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Abstract Cortical networks exhibit ’global oscillations’, in which neural spike times are entrained

to an underlying oscillatory rhythm, but where individual neurons fire irregularly, on only a fraction

of cycles. While the network dynamics underlying global oscillations have been well characterised,

their function is debated. Here, we show that such global oscillations are a direct consequence of

optimal efficient coding in spiking networks with synaptic delays and noise. To avoid firing

unnecessary spikes, neurons need to share information about the network state. Ideally, membrane

potentials should be strongly correlated and reflect a ’prediction error’ while the spikes themselves

are uncorrelated and occur rarely. We show that the most efficient representation is when: (i) spike

times are entrained to a global Gamma rhythm (implying a consistent representation of the error);

but (ii) few neurons fire on each cycle (implying high efficiency), while (iii) excitation and inhibition

are tightly balanced. This suggests that cortical networks exhibiting such dynamics are tuned to

achieve a maximally efficient population code.

DOI: 10.7554/eLife.13824.001

Introduction
Oscillations are a prominent feature of cortical activity. In sensory areas, one typically observes

’global oscillations’ in the gamma-band range (30–80 Hz), alongside single neuron responses that

are irregular and sparse (Buzsáki and Wang, 2012; Yu and Ferster, 2010). The magnitude and fre-

quency of gamma-band oscillations are modulated by changes to the sensory environment (e.g.

visual stimulus contrast (Henrie and Shapley, 2005) and behavioural state (e.g. attention

[Fries et al., 2001]) of the animal. This has led a number of authors to propose that neural oscilla-

tions play a fundamental role in cortical computation (Fries, 2009; Engel et al., 2001). Others argue

that oscillations emerge as a consequence of interactions between populations of inhibitory and

excitatory neurons, and do not perform a direct functional role in themselves (Ray and Maunsell,

2010).

A prevalent theory of sensory processing, the ’efficient coding hypothesis’, posits that the role of

early sensory processing is to communicate information about the environment using a minimal num-

ber of spikes (Barlow, 1961). This implies that the responses of individual neurons should be as

asynchronous as possible, so that they do not communicate redundant information (Simoncelli and

Olshausen, 2001). Thus, oscillations are generally seen as a bad thing for efficient rate coding, as

they tend to synchronise neural responses, and thus, introduce redundancy.

Here we propose that global oscillations are a necessary consequence of efficient rate coding in

recurrent neural networks with synaptic delays.

In general, to avoid communicating redundant information, neurons driven by common inputs

should actively decorrelate their spike trains. To illustrate this, consider a simple set-up in which
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neurons encode a common sensory variable through their firing rates, with a constant value added

to the sensory reconstruction each time a neuron fires a spike (Figure 1a).

With a constant input, the reconstruction error is minimized when the population fires spikes at

regular intervals, while no two neurons fire spikes at the same time (as in Figure 1a, left panel, in

red). To achieve this ideal, however, requires incredibly fast inhibitory connections, so that each time

a neuron fires a spike it suppresses all other neurons from firing (Boerlin et al., 2013). In reality,

inhibitory connections are subject to unavoidable delays (e.g. synaptic and transmission delays), and

thus, cannot always prevent neurons from firing together. Worse, in the presence of delays, inhibi-

tory signals, intended to prevent neurons from firing together, can actually have the reverse effect of

synchronising the network, so that many neurons fire together on each cycle (as in Figure 1a, middle

and right panels). This is analogous to the so-called ‘hipster effect’ where a group of individuals

strive to look different from each other, but due to delayed reaction times, end up making similar

decisions and all looking alike (Touboul and Effect, 2014).
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Figure 1. Relationship between synchrony and coding accuracy. (a) Each panel illustrates the response of 10 neurons. An encoded sensory variable is

denoted by a horizontal blue line. Each spike fired by the network increases the sensory reconstruction by a fixed amount, before it decays. Greatest

accuracy is achieved when the population fires at regular intervals, but no two neurons fire together (left). Coding accuracy is reduced when multiple

neurons fire together (middle and right panels). (b) Same as panel a, but where neurons show independent poisson variability. (c) Reconstruction error

(root-mean squared error divided by the mean) for a regular spiking network shown in panel a, versus the number of synchronous spikes on each cycle.

A horizontal line denotes the performance when neurons fire with independent Poisson variability. (d) Cartoon illustrating tradeoff between trade-off

faced by neural networks.
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Spiking synchronicity generally has a negative effect on coding performance. For example,

Figure 1c shows how, in the regular spiking network described above, coding error increases with

the number of synchronous spikes per cycle (while firing rate is held constant). It is thus tempting to

conclude that neural networks should do everything possible to avoid synchronous firing. However,

one also observes that a completely asynchronous network, in which neurons fire with independent

Poisson variability (Figure 1b), performs far worse than the regular spiking network, even when mul-

tiple neurons fire together on each cycle (Figure 1c, horizontal dashed line).

Thus, to perform efficiently, neural networks face a trade-off (Figure 1d). On the one hand, recur-

rent connections should coordinate the activity of different neurons in the network, so as to achieve

an efficient and accurate population code. On the other hand, in the presence of synaptic delays, it

is important that these recurrent signals do not overly synchronize the network, as this will reduce

coding performance.

Here, we show that, in a network of leaky integrate-and-fire neurons (LIF) optimized for efficient

coding, this trade-off is best met by adding noise to the network (e.g. via random fluctuations in

membrane potential, or synaptic failure) to ensure that: (i) neural spike trains are entrained to a

global oscillatory rhythm (for a consistent representation of global information), but (ii) only a small

fraction of cells fire on each oscillation cycle. In this regime, individual neurons fire irregularly

(Shadlen and Newsome, 1998) and exhibit weak pairwise correlations (Schneidman et al., 2006),

despite the presence of rhythmic population activity. Moreover, excitation and inhibition are tightly

balanced on each oscillation cycle, with inhibition lagging excitation by a few milliseconds

(Atallah and Scanziani, 2009; Wehr and Zador, 2003). Thus, ‘global oscillations’ come about as a

direct consequence of efficient rate coding, in a recurrent network with synaptic delays.

Results

Efficient coding in an idealized recurrent network
It is instructive to first consider the behaviour of an idealized network, with instantaneous synapses.

