κφ : R2(d+1) → R
n×n, are to be learned from data.

We model κφ as a neural network mapping R
2(d+1) to

R
n×n.

Discretization of the continuum picture may be viewed

as replacing Borel measure νx by an empirical approx-

imation based on the K grid points being used. In this

setting we may view κφ as a K×K kernel block matrix,

where each entry κφ(x, y) is itself a n× n matrix. Each

block shares the same set of network parameters. This is

the key to making a method which shares common pa-

rameters independent of the discretization used.

Finally we observe that, although we have focussed on

neural networks mapping a to u, generalizations are pos-

sible, such as mapping f to u, or having non-zero bound-

ary data g on ∂D and mapping g to u. More generally

one can consider the mapping from (a, f, g) into u and

use similar ideas. To illustrate ideas we will consider

the mapping from f to u below (which is linear and for

which an analytic solution is known) before moving on

study the (nonlinear) mapping from a to u. Since in the

setting f is fixed, our iterative kernel integration convo-

luted with representation v instead of f .

Example: Poisson Equation. We consider a simplifi-

cation of the foregoing in which we study the map from

f to u. To this end we set v0(x) = f(x), T = 1, n = 1,

σ(x) = x, W = w = 0, and νx(dy) = dy (the Lebesgue

measure) in (6). We then obtain the representation (5)

with the Green’s function Ga parameterized by the neu-

ral network κφ with explicit dependence on a(x), a(y).
Now consider the setting where D = [0, 1] and a(x) ≡ 1,

so that (3) reduces to the 1-dimensional Poisson equation

with explicitly computable Green’s function. Indeed,

G(x, y) =
1

2
(x+ y − |y − x|)− xy.

Note that although the map f 7→ u is, in function space,

linear, the Green’s function itself is not linear in either ar-

gument. Figure 2 shows κφ after training with N = 2048
samples fj ∼ µ = N (0, (−∆ + I)−1) with periodic

boundary conditions on the operator −∆ + I . Notice

that we are able to almost perfectly capture the geometry

of the Green’s function. The learned solution map is uni-

versal: once we have this approximation of the Green’s

function we can map any f ∈ L2(D;R) into solution

u ∈ L2(D;R), even though though the training was en-

tirely from data drawn from µ. While the approximation

is not perfect, this result is quite remarkable and speaks

to the generalization capabilities of our overall approach.

Furthermore, the training data fj , uj are specified on an

85-point uniform discretization of D while κφ is eval-

uated on a 256 × 256 uniform grid, demonstrating our

method’s mesh invariance property.

Algorithmic Framework. The initialization v0(x) to

our network (6) can be viewed as the initial guess we

make for the solution u(x) as well as any other depen-

dence we want to make explicit. A natural choice is to

start with the coefficient a(x) itself as well as the position

in physical space x. This (d+1)-dimensional vector field

is then lifted to a n-dimensional vector field, an operation

which we may view as the first layer of the overarching

neural network. This is then used as an initialization to

the kernel neural network, which is iterated T times. In

the final layer, we project back to the scalar field of in-

terest with another neural network layer.

Due to the smoothing effect of the inverse elliptic oper-

ator in (3) with respect to the input data a (and indeed

f when we consider this as input), we augment the ini-

tialization (x, a(x)) with a Gaussian smoothed version

of the coefficients aǫ(x), together with their gradient

∇aǫ(x). Thus we initialize with a 2(d+ 1)-dimensional

vector field. Throughout this paper the Gaussian smooth-

ing is performed with a centred isotropic Gaussian with

variance 5. The Borel measure νx is chosen to be the

Lebesgue measure supported on a ball at x of radius r.

