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Abstract

We frequently encounter the same item in different contexts, and when that happens, memories of earlier encounters can get

reactivated. We examined how existing memories are changed as a result of such reactivation. We hypothesized that when an

item’s initial and subsequent neural representations overlap, this allows the initial item to become associated with novel

contextual information, interfering with later retrieval of the initial context. Specifically, we predicted a negative relationship

between representational similarity across repeated experiences of an item and subsequent source memory for the initial

context. We tested this hypothesis in an fMRI study, in which objects were presented multiple times during different tasks.

We measured the similarity of the neural patterns in lateral occipital cortex that were elicited by the first and second

presentations of objects, and related this neural overlap score to subsequent source memory. Consistent with our hypothesis,

greater item-specific pattern similarity was linked to worse source memory for the initial task. In contrast, greater reactivation

of the initial context was associated with better source memory. Our findings suggest that the influence of novel experiences

on an existing context memory depends on how reliably a shared component (i.e., item) is represented across these episodes.
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Introduction

Our experience is highly repetitive, with the same objects

appearing repeatedly over time and often in different contexts.

For example, we might move a piece of furniture to many dif-

ferent apartments, see somebody from work at the grocery

store, or look for our car in various parking lots. How does

experiencing a familiar item in a novel context affect pre-

existing memories of the item and its prior contexts?

It has long been known that memory for the initial context

in which an item was experienced can be impaired by a later

encounter of the item in a new context. Such retroactive inter-

ference has been widely investigated using the AB/AC para-

digm (McGovern 1964; Postman and Underwood 1973; Richter

et al. 2016). In this paradigm, participants learn an episode with

components A and B, then another episode with components A

and C. As in a previous example, we might encounter a

colleague at the grocery store (item A in context C), with whom

we previously chatted in the office (item A in context B).

Because of the shared component A, learning AC can trigger

retrieval of the previously learned AB memory. How does this

memory reinstatement relate to retroactive interference (i.e.,

forgetting of B and/or AB)? One prominent account is that

reactivation of a prior context B during later AC learning builds

resistance to interference, leading to better subsequent

retrieval of the initial context B when cued with A (Koen and

Rugg 2016; Kuhl et al. 2010).
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Here we investigate a different, though not mutually exclu-

sive, account of how memory reinstatement relates to retroac-

tive interference. We focus on the fact that mental

representations of an item can differ over time even when we

putatively experience the “same” item. In the AB/AC paradigm,

for example, this would correspond to variance in the extent to

which the representation of A during AC learning is the same as

the representation of A during the prior AB learning. Although

neural overlap across repeated presentations of an item can be

associated with better memory for that item (Ward et al. 2013;

Xue et al. 2010), it is unknown how this overlap affects memory

for previously formed item-context associations.

We hypothesize that retroactive interference occurs when

the same item representation is reinstated across episodes

with different contexts. Specifically, reinstatement of the item

representation engaged by the initial processing of A (from AB

learning) during AC learning allows these reinstated item fea-

tures to become associated with the novel context (C), which

interferes with later retrieval of the initial context B (note that

we are using “item reinstatement” descriptively, to refer to the

degree to which the same item features are activated by the

initial and subsequent presentation of the item; this overlap

could be due to retrieval of features from memory or bottom-

up perception). In contrast, if the representation of A during AC

learning differs from that of the prior AB episode, memory of

the initial context B might be less affected by retroactive inter-

ference. In short, we predict a negative relationship between

item-specific representational overlap and subsequent source

memory for the initial context.

This hypothesized negative relationship stands in contrast

to previous findings of a positive relationship between context

reinstatement and subsequent source memory (Kuhl et al.

2010; Koen and Rugg 2016). Importantly, those studies mea-

sured neural reinstatement of contextual features, tested sub-

sequent memory for those same contextual features, and

found that context memory is strengthened by its reactivation.

In contrast, for our study, we set out to measure reinstatement

of item features across contexts. In keeping with prior theoreti-

cal and empirical work (Hupbach et al. 2007; Gershman et al.

2013; Sederberg et al. 2011; St. Jacques et al. 2013), we hypothe-

sized that activating the representation of a previously seen

item in a new context “opens a window” where the existing

item-context memory can be modified or over-written; we fur-

ther hypothesized that this effect would be modulated by

degree of overlap in the item representation across contexts

(with higher overlap yielding more interference).