For this, we consider a model proposed by Boerlin et al., in which a network of integrate-and-fire

neurons is optimized to efficiently encode a time varying input. As the model has already been

described elsewhere (Boerlin et al., 2013) we restrict ourselves to outlining the basic principles,

with a mathematical description reserved for the Materials and methods.

Underlying the model is the idea that downstream neurons should be able to reconstruct the

input to the network by performing a linear summation of its output spike trains. To do this effi-

ciently (i.e. with as few spikes as possible), the spiking output of the network is fed-back and sub-

tracted from its original input (Figure 2a). In consequence, the total input to each neuron is equal to

a ‘prediction error’; the difference between the original input and the network reconstruction. This

prediction error is also reflected in neural membrane potentials. When a neuron’s membrane poten-

tial becomes larger than a constant threshold, then it fires a spike; recurrent feedback then reduces

the prediction error encoded by other neurons, preventing them from firing further redundant

spikes.

To illustrate the principles underlying the model, we consider a network of three identical neu-

rons. Figure 2b shows how spikes fired by the network are ‘read-out’, to obtain a continuous recon-

struction. Each time a neuron fires a spike, it increases the reconstruction by a fixed amount,

decreasing the difference between the input and the neural reconstruction. Immediately after, feed-

back connections alter the membrane potentials of other neurons, to ensure that they maintain a

consistent representation of the error, and do not fire further spikes (Figure 2b, lower panel). As a

result, membrane potentials are highly correlated, while spikes are asynchronous.

Figure 2c shows the behaviour of the network in response to a constant input. To optimally

encode a constant input, the network generates a regular train of spikes (as in the left panel of

Figure 1a), resulting in a narrow distribution of population inter-spike intervals (ISIs) (Figure 2d).

Neural membrane potentials, which encode a common prediction error, fluctuate in synchrony, with

a frequency dictated by the population firing rate (Figure 2c, lower panel). However, as only one

neuron fires per cycle, the spike trains of individual neurons are irregular and sparse, resulting in a

near-exponential distribution of single-cell ISIs (Figure 2e).
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Efficient coding with synaptic delays
In real neural networks, recurrent inhibition is not instantaneous, but subject to synaptic and trans-

mission delays. Far from being a biological detail, even very short synaptic delays can profoundly

change the behaviour of the idealized efficient coding network, and pose fundamental limits on its

performance.

To render the idealized model biologically feasible, we extended it in two ways. First, to comply

with Dale’s law, we introduced a population of inhibitory neurons, which mediates recurrent inhibi-

tion (Figure 3a). In our implementation, excitatory and inhibitory populations both encode two sepa-

rate reconstructions of the target variable, an ‘excitatory reconstruction’ and an ‘inhibitory

reconstruction’. Inhibitory neurons, which receive input from excitatory neurons, fire spikes in order

to predict and cancel the inputs to the excitatory population. Consequently, the inhibitory recon-

struction closely tracks fluctuations in the excitatory reconstruction (see Materials and methods).

Second, and more importantly, we replaced the instantaneous synapses in the idealized model

with continuous synaptic dynamics, as shown in Figure 3b (see Materials and methods). As stated

previously, adding synaptic delays substantially alters the performance of the network. Without

delays, recurrent inhibition prevents all but one cell from firing per oscillation cycle, resulting in an

optimally efficient code (Figure 3c, left panel). With delays however, inhibition cannot always act

fast enough to prevent neurons firing together. As a result, neural activity quickly becomes synchron-

ised, and the sensory reconstruction is destroyed by large population-wide oscillations (Figure 3c,

middle panel). To improve performance, one can increase the membrane potential noise and spike

threshold, so as to reduce the chance of neurons firing together (Figure 3c, right panel). Too much

noise, however, and the firing of different neurons becomes uncoordinated, and network perfor-

mance is diminished (see later).

We compared the performance of the efficient coding network (with excitatory/inhibitory popula-

tions and synaptic delays) to: (i) an ‘ideal’ model with no delays and (ii) a ‘rate model’, consisting of a

population of independent Poisson units whose firing rate varies as a function of the feed-forward

input (see Materials and methods).

! "!! #!! $!!
!

"!

%&%'()*+

,
-.
/
0
/
0
123
4
'(
)
*
"
+

! "! #!!
!

$!!

%!!

&'&()*+,

-
./
0
1
0
1
234
5
()
+
#
,

a b c d

e

p
ro

b
a

b
ili

ty
 (

s
-1

)
p

ro
b

a
b

ili
ty

 (
s

-1
)

single neuron

population

interspike interval (s)

interspike interval (s)

signal
recon.

0

200 ms
|w|

50 ms
|w|

0

signal

recon.

stim.

recon.

- recon.

Figure 2. Efficient coding in a recurrent neural network. (a) Schematic of network. Inhibitory recurrent connections are represented by an open circle.

Excitatory feed-forward connections are represented by closed circles. (b) Stimulus (blue) and neural reconstruction (black) on a single trial. The spikes

and membrane potential for each cell are shown in separate rows. Vertical dashed lines illustrate how each spike alters the neural reconstruction. (c)

Same as (b), but with a constant input (also note the change of temporal scale). (d–e) Distribution of inter-spike intervals in population (d) and single-

cell (e) spike trains.
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In the Poisson network, random fluctuations in firing rate degrade the reconstruction, resulting in

large coding error. Increasing the population firing rate increases the signal-to-noise ratio, and thus,

also decreases the reconstruction error (Figure 3d, red). In contrast, in the ‘ideal’ efficient coding

network, noise fluctuations are automatically corrected for by the recurrent connections (see

Materials and methods). Thus, in this network, the only source of inaccuracy comes from the dis-

creteness of the code (where each spike adds a fixed quantity to the readout), leading to a small

error (Figure 3d, blue). Finally, while synaptic delays increase the coding error (relative to the ideal

efficient coding network), the error remains significantly smaller than for a Poisson network with

the matching rate (Figure 3d, black cross).

Figure 3e illustrates the ability of the efficient coding network to track a time varying input signal.