Thus we have

v0(x) = P (x, a(x), aǫ(x),∇aǫ(x)) + p (7)

vt+1(x) = σ
(

Wvt(x)

+

∫

B(x,r)

κφ

(

x, y, a(x), a(y)
)

vt(y) dy
)

(8)

u(x) = QvT (x) + q (9)

where P ∈ R
n×2(d+1), p ∈ R

n, vt(x) ∈ R
n and

Q ∈ R
1×n, q ∈ R. The integration in (8) is approx-

imated by a Monte Carlo sum via a message passing

graph network with edge weights (x, y, a(x), a(y)). The

choice of measure νx(dy) = 1B(x,r)dy is two-fold: 1) it

allows for more efficient computation and 2) it exploits

the decay property of the Green’s function. Note that if

more information is known about the true kernel, it can

be added into this measure. For example, if we know

the true kernel has a Gaussian structure, we can define

νx(dy) = 1B(x,r)ρx(y)dy where ρx(y) is a Gaussian

density. Then κφ will need to learn a much less compli-

cated function. We however do not pursue this direction

in the current line of work.

Message Passing Graph Networks. Message passing

graph networks comprise a standard architecture em-



Figure 2: Kernel For One-Dimensional Green’s Function

Proof of concept: graph kernel network on 1 dimensional
Poisson equation; comparison of learned and truth kernel.

ploying edge features [Gilmer et al., 2017]. If we prop-

erly construct the graph on the spatial domain D of the

PDE, the kernel integration can be viewed as an aggre-

gations of messages. Given node features vt(x) ∈ R
n,

edge features e(x, y) ∈ R
ne , and a graph G, the message

passing neural network with averaging aggregation is

vt+1(x) = Wvt(x) +
1

|N(x)|
∑

y∈N(x)

κφ

(

e(x, y)
)

vt(y)

(10)

where W ∈ R
n×n, N(x) is the neighborhood of x ac-

cording to the graph, κφ

(

e(x, y)
)

is a neural network

taking as input edge features and as output a matrix in

R
n×n. In relation to (8), e(x, y) = (x, y, a(x), a(y)) ∈

R
2(d+1).

Graph Construction. To use the message passing

framework (10), we need to design a graph which con-

nects the physical domain D of the PDE. The nodes are

chosen to be the K discretized spatial locations. Here

we work on a standard uniform mesh, but there are many

other possibilities such as finite-element triangulations.

The edge connectivity is then chosen according to the in-

tegration measure in (8). In particular, each node x ∈ R
d

is connected to all neighboring nodes which lie within

the ball B(x, r), defining the neighborhood set N(x).
Then for each neighbor y ∈ N(x), we assign the edge

weight e(x, y) = (x, y, a(x), a(y)). Equation (10) can

then be viewed as a Monte Carlo approximation of (8).

This local structure allows for more efficient computa-

tion while remaining invariant to mesh-refinement. In-

deed, since the radius parameter r is chosen in physical

space, the size of the set N(x) grows as the disretization

size K grows. This is a key feature which makes our

methodology mesh-independent.

Nyström Approximation of the Kernel. While the

aforementioned graph structure severely reduces the

computational overhead of integrating over the entire

domain D (corresponding to a fully-connected graph),

the number of edges still scale like O(K2). To over-

come this, we employ a random Nyström-type approx-

imation of the kernel. In particular, we uniformly sam-

ple m ≪ K nodes from the original graph, construct-

ing a new random sub-graph. This process is repeated

l ∈ N times, yielding l random sub-graphs each with

m nodes. This can be thought of as a way of reduc-

ing the variance in the estimator. We use these sub-

graphs when evaluating (10) during training which gives

the more favorable scaling O(lm2). Indeed, numerically

we find that l = 4 and m = 200 is sufficient even when

K = 4212 = 177, 241. In the evaluation phase, when

we want the solution on a particular mesh geometry, we

simply partition the mesh into sub-graphs each with m

nodes and evaluate each separately.