Zooming in to a 1 s period within the trial (lower inset), one observes rhythmic fluctuations in the
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Figure 3. Coding performance of an excitatory/inhibitory network with synaptic delays. (a) Schematic of network connectivity. Excitatory neurons and

inhibitory neurons are shown in black and red, respectively. Connections between different neural populations are schematised by lines terminating

with solid (excitatory connections) and open (inhibitory connections) circles. (b) The postsynaptic current (PSC) waveform used in our simulations. (c)

Schematic, illustrating how delays affect the decoding performance of the network. (d) Mean-squared reconstruction error (normalized by variance of

encoded signal) versus mean firing rate for an ‘ideal’ efficient coding network with instantaneous synapses (blue), an efficient coding network with finite

synaptic delays (black cross) independent Poisson units whose firing rate varies as a fixed function of the feed-forward input (red). (f) Stimulus and

neural reconstruction for the recurrent network, with synaptic delays. (inset) Excitatory (black) and inhibitory (red) neural reconstructions, during a short

segment from this trial.
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excitatory and inhibitory neural reconstructions. These fluctuations are essentially the same phenom-

ena as observed for the ideal network, where the neural reconstruction fluctuated periodically

around the target signal following the arrival of each new spike (Figure 2c). However, with synaptic

delays, several neurons fire together before the arrival of recurrent inhibition. As a result, oscillations

are slower and larger in magnitude than for the idealised network, where only one neuron fires on

each cycle.

Oscillations and efficient coding
We sought to quantify the effect of oscillations on coding performance. To do this, we varied param-

eters of the model, so as to alter the degree of network synchrony, while keeping firing rates the

same. In the main text we illustrate the effect of adding white noise to the membrane potentials

(while simultaneously varying the spike threshold, to maintain constant firing rate; see

Materials and methods).

Increasing the magnitude of the membrane potential noise desynchronized the network activity,

resulting in a reduction in pairwise voltage correlations (Figure 4a). With increased noise, single neu-

ral spike trains also became more irregular, reflected by an increase in the spiking CV (Figure 4b).

Coding performance, however, varied non-monotonically with the noise amplitude. The recon-

struction error followed a u-shaped curve, being minimised for a certain intermediate level of noise

(Figure 4c, solid curve). For this intermediate noise level, coding performance was significantly bet-

ter than a network of independent Poisson units with a matching firing rate (horizontal dashed line).

Interestingly, deviations between excitation and inhibition followed a similar u-shape curve, being

minimised for the same intermediate noise level (Figure 4c, thick dashed curve). Thus, optimal cod-

ing was achieved when the balance between excitatory and inhibition was the tightest. Further, at

the optimal level of noise, the spiking CV value was near unity (Figure 4b), implying irregular (near-

poisson) single cell responses.

To further understand the effect of varying noise amplitude, we plotted the network responses

and neural reconstruction in three regimes: with low, intermediate, and high noise (indicated by

green, blue and red circles respectively in Figure 4a–c).

With low noise, neural membrane potentials were highly correlated, leading many neurons to fire

together on each oscillation cycle (Figure 4d, upper panel). As a result, the neural reconstruction

exhibited large periodic fluctuations about the encoded input, leading to poor coding performance

(Figure 4d, lower panel).

At the other extreme, when the injected noise was very high, the spike trains of different neurons

were uncorrelated (Figure 4f, upper panel). As, in this regime, effectively no information was shared

between neurons, inhibitory and excitatory reconstructions were decoupled, and coding perfor-

mance was similar to a population of independent Poisson units (Figure 4f, lower panel).

In the intermediate noise regime, for which performance was optimal, spikes were aligned to

rhythmic fluctuations in the prediction error, but few neurons fired on each cycle (Figure 4e, upper

panel). These dynamics were reflected by a near-exponential distribution of interspike-intervals

(Figure 4e), coupled with a narrow peak in the population firing rate spectrum (Figure 4e). In this

regime, rhythmic fluctuations in the neural reconstruction were small in magnitude, and there was a

tight coupling between inhibitory and excitatory reconstructions (Figure 4e, lower panel).

Manipulating synaptic failures and neural noise
To assess the generality of the results shown in Figure 4, we manipulated the degree of synchrony

in the network in different ways. First, we varied the synaptic reliability, by varying the probability

that a presynaptic spike led to a change in the postsynaptic membrane potential (Figure 5a–b).

Note that the average recurrent input received by each neuron varies proportionally with the synap-

tic failure probability. Thus, to correct for this, and retain balance in the network, the magnitude of

recurrent connection was scaled inversely with the synaptic failure probability (see

Materials and methods).

Next, we selected a subset of cells to fire with random, Poisson distributed, firing rates (and

matching rate) (Figure 5c–d). For both manipulations, the added membrane potential noise was

held constant (equal to the ‘low-noise’ condition indicated by green open circle in Figure 4a–c).
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We observed qualitatively similar changes in coding performance and network synchrony, regard-

less of how we manipulate noise in the network. In both cases, the coding error was smaller at an

intermediate level of noise, for which there was tightest balance between inhibition and excitation

(Figure 5a and c).

Oscillatory neural dynamics
We investigated the behaviour of the network in the optimal noise regime, shown in Figure 4e.

Figure 6a shows the network reconstruction and population firing rates in response to a low (blue),

medium (red) and high (green) amplitude stimulus, with the optimal noise amplitude (i.e. 17 mV s1=2).
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The population firing rate was characterised by a transient peak following stimulus onset, followed

by decay to a constant value. A spectrogram of the population firing rate (Figure 6a, lower panel)

reveals the presence of 30–50 Hz oscillations during the period of sustained activity. Figure 6b plots

the spiking response and population firing rates during a 600 ms period of sustained activity. Here,
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one clearly sees correlated rhythmic fluctuations in excitatory (black) and inhibitory (red) activity. The

strength of these oscillations increases with stimulus amplitude (Figure 6c). Nevertheless, for all

input amplitudes, individual neurons fired irregularly, with a near-exponential distribution of inter-

spike intervals (Figure 6d).

We next considered the dynamics of neural membrane potentials. Previously, Yu & Ferster

(Yu and Ferster, 2010) reported that, in area V1, visual stimulation increases gamma-band correla-

tions between pairs of neural membrane potentials (Figure 7a). Qualitatively similar results were

obtained with our model (Figure 7b). Increasing the amplitude of the feed-forward input led to

increased correlations between neural membrane potentials (Figure 7c), with strongest coherence

observed in the gamma-band range (Figure 7d). This is because more neurons fire spikes on each

cycle, leading to stronger oscillations.