We will now demonstrate the quality of this kernel ap-

proximation in a RHKS setting. A real Reproducing Ker-

nel Hilbert Space (RKHS) (H, 〈·, ·〉, ‖ · ‖) is a Hilbert

space of functions f : D → R where point-wise evalua-

tion is a continuous linear functional, i.e. |f(x)| ≤ C‖f‖
for some constant C ≥ 0, independent of x. For every

RHKS, there exists a unique, symmetric, positive definite

kernel κ : D × D → R, which gives the representation

f(x) = 〈f, κ(·, x)〉. Let T : H → H be a linear operator

on H acting via the kernel

Tf =

∫

B(·,r)

κ(·, y)f(y)ν(dy).

Let Tm : H → H be its m-point empirical approxima-

tion

Tm =

∫

B(·,r)

κ(·, y)f(y)νm(dy)

hence

νm(dy) =
1

m

m
∑

k=1

δyk
(dy),

Tmf =
1

m

m
∑

k=1

κ(·, yk)f(yk).

The error of this approximation achieves the Monte

Carlo rate O(m−1/2):

Proposition 1. Suppose Ey∼ν [κ(·, y)4] < ∞ then there

exists a constant C ≥ 0 such that

E‖T − Tm‖HS ≤ C√
m

where ‖ · ‖HS denotes the Hilbert-Schmidt norm on op-

erators acting on H.

For a proof of this result see Appendix A.1. Assuming

boundedness of the kernel κ, one can prove similar re-

sults that, instead of in expectation, hold with high prob-

ability [Rosasco et al., 2010].



We note that, in our algorithm, κ : D × D → R
n×n

whereas the preceding results are proven only in the set-

ting n = 1; nonetheless they provide useful intuition re-

garding the approximations used in our methodology.

4 EXPERIMENTS

In this section we demonstrate that the claimed properties

of our methodology and compare to existing approaches

in the literature. All experimental results concern the

mapping a 7→ u defined by (3) with D = [0, 1]2. Co-

efficients are generated according to a ∼ ψ#µ where

µ = N (0, (−∆+9I)−3) with a Neumann boundry con-

dition on the operator −∆+9I . The mappingψ : R → R

takes the value 12 on the positive part of the real line and

3 on the negative hence the coefficients are piece-wise

constant with a random geometry and a fixed contrast

of 4. Such constructions are common in the modeling

of material microstructures and sub-surface flows. Solu-

tions u are obtained by using a second-order finite differ-

ence scheme on a 241 × 241 grid. Different resolutions

are downsampled from this dataset.

Without special notice we set the dimension of repre-

sentation n (i.e. the width of graph network) to be 64,

the number of iteration T to be 6, σ to be ReLU, and

the inner kernel network κ to be a 3 layers feed-forward

network with widths (6, 512, 1024, n2) and ReLU acti-

vation. We use Adam optimizer with the learning rate

1e− 4 and train for 200 epochs, unless otherwise stated.

These hyperparameters are not optimized and should be

free to change in practice. We adapt the message passing

network from the standard Pytorch graph network library

Torch-geometric [Fey and Lenssen, 2019]. All errors are

relative L2 errors.

4.1 Supervised Setting

First we consider the supervised scenario that we are

given N training pairs {aj , uj}
N
1 , where each aj and uj

are provided on a s× s grid (K = s2).

Generalization of Resolutions on Full Grids. To ex-

amine the generalization property, we train the graph ker-

nel network on resolution s× s and test on another reso-

lution s′ × s′. We fix the radius to be r = 0.10, train on

N = 100 equation pairs and test on 40 equation pairs.

As shown in Table 1, for each row, the test errors of dif-

ferent resolutions remain on the same scale, which means

graph kernel networks can train on one resolution and

generalize to another resolution. The test errors on the

diagonal (s = s′ = 16 and s = s′ = 31) are the small-

est, which means the network has the best performance

when the training grid and the test grid are the same. In-

Table 1: Comparing Resolutions On Full Grids

Resolutions s′ = 16 s′ = 31 s′ = 61
s = 16 0.0525 0.0591 0.0585
s = 31 0.0787 0.0538 0.0588

r = 0.10, N = 100, relative l2 test error

terestingly, for the second row, when training on s = 31,

it is easier to general to s′ = 61 than to s′ = 16. This is

because when generalizing to a larger grid, the support of

the kernel becomes large which does not hurt the perfor-

mance. But when generalizing to a smaller grid, part of

the support of the kernel is lost, which causes the kernel

to be inaccurate.