Figure 6. Spiking response to a constant input. (a) (top) Neural reconstruction (solid lines) of a presented constant stimulus (dashed lines), before and

after stimulus onset. Low, medium and high amplitude stimuli are shown in blue, red and green, respectively. (middle) Population firing rate, for each

stimulus amplitude. (bottom) Spectrogram of population firing rate. (b) The upper panel shows a raster-gram of excitatory (black) and inhibitory (red)

responses, during a 0.6 s period of sustained activity. The lower panel shows the instantaneous firing rates of the excitatory and inhibitory populations.

(c) Power spectrum of excitatory population firing rate during the sustained activity period, for each stimulus amplitude. (d) Average distribution of

single-cell inter-spike intervals, for each stimulus amplitude.
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Several studies have reported a tight balance between inhibition and excitation (Atallah and

Scanziani, 2009; Wehr and Zador, 2003; Cafaro and Rieke, 2010). Recently, Atallah et al.

(Atallah and Scanziani, 2009) reported that inhibitory and excitatory currents are precisely balanced

on individual cycles of an ongoing gamma oscillation (Figure 8a). In our model, efficient coding is

achieved by maintaining such a tight balance between inhibitory and excitatory reconstructions.

Thus, inhibitory and excitatory currents closely track each other (Figure 8b), with a high correlation

between the amplitude of inhibitory and excitatory currents on each cycle (Figure 8c). In common

with Atallah et al.’s data, inhibition lags behind excitation by a few milliseconds (Figure 8d). Fluctua-

tions in the amplitude of inhibitory and excitatory currents instantaneously modulate the oscillation

frequency, with a significant correlation observed between the peak amplitude on a given oscillation

cycle and the period of the following cycle (Figure 8e).
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Gamma oscillations and behavioural performance
In general, the optimal network parameters depend on the properties of the feed-forward sensory

input. For example, the higher the input amplitude, the more noise is required to achieve the opti-

mal level of network synchrony (Figure 9a). While the network achieves reasonable coding accuracy

for a large range of different inputs, adaptive tuning of the dynamics (for example, changing the

noise level) can be beneficial for a more limited input range. This would affect the level of population

synchrony and thus introduce a correlation between performance and the strength of Gamma

oscillations.

For example, if the task is to detect weak (low amplitude) inputs, performance would be higher if

top down modulations (such as attention) reduced the level of noise, and thus increased the degree

of population synchrony (Figure 9b) without significantly changing firing rates. We can thus expect

higher detection performance to correlate with a stronger level of Gamma oscillations (Figure 9c).

This could account for certain attention-dependent increases in gamma-power and its correlation

with behavioural performance (see Discussion).

Note that a similar correlation between behavioural performance and Gamma power could arise

from purely bottom up effects. In the presence of input noise causing trial-by-trial changes in input

strength, trials with stronger input amplitude would result in more detection but also exhibit more

Gamma oscillations. In that case, however, the increase in Gamma power would be associated with

a commensurate increase in population firing rate.
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Sensitivity to network paramaters
We investigated the degree to which our results depended on the network size, and the ratio of

inhibitory to excitatory neurons. With readout weights held constant, neural firing rates in our model

are inversely proportional to the network size (such that the population firing rate stays constant;

Figure 10a). The optimal coding performance was practically unaltered by increasing or decreasing

the population size by a factor of two, although there was a small trend for the optimal noise magni-

tude to increase with population size (Figure 10b). The oscillatory dynamics were unaltered by vary-

ing the network size (Figure 10c). Varying the number of inhibitory neurons (while keeping the

number of excitatory neurons constant), had a similar effect on inhibitory firing rates (Figure 10d),

with little effect on coding performance or oscillatory dynamics (Figure 10e–f).

We next investigated the effect of varying the time constants of the network. We first rescaled all

the time-constants for the synaptic waveform. For plotting purposes, the effective ‘synaptic delay’

was defined as the time for the cumulative input due to a single synaptic event to attain half its maxi-

mum value. Increasing the synaptic delay meant that more neurons fired on each oscillation cycle

before receiving recurrent inhibition, and thus resulted in decreased coding performance (Figure 11

b), and larger, lower frequency oscillations (Figure 11c).

Because there are only two time constants in the model network, when feed-forward and recur-

rent weights are rescaled appropriately, decreasing the read-out time, t, is equivalent to increasing

the synaptic delay. However, when recurrent weights are held constant, decreasing t increases firing

rates (which are inversely proportional to t) in contrast to varying the synaptic delay, which has no

effect on firing rates (compare Figure 11 a and e). Decreasing t also increases the oscillation magni-

tude with a resulting decrease in coding quality (Figure 11f–g). However, unlike varying the synaptic

delay, t has a relatively weak effect on the oscillation frequency (Figure 11h). Intuitively, this is

because varying t causes two changes in network dynamics, which have opposite effects on the

oscillation frequency. On the one hand, decreasing t results in a faster integration time, speeding up

the network dynamics (and thus, increasing the oscillation frequency). On the other hand, decreasing

t increases the oscillation magnitude, leading to stronger inhibition on each oscillation cycle, and

thus decreasing the oscillation frequency.

Discussion
We present a novel hypothesis for the role of neural oscillations, as a consequence of efficient cod-

ing in recurrent neural networks with noise and synaptic delays. In order to efficiently code incoming

information, neural networks must trade-off two competing demands. On the one hand, to ensure
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that each spike conveys new information, neurons should actively desynchronise their spike trains.

On the other hand, to do this optimally, neural membrane potentials should encode shared global

information about what has already been coded by the network, which will tend to synchronise neu-

ral activity.

In a network of LIF neurons with dynamics and connectivity tuned for efficient coding, we found

that this trade-off is best met when neural spike trains are entrained to a global oscillatory rhythm

(implying a consistent representation of the prediction error), but where few neurons fire spikes on

each cycle (implying high efficiency). This also corresponds to the regime in which inhibition and

excitation are most tightly balanced. Our results provide a functional explanation for why cortical

networks operate in a regime in which: (i) global oscillations in population firing rates occur along-

side individual neurons with low, irregular, firing rates (Brunel and Hakim, 1999) (ii) there is a tight
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balance between excitation and inhibition (Atallah and Scanziani, 2009; Wehr and Zador, 2003;

Cafaro and Rieke, 2010).