Expressiveness and Overfitting We compare the

training error and test error with a different number of

training pairs N to see if the kernel network can learn

the kernel structure even with a small amount of data.

We study the expressiveness of kernel network, examin-

ing how it overfits. We fix r = 0.10 on the s = s′ = 31
grid and train with N = 10, 100, 1000 and 5000, 500,

100 epochs respectively.

Table 2: Comparing Number of Training Pairs

Training Size Training Error Test Error

N = 10 0.0111 0.0876
N = 100 0.0056 0.0455
N = 1000 0.0073 0.0307

5000, 500, 100 epochs respectively.

We see from Table 2 that the kernel network already

achieves a reasonable result whenN = 10, and the accu-

racy is competitive whenN = 100. In all three cases, the

test error is larger than the training error which means the

kernel network has enough expressiveness to overfit the

training set. Thos overfitting is not severe as the training

error will not be pushed to zero even for N = 10, after

5000 epochs.

4.2 Semi-Supervised Setting

In the semi-supervised setting, we are only given m

nodes sampled from a s × s grid for each training pair,

and want to evaluate on m′ nodes sampled from a s′× s′

grid for each test pair. Without special notice, we set the

number of sampled nodes m = m′ = 200. For each

training pair, we sample twice l = 2; for each test pair,

we sample once l′ = 1. We train on N = 100 equations

and test on N ′ = 100 equations. The radius for both

training and testing is set to r = r′ = 0.25.



Generalization of Resolutions on Sampled Grids.

Similar to the first experiments, we train the graph ker-

nel network with nodes sampled from the s×s resolution

and test on nodes sampled from the s′ × s′ resolution.

Table 3: Generalization of Resolutions on Sampled Grids

Resolutions s′ = 61 s′ = 121 s′ = 241
s = 16 0.0717 0.0768 0.0724
s = 31 0.0726 0.0710 0.0722
s = 61 0.0687 0.0728 0.0723
s = 121 0.0687 0.0664 0.0685
s = 241 0.0649 0.0658 0.0649
N = 100, m = m′

= 200, r = r′ = 0.25, l = 2

As shown in Table 3, for each row, the test errors on dif-

ferent resolutions are about the same, which means the

graph kernel network can also generalize in the semi-

supervised setting. Comparing the rows, large training

resolutions s tend to have a smaller error. When sampled

from a finer grid, there are more variety of edges i.e. the

support of the kernel is larger on the finer grid. Still, the

performance is best when s = s′.

The Number of Examples v.s. the Times of Sampling.

Increasing the number of times we sample l, will reduce

the error from Nyström approximation. By comparing

different l we want to find which number will be suffi-

cient. When we sample l times for each equation, we

will get Nl number of sampled training pairs. We are

also interested in fixing the total number of sample train-

ing pairs; for example, how will N = 100, l = 10 com-

pare to N = 1000, l = 1.

Table 4: The Number of Training Equations and the

Number of Sampling

l = 1 l = 2 l = 4 l = 8

N = 10 0.1259 0.1069 0.0967 0.1026
N = 100 0.0786 0.0687 0.0690 0.0621
N = 1000 0.0604 0.0579 0.0540 0.0483

s = 121, m = m′
= 200, r = r′ = 0.25

As shown in Table 4, in general the larger l the better,

but l = 2 already gives good results. Meanwhile, (N =
100, l = 8) has near the same error as (N = 1000, l =
1), which implies we can increasing l when the amount

of training data is small.

Different Number of Nodes in Training and Testing.

To further examine the Nyström approximation, we com-

pare different numbers of node samples m,m′ for both

training and testing.