For simplicity, we considered a homogeneous network with one-dimensional feed-forward input.

However, the results presented here can be generalised to networks with heterogenous connection,

as well as networks that encode high-dimensional dynamical variables.

Relation to balanced network models
Previously, Brunel & colleagues derived the conditions under which a recurrent network of integrate-

and-fire neurons with sparse irregular firing rates exhibits fast global oscillations (Brunel and Hakim,

1999; Renart et al., 2010; Brunel and Wang, 2003; Mazzoni et al., 2008). This behaviour is quali-

tatively similar to the network dynamics observed in our model. However, these previous models dif-

fer in several ways from the model presented here. For example, they assume sparse connections

(and/or weak connectivity), in which the probability of connections (and/or connection strengths)

scales inversely with the number of neurons. In contrast, the connections in our network are non-

sparse and finite. Thus, our network achieves a tighter balance between inhibitory and excitatory

currents, and smaller fluctuations in membrane potentials (they scale as 1=N in the absence of delays,

rather than 1=
ffiffiffiffi

N
p

).

Previous models of balanced neural networks typically consider medium to large neural popula-

tions, for which finite size effects are limited. In contrast, the recurrent network proposed here is par-

ticularly relevant to networks with a relatively small number of neurons (i.e. hundreds, rather than

0 50 100

freq (Hz)

p
o

p
. 

fi
ri
n

g
 r

a
te

 p
o

w
e

r

0 50 100

freq (Hz)

p
o

p
. 

fi
ri
n

g
 r

a
te

 p
o

w
e

r

varying synaptic delay

varying decoding timescale

b c d

hgf

2 4 6 8
0

20

40

60

delay (ms)

p
e

a
k
 (

H
z
)

a

2 4 6 8
0

5

10

15

delay (ms)

ra
te

 (
H

z
)

rm
s
 e

rr
o

r

e

2 4 6 8
0

2

4

6

delay (ms)

rm
s
 e

rr
o

r

20 40 60 80 100
0

2

4

6

8

tau (ms)

20 40 60 80 100
0

20

40

60

tau (ms)

p
e
a
k
 (

H
z
)

50 ms

75 ms

100 ms

6.2 ms

4.1 ms

2.5 ms

20 40 60 80 100
0

10

20

30

40

delay (ms)

ra
te

 (
H

z
)

Figure 11. Effect of varying the network time constants. (a) Neural firing rates versus the synaptic delay. (b) Root-mean-squared (rms) reconstruction

error versus the synaptic delay. A horizontal line denotes the performance of a Poisson spiking network with matching population firing rate. (c) Power

spectrum of population firing rate, for three different settings of the synaptic delay. (d) Peak oscillation frequency, versus synaptic delay. (e–h) Same as

panels a–d, but where we varied the read-out time constant (which determines the effective membrane time constant).

DOI: 10.7554/eLife.13824.012

Chalk et al. eLife 2016;5:e13824. DOI: 10.7554/eLife.13824 14 of 23

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.13824.012
http://dx.doi.org/10.7554/eLife.13824


thousands, of neurons per input dimension). This is because in cases where a very large number of

neurons encode a low-dimensional input, fluctuations in firing rate due to Poisson noise can be aver-

aged out, and thus are not a limiting factor for coding accuracy. Note that the population size at

which our proposed recurrent coding scheme ceases to be advantageous depends on several fac-

tors, including the input dimensionality and average neural firing rates.

The most important distinction between our work and previous mean-field models lies in the way

the network is constructed. In our work, the network connectivity and dynamics are derived from

functional principles, in order to minimise a specific loss function (i.e. the squared difference

between the neural reconstruction and input signal). This ‘top-down’ modelling approach allows us

to directly ask questions about the network dynamics that subserve optimal efficient coding. For

example, balanced inhibition and excitation are not imposed in our model, but rather, required for

efficient coding. Further, while previous models showed mechanistically how fast oscillations can

emerge in a network with slow irregular firing rates (Brunel and Hakim, 1999), our work goes fur-

ther, showing that these dynamics are in fact required for optimal efficient coding.

Finally, it is important to realise that, while efficient coding in a recurrent network leads to global

oscillations, the reverse is not true: just because a network oscillates, does not mean that it is per-

forming efficiently. To demonstrate this point, we repeated our simulations in a network with hetero-

geneous read-out weights (Figure 12a–b). Both the coding performance and spiking dynamics of

this network were indistinguishable from the homogeneous network described in the main text. In

contrast, when we randomised the recurrent connection strengths (Figure 12c–d; see

Materials and methods), the coding performance of the network was greatly reduced (Figure 12e),

despite the fact that the network dynamics and firing rate power spectrum were virtually unchanged

(Figure 12f).

Indeed, the coherence between excitatory and inhibitory current oscillations (i.e. the level of bal-

ance) is a much more reliable signature of efficient coding than global population synchrony. While

population synchrony can occur in globally balanced network as well, only networks with

an intracellular detailed balance between excitatory and inhibitory currents achieve high coding

performance.

Relation to previous efficient coding models
Previous work on efficient coding has mostly concentrated on using information theory to ask what

information ‘should’ be represented by sensory systems (Simoncelli and Olshausen, 2001).

Recently, however, researchers have begun to ask, mechanistically, how neural networks should be

setup in order to operate as efficiently as possible (Boerlin et al., 2013; Boerlin and Denève, 2011;

Deneve, 2008). This approach can provide certain insights not obtainable from information theory

alone.

For example, according to information theory, in the low-noise limit, the most efficient spiking

representation will be one in which the spike trains of different neurons are statistically independent,

and thus, there are no oscillations. In practice however, neural networks must operate in the face of

biological constraints, such as synaptic delays. Considering these constraints changes our conclu-

sions. Specifically, contrary to what one might expect from a purely information theoretical analysis,

we find that oscillations emerge (even in a regime with low input-noise) as a consequence of neurons

performing as efficiently as possible given synaptic delays, and should not be removed at all cost.

Relation to previous predictive spiking models
Previously, Deneve, Machens and colleagues described how a population of spiking neurons can effi-

ciently encode a dynamic input variable (Boerlin et al., 2013; Boerlin and Denève, 2011;

Deneve, 2008; Bourdoukan et al., 2013). In this work, we showed that a recurrent population of

integrate-and-fire neurons with dynamics and connectivity tuned for efficient coding maintains a bal-

ance between excitation and inhibition, exhibits Poisson-like spike statistics (Boerlin et al., 2013),

and is highly robust against perturbations such as neuronal cell death. However, we did not previ-

ously demonstrate a relation between efficient coding and neural oscillations. The main reason for

this is that we always considered an idealised network, with instantaneous synapses. In this idealised

network, only one cell fires at a time. As a result, oscillations are generally extremely weak and fast

(with frequency equal to the population firing rate), and thus, completely washed out in a large
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network with added noise and/or heterogenous read-out weights. In contrast, in a network with

finite synaptic delays, more than one neuron may fire per oscillation cycle, before the arrival of inhi-

bition. As a result, oscillations are generally much stronger, even with significant added noise and/or

heterogenous read-out weights.

Attentional modulation
Directing attention to a particular stimulus feature/location has been shown to increase the gamma-

band synchronisation of visual neurons that respond to the attended feature/location (Fries et al.,

2001). Figure 9 illustrates how such an effect could come about. Here, we show that attentional

modulations that increase the strength of gamma-band oscillations will serve to increase perceptual

discrimination of low contrast stimuli. Such attentional modulation could be achieved in a number of

different ways, for example, by decreasing noise fluctuations, or modulating the effective gain of

feed-forward or recurrent connections (Reynolds and Heeger, 2009; Mitchell et al., 2007).
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In general, the way in which attention should modulate the network dynamics will depend on the

stimulus statistics and task-setup. Future work, that considered higher dimensional sensory inputs (as

well as competing ‘distractor’ stimuli), could allow us to investigate this question further.

The benefits of noise
An interesting aspect of our work is that it suggests various sources of noise (e.g. such as synaptic

failure), often thought of as a ‘problem’ for neural coding, may in fact help neural networks achieve

higher coding performance than would otherwise be possible.

With low noise, neural membrane potentials in our model are highly correlated (Figure 4a), and

inhibition is not able to prevent multiple neurons firing together. To avoid this, we needed to add

noise to neural membrane potentials (while simultaneously increasing spiking thresholds). With the

right level of noise, fewer neurons fired on each oscillation cycle, resulting in increased coding per-

formance. Too much noise, however, led to inconsistent information being encoded by different

neurons, decreasing coding performance (Figure 4c). This phenomena, where noise fluctuations

increase the signal processing performance of a system, is often referred to as ‘stochastic resonance’

(Benzi et al., 1981; Faisal et al., 2008), and has been observed in multiple sensory systems, includ-

ing cat visual neurons (Longtin et al., 1991; Levin and Miller, 1996). Previously however, stochastic

resonance has usually been seen as a method to amplify sub-threshold sensory signals that would

not normally drive neurons to spike. Here, in contrast, noise desynchronises neurons that receive

similar recurrent inputs, increasing the coding efficiency of the population.

Biological limitations
While it is interesting that, starting from a pure top-down coding rule, one can arrive at a network of

recurrently coupled effective integrate-and-fire (IF) neurons, we emphasize that this derived network

is still far from being ‘biologically realistic. In the current paper, we address a fundamental limitation

of the idealized model that emerges from the derivation, where neural feedback is both noiseless

and instantaneous. We show how efficient neural coding can be performed in a network where feed-

back is noisy and delayed, with resulting oscillatory dynamics that resemble what is observed

experimentally.

Nonetheless, significant challenges remain in order to draw a closer connection between the top-

down neural model and biology. For example, neurons in our model have voltage-driven synapses,

while real synapses are better approximated by conductance based models. In another study, we

showed how to adapt the framework to more realistic Hodgkin Huxley neurons that included synap-

ses with finite rise time, but no delays (Schwemmer et al., 2015). Further, the slow time constant

(100 ms), required in our simulations to achieve high coding performance, contrasts with the rela-

tively fast (~10–20 ms) membrane time constants observed experimentally. It will be important in the

future to investigate how extensions to the model (such as higher-dimensional inputs and/or alterna-

tive implementations with sparse recurrent connectivity) can help recover coding performance given

fast, biologically realistic, membrane time constants.

Alternative functional roles for oscillations
Neural oscillations have been hypothesised to fulfill a number of different functional roles, including

feature binding (Singer, 1999), gating communication between different neural assemblies

(Fries, 2005; Womelsdorf et al., 2007; Akam and Kullmann, 2010), encoding feed-forward and

feed-back prediction errors (Arnal et al., 2011; Arnal and Giraud, 2012; Bastos et al., 2012) and

facilitating ‘phase codes’ in which information is communicated via the timing of spikes relative to

the ongoing oscillation cycle (Buzsáki and Chrobak, 1995).

Many of these theories propose new ways in which oscillations encode incoming sensory informa-

tion. In contrast, in our work network oscillations do not directly code for anything, but rather, are

predicted as a consequence of efficient rate coding, an idea whose origins go back more than 50

years (Barlow, 1961).
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Materials and methods

Efficient spiking network
We consider a dynamical variable that evolves in time according to:

t

dx tð Þ
dt
¼�x tð Þþ c tð Þ; (1)

where c tð Þ is a time-varying external input or command variable, and t is a fixed time constant. Our

goal is to build a network of N neurons that take c tð Þ as input, and reproduce the trajectory of x tð Þ.
Specifically, we want to be able to read an estimate x̂ tð Þ»x tð Þ of the dynamical variable from the net-

work’s spike trains o tð Þ ¼ o1 tð Þ;o2 tð Þ; . . . ;oN tð Þð Þ. These output spike trains are given by

oi tð Þ ¼
P

k d t� tki
� �

, where tki is the time of the kth spike in neuron i.

We first assume that the estimate, x̂ tð Þ, can be read out by a weighted leaky integration of spike

trains:

t

dx̂ tð Þ
dt
¼�x̂ tð Þþ

X

i

wioi tð Þ; (2)

where wi is a constant read-out weight associated with the ith neuron. For simplicity, we set the read-

out time-constant, t, equal to the timescale of the input, x.