Table 5: Comparing the Number of Nodes in the Training

and Testing

m′ = 100 200 400 800
m = 100 0.0871 0.0716 0.0662 0.0609
m = 200 0.0972 0.0734 0.0606 0.0562
m = 400 0.0991 0.0699 0.0560 0.0506
m = 800 0.1084 0.0751 0.0573 0.0478

s = 121, r = r′ = 0.15, l = 5

As can be seen from Table 5, in general the large m and

m′ the better. For each row, fixing m, the larger m′ the

better. But for each column, when fixing m′, increasing

m may not lead to better performance. This is again due

to the fact that when learning on a larger grid, the ker-

nel network learns a kernel with larger support. When

evaluating on a smaller grid, the learned kernel will be

truncated to have small support which grows the error.

In general, m = m′ will be the best choice.

The Number of Nodes and the Radius. The computa-

tion and storage of graph networks directly scale with the

number of edges. In this experiment we want to study the

trade off between the number of nodes m and the radius

r when fixing the number of edges.

Table 6: The Number of Nodes and the Radius

r m Edges Error

0.05 100 176 0.1108
0.05 200 666 0.1090
0.05 400 3354 0.0994
0.15 100 512 0.0860
0.15 200 2770 0.0705
0.15 400 14086 0.0539
0.40 100 1596 0.0649
0.40 200 9728 0.0517
0.40 400 55919 0.0407

s = 121, l = 5, m′
= m

As shown in Table 6, the more edges the better. But

when fixing the number of edges, the performance de-

pends more on the radius r than on the number of nodes

m. In other words, the error of truncating the kernel lo-

cally is larger than the error from Nyström approxima-

tion. It would be better to use larger r with smaller m.

4.3 Full Scale Comparison with Different

Benchmarks

In the following section, we compare kernel networks

with different benchmarks. The network is trained and



evaluated on the same full grid. The results are pre-

sented in Table 7. NN is a simple point-wise feed-

forward neural network. It is mesh-free, but perform

badly due to lack of neighbor information. FCN is

the state of the art neural network method based on

Fully Convolution Network [Zhu and Zabaras, 2018]. It

has a dominating performance for small grids s = 61.

But fully convolution networks are mesh-dependent and

therefore their error grows when moving to a larger grid.

PCA+NN is an instantiation of the methodology pro-

posed in [Bhattacharya et al., 2020]: using PCA as an

autoencoder on both the input and output data and in-

terpolating the latent spaces with a neural network. The

method provably obtains mesh-independent error and

can learn purely from data, however the solution can only

be evaluated on the same mesh as the training data. RBM

is the classical Reduced Basis Method (using a PCA ba-

sis), which is widely used in application and provably

obtains mesh-independent error [DeVore, 2014]. It has

the best performance but the solutions can only be evalu-

ated on the same mesh as the training data and one needs

knowledge of the PDE to employ it. KernelGNN stands

for our graph kernel network. It enjoys competitive per-

formance against all other methods while being able to

generalize to different mesh geometries. Some figures of

KernelGNN are included in Appendix A.2.

Table 7: Scaling of different network architectures

Networks 141 211 421

NN 0.1716 0.1716 0.1716
FCN 0.0493 0.0727 0.1097
PCA+NN 0.0298 0.0298 0.0299
RBM 0.0251 0.0255 0.0259
KernelGNN 0.0332 0.0342 0.0369

5 DISCUSSION AND FUTURE WORK

As shown in the experiments, we can conclude graph

kernel networks do have the desired mesh-free prop-

erty. It can learn the infinite-dimension mapping be-

tween functions space, instead of a mapping between

fixed discretization. Meanwhile, it can achieve com-

petitive performance compared to those mesh dependent

solver. Such a mesh-free method has many applications.

It has the potential to be a faster solver that learns from

only a few points and a few equations. It is the only

method that can works in the semi-supervised scenario,

when we only have measurements on some parts of the

grid. It is also the only method that can transfer between

different geometry. For example, when computing the

flow dynamic of many different airfoils, we can construct

different graphs and train together. When learning from

irregular grids and querying new locations, our method

does not require any interpolation, avoid subsequently

interpolation error.

Disadvantage. Graph kernel network’s runtime and

storage scale with the number of edges E = O(K2).
While other mesh-dependent methods such as PCA+NN

and RBF require only O(K). This is somewhat in-

evitable, because to learn the continuous function or the

kernel, we need to capture pairwise information between

every two nodes, which is O(K), whereas when the dis-

cretization is fixed, one just need to capture the point-

wise information, which is O(K). Therefore training

and evaluating the whole grid is costly when the grid

is large. On the other hand, doing sampling loses some

information about the data, which causes an error and

makes our method not as good as PCA+NN and RBM.

Future Work. To deal with the above problem, we

purpose a more efficient way to make use of the full

grid – multi-grid method. Instead of doing sampling

and throw most of the nodes away, we can construct

multi graphs corresponding to different resolutions, so

that within each graph, nodes only connect to their near-

est neighbors. The number of edges then scale as O(K)
instead of O(K2). The error term from Nyström approx-

imation can be avoided.

Another direction is to extend the framework for time-

dependent PDEs. Since the graph kernel network is itself

an iterative solver with the time step t, it is natural to

frame it as an RNN that each time step corresponds to a

time step of the PDEs.
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A Appendix

A.1 Proof of Proposition 1

Proposition 1. Let {yj}
m
j=1 be an i.i.d. sequence with yj ∼ ν. Define κy = κ(·, y) for any y ∈ D. Notice that by the

reproducing property,

Ey∼ν [1B(·,r)(κy ⊗ κy)f ] = Ey∼ν [1B(·,r)〈κy, f〉κy]

=

∫

D

1B(·,r)〈κy, f〉κy ν(dy)

=

∫

D

1B(·,r)κ(·, y)f(y) ν(dy)

=

∫

B(·,r)

κ(·, y)f(y) ν(dy)

hence

T = Ey∼ν [1B(·,r)(κy ⊗ κy)]

and similarly

Tm =
1

m

m
∑

j=1

1(yj ∈ B(·, r))(κyj
⊗ κyj

).

Define T (j) := 1(yj ∈ B(·, r))(κyj
⊗κyj

) for any j ∈ {1, . . . ,m} and Ty := 1B(·,r)(κy⊗κy) for any y ∈ D, noting

that Ey∼ν [Ty] = T and E[T (j)] = T . Further we note that

Eu∼ν‖Ty‖
2
HS ≤ Ey∼ν‖κy‖

4 < ∞

and, by Jensen’s inequality,

‖T‖2HS ≤ Ey∼ν‖Ty‖
2
HS < ∞

hence T is Hilbert-Schmidt (as is Tm since it has finite rank). We now compute,

E‖Tm − T‖2HS = E‖
1

m

m
∑

j=1

T (j) − T‖2HS

= E‖
1

m

m
∑

j=1

T (j)‖2HS − 2〈
1

m

m
∑

j=1

E[T (j)], T 〉HS + ‖T‖2HS

= E‖
1

m

m
∑

j=1

T (j)‖2HS − ‖T‖2HS

=
1

m
Ey∼ν‖Ty‖

2
HS +

1

m2

m
∑

j=1

m
∑

k 6=j

〈E[T (j)],E[T (k)]〉HS − ‖T‖2HS

=
1

m
Ey∼ν‖Ty‖

2
HS +

m2 −m

m2
‖T‖2HS − ‖T‖2HS

=
1

m

(

Ey∼ν‖Ty‖
2
HS − ‖T‖2HS

)

=
1

m
Ey∼ν‖Ty − T‖2HS .

Setting C2 = Ey∼ν‖Ty − T‖2HS , we now have

E‖Tm − T‖2HS =
C2

m
.



Applying Jensen’s inequality to the convex function x 7→ x2 gives

E‖Tm − T‖HS ≤ C√
m
.

A.2 Figures of Table 7



Figure 3: s = 141



Figure 4: s = 211



Figure 5: s = 421