We next assume that the network minimises the distance between x tð Þ and x̂ tð Þ by optimising

over spike times tki . The network minimises the loss function,

E tð Þ ¼ x tð Þ� x̂ tð Þð Þ2þa
X

i

r tð Þþb
X

i

ri tð Þ2: (3)

The first term in the loss function is the squared distance between the x tð Þ and x̂ tð Þ. The second

term and third term represent L1 and L2 penalties on the firing rate, respectively. a and b are con-

stants that determine the size of the penalty. The time varying firing rate of the ith neuron is defined

to by the differential equation:

t

dri

dt
¼�riþ oi tð Þ: (4)

A neuron fires a spike at time t if it can reduce the instantaneous error E tð Þ (i.e. when

Eðtjneuron i spikesÞ < Eðtjneuron i doesn0t spikeÞ). This results in a spiking rule:

Vi tð Þ > Ti (5)

where,

Vi tð Þ ¼wi x tð Þ� x̂ tð Þð Þ�bri (6)

Ti ¼
1

2
w2

i þaþb
� �

: (7)

Since Vi tð Þ is a time-varying variable, whereas Ti is a constant, we identify the former with the ith

neuron’s membrane potential Vi tð Þ, and the latter with its firing threshold Ti.

To obtain the network dynamics, we take the derivative of each neuron’s membrane potential to

obtain:

t

dVi tð Þ
dt
¼�Vi tð Þþwic tð Þ�wi

X

k

wkok tð Þ�boi tð Þþsni tð Þ: (8)

where ni tð Þ corresponds to a white ‘background noise’, with unit variance (added for biological real-

ism). Thus, the resultant dynamics are equivalent to a recurrent network of leaky integrate-and-fire

(LIF) neurons, with leak, �V tð Þ, feed-forward input, wic tð Þ, recurrent input, �wi

P

kwkok tð Þ, and self-

inhibition (or reset), �boi tð Þ. Note that in the case considered here, where the decoding timescale is

equal to the membraine time constant, the ‘leak term’, Vi, emerges directly from the derivation.
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Balanced network of inhibitory and excitatory neurons
To construct a network that respects the Dale’s law, we introduce a population of inhibitory neurons,

that tracks the estimate encoded by the excitatory neurons, and provides recurrent feedback. For

simplicity, we consider a network in which all read-out weights are positive. In our framework, this

results in a particularly simple network architecture, in which a single population of excitatory neu-

rons is recurrently connected to a population of inhibitory neurons (Figure 3a). For further discussion

of different network architectures, see (Boerlin et al., 2013).

We first introduce a population of inhibitory neurons, that receive input from excitatory cells. The

objective of the inhibitory population is to minimise the squared distance between excitatory and

inhibitory neural reconstructions (x̂E, and x̂I , respectively), by optimising over spike times tki . Thus, an

inhibitory neuron spikes when it can reduce the loss function:

E tð Þ ¼ x̂I tð Þ� x̂E tð Þð Þ2þaI

X

i

rIi tð ÞþbI

X

i

rIi tð Þ2: (9)

Following the same prescription as before, we obtain the following dynamics for the inhibitory

neurons:

t

dV I
i

dt
¼ �V I

i tð ÞþwI
i

X

k

wE
k o

E
k tð Þ

�wI
i

X

k

wI
ko

I
k tð Þ�bIo

I
k þsnIi tð Þ:

(10)

Thus, inhibitory neurons receive input from excitatory neurons (second term), and recurrent inhibi-

tion from other inhibitory neurons (third term).

Now, as the inhibitory reconstruction tracks the excitatory reconstruction, we can make the sim-

plifying assumption of replacing x̂E with x̂I , in our earlier expression for the excitatory membrane

potential (equation 6), giving:

VE
i tð Þ ¼wE

i x tð Þ� x̂I tð Þð Þ�bEr
E
i (11)

Taking the derivative of this expression as before, we obtain the following dynamics for the excit-

atory neurons:

t

dVE
i

dt
¼ �VE

i tð ÞþwE
i c tð Þ

�wE
i

X

k

wI
ko

I
k tð Þ�bEo

E
k þsnEi tð Þ:

(12)

Thus, excitatory neurons receive excitatory feed-forward input (second term) and recurrent inhibi-

tory input (third term).

Synaptic dynamics
To account for transmission delays and continuous synaptic dynamics we assume that each spike

generates a continuous current input to other neurons, with dynamics described by the synaptic

waveform, h t � tli
� �

. The shape of this waveform is given by:

h tð Þ ¼
1

td�tr exp
� t�ttrð Þ

td

� �

� exp
� t�ttrð Þ

tr

� �h i

if t > ttr

0 if t > ttr

(

(13)

where tr is the synaptic rise time, td is the decay time and ttr is the transmission delay. The normal-

isation constant, td � tr, ensures that
R

¥

ttr
h tð Þdt¼ 1. This profile is plotted in Figure 3b, with tr ¼ 1ms,

td ¼ 3ms and ttr ¼ 1ms.

To incorporate continuous synaptic currents into the model, we alter equations 10 and 12, by

replacing each of the recurrent spiking inputs (ok tð Þ) by the convolution of the spiking input and cur-

rent waveform (h tð Þ$ok tð Þ  ok tð Þ).
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Simulation parameters
For the simulations shown in Figure 2, we considered a toy network of 3 neurons with equal read-

out weights, wi ¼ 1. The L1 spike cost was a ¼ 0 and the L2 spike cost was set to b ¼ 0:04. The read-

out time constant was set to t ¼ 0:1s. The magnitude of injected membrane potential noise was set

to s ¼ 0:02. In each case, network dynamics were computed from equation 8.

For the simulations shown in Figures 3–12, we considered a larger network of 50 excitatory neu-

rons, and 50 inhibitory neurons. All neurons had equal read-out weights, equal to g0 ¼ 1:2mV1=2.

The L1 spike cost was set to 0. The L2 spike cost was set to b ¼ 8:5 mV. If we assume a spike thresh-

old of �55 mV, this corresponds to a resting potential of �60 mV (Vrest ¼ Vthresh � 1

2
L1 þ L2 þ g2

0

� �

), a

reset of �65 mV (Vreset ¼ Vthresh � L2 � g2

0
), and post-synaptic potentials of 1.45 mV (VPSP ¼ g2

0
; see

(Boerlin et al., 2013) for details of scaling to biological parameters).

For Figures 3, 6–8, 10 and 12 the magnitude of injected membrane potential noise was set to its

‘optimal value’ s ¼ 17 mV s1=2. For Figure 5 the membrane potential noise was set lower, at

s ¼ 8 mV s1=2.

Network dynamics were computed from equations 10 and 12 (with the exception that recurrent

inputs were convolved with the synaptic current waveform, h tð Þ, described in equation 13).

Algorithm
Simulations were run using a Euler method, with discrete time steps of 0.5 ms. For the ‘ideal’ net-

work (i.e. with instantaneous synapses) only one neuron (with highest membrane potential) was

allowed to fire a spike within each bin. Changing the temporal discretisation did not qualitatively

alter our results.

Stimulus details
In Figure 2b, the encoded variable, x, was obtained by low-pass filtering white noise with a first-

order Butterworth filter, with cut-off frequency of 4 Hz (the low-pass Butterworth filter, with transfer

function proportional to 1= 1þ !=!cð Þ2n
� �

, where n is the filter order, and !c is the cut-off frequency,

was implemented using Matlab’s ‘butter’ command).

After filtering, x, is rescaled to have a mean of 3, and standard deviation of 1. In Figure 2c the

encoded variable is constant, x ¼ 4. In Figure 3, the encoded variable is obtained by low-pass filter-

ing a white-noise input in the same way as for Figure 2b, this time with a cut-off frequency of 2 Hz.

After filtering, x, is rescaled to have non-zero mean of 50, and standard deviation of 10. In Figures 4–

5, 7–8 and 10–12 the encoded variable was held constant at x ¼ 50. In Figures 6 and 9, the ’low’,

’medium’ and ’high’ amplitude inputs are x ¼ 35, 50, and 65, respectively.

Poisson model
In Figure 3d–e, we compare the efficient coding model to a rate model, in which neural firing rates

vary as a function of the feed-forward input, c tð Þ. Firing rates for the Poisson model were equal to

the mean firing rate in the recurrent model (when excitatory readout weights are all equal, firing

rates are proportional to the feed-forward input, cðtÞ). Spiking responses were obtained by drawing

from a Poisson distribution.

Varying the noise
For the simulations shown in Figure 4, we varied the injected membrane potential noise. In general,

varying the noise amplitude changes neural firing rates, leading to systematic estimation biases. To

compensate for this, we adjusted the L2 spike cost for the inhibitory and excitatory neurons, so as to

maintain zero estimation bias (or equivalently, to keep firing rates constant). For each noise level, we

ran an initial simulation, modifying excitatory and inhibitory costs, bE and bI , in real time (via a sto-

chastic gradient descent algorithm), until both the excitatory and inhibitory estimation biases con-

verged to zero.

To generate Figure 5a–b we varied the synaptic reliability, by altering the probability that a pre-

synaptic spike produces a change in the postsynaptic membrane potential. To keep the total synap-

tic input to each neuron constant, we divided the recurrent connection strengths by the probability

of synaptic failure.
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To generate Figure 5c–d we chose a fraction of inhibitory and excitatory neurons. The selected

neurons fired spikes random Poisson spike trains. Their firing rates remained unchanged.

Population firing rates
To plot the population firing rate (Figure 6a and b), we low-pass filtered neural spike trains using a

first order Butterworth filter (with cut-off frequency of 5.5 Hz, and 66 Hz, for panels b and d, respec-

tively), before averaging over neurons.

Spectral analysis
The spectrogram of the population firing rate, shown in Figure 6a (lower panel), was computed

using a short-time Fourier-transform, with a Hamming time window of 60 ms (Matlab’s ‘spectrogram

function’). Finally, the instantaneous power spectrum was low-pass filtered with a first-order Butter-

worth filter, with cut-off frequency 3 Hz. The power spectrum of the population firing rate and neural

membrane potentials (Figures 4h, 5b and d, 6c) was computed using the multi-taper method (using

Matlab’s ‘pmtm’ function), with bandwidth chosen empirically to achieve a spectrum that varied

smoothly with frequency.

Excitatory and inhibitory currents
To plot the currents shown in Figure 8b, we divided the total excitatory and inhibitory input to each

cell by a presumed membrane resistance of Rm ¼ 5M
 (changing this value rescales the y-axis). We

then defined peaks in excitatory and inhibitory currents as local maxima in the currents, separated

by a drop an 80% drop in the current magnitude. Further, we only included peaks in inhibitory and

excitatory currents that occurred within 15 ms of each other.

Discrimination threshold
For the simulation shown in Figure 9, we considered the performance of the network in discriminat-

ing between two 0.1 s long stimulus segments, with equally spaced around the ‘low’ amplitude input

(x ¼ 48). From signal detection theory, a subject’s probability of selecting between two stimuli is

given by: Pcorrectðx1; x2Þ ¼ 1

2
erfc 1

2
Dðx1; x2Þ

� �

, where erfcðxÞ is the cumulative error function, and Dðx1; x2Þ
is the normalized distance (or d-prime) between the distribution of estimates:

Dðx1; x2Þ ¼ �ðx2Þ��ðx1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
s2ðs1Þþs2ðs2Þ

p . These quantities can be directly computed from the network output.

‘Random’ versus ‘precisely’ balanced network
The network used to generate Figure 12a–b was the same as before, with the exception that the

readout weights varied (and thus, the connection strengths) for each neuron. Readout weights were

sampled from a gamma distribution, with mean 1:2mV1=2, and standard deviation 0:5mV1=2. For the

optimal ‘precisely balanced’ network (Figure 12a–b), the reciprocal connection strengths between

each inhibitory and excitatory neuron are equal in magnitude. For the ‘randomly’ balanced network

(Figure 12c–d), we disrupted this symmetry by randomly permuting the input to each excitatory/

inhibitory neuron (while ensuring that the summed input to each neuron remained unchanged).

Recurrent inhibitory connections were left unchanged.
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James S. McDonnell Founda-
tion

Sophie Denève
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