To test this hypothesis, we presented objects (A) sequen-

tially during 2 different orienting tasks (B and C). These tasks

served as the contexts to which the items could be bound

(Johnson et al. 1997). Using fMRI, we measured pattern similar-

ity for a given item across the 2 task contexts in the lateral

occipital cortex (LOC), which is thought to represent the visual

features of objects (Grill-Spector et al. 2001). We then related

these item-wise pattern similarity scores to subsequent source

memory for the initial task. In addition to testing for the

hypothesized negative effect of item reactivation, we also

tested for the positive effect of context reactivation observed in

previous studies (Koen and Rugg 2016; Kuhl et al. 2010). Such a
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Figure 1. Experimental design and behavioral results. (A) During initial encoding, object images were randomly assigned to 1 of the 2 orienting tasks (artist and func-

tion tasks). (B) In the item repetition phase, half of objects from the first phase were presented again while participants performed a third (organic) task. (C) In the sub-

sequent source memory test, judgments were collected about which task had been performed first on each object, both for objects presented twice (repeated

condition) and objects presented once (nonrepeated condition). (D) In the task localizer, a new set of objects was presented in each of the 3 tasks to define task-

specific neural activity patterns. (E) The area under the curve (AUC) of source memory judgments was calculated; lower AUC indicates worse memory, and so memory

for the first task was worse in the repeated versus nonrepeated condition. The inset plot depicts the sampling distribution of the repeated minus nonrepeated AUC

difference from random-effects bootstrap resampling of participants. Almost all resampled AUC differences were below zero (green area), indicating a reliable retroac-

tive interference effect. ***P < 0.001. Note that the colored rectangles were presented here for visualization.
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dissociation would provide strong evidence that item and con-

text reactivation have differential effects on source memory.

Consistent with our main hypothesis, we found a negative rela-

tionship between item reactivation and subsequent source

memory: greater item-wise pattern similarity was associated

with worse source memory for the initial task. In contrast, we

observed that context reactivation has an opposite effect on

source memory: greater reactivation of the initial task led to

better source memory for the task.

Materials and Methods

Overview

This study consisted of 4 phases. In an initial encoding phase

(phase 1), participants were exposed to a sequence of object

images and performed 1 of 2 orienting tasks (artist or function

task). These tasks served as the initial context to which the

object items could be bound during the encoding phase. In the

item repetition phase (Fig. 1B), half of the objects from each task

in the initial encoding phase (i.e., 48 objects for each of artist

and function) were presented again, and participants deter-

mined how organic the object was on a 4-point scale: 1 = very

artificial, 2 = artificial, 3 = natural, 4 = very natural. We used

this organic judgment as opposed to the more common living/

nonliving distinction because not all natural things are living

(e.g., a log). We measured how reliably the initial representa-

tions of the items were reinstated in this phase by calculating

item-specific pattern similarity between the initial and repeated

presentations. In the memory test phase (phase 3), source mem-

ory for the initial task (i.e., artist or function) was measured and

related to the item-specific pattern similarity scores calculated

in the second phase. A final task localizer phase (phase 4) was

used to train the task classifier, and to generate template neural

patterns for each task, which were used to regress out task-

related information in measuring item-wise pattern similarity.

Participants

Overall, 31 adults (16 women, all right-handed, mean age 21.65

years) participated for monetary compensation. All participants

had normal or corrected-to-normal vision and provided

informed consent. The Princeton University IRB approved the

study protocol.

Stimuli

Participants were shown color photographs of natural and

manmade real-world objects. Stimuli were displayed on a pro-

jection screen behind the scanner bore, viewed with a mirror

on the head coil (subtending 8.8 × 8.8). Participants fixated a

central dot that remained onscreen throughout.

Procedure

Participants completed one scanning session with 4 phases: ini-

tial encoding, item repetition, source memory test, and task

localizer. During the initial encoding phase (Fig. 1A), participants

viewed a series of objects that were randomly assigned to 1 of 2

orienting tasks: How easy would it be to draw the object? (artist

task) or How useful is the object? (function task). Participants

responded on a 4-point scale (artist/function): 1 = very easy/very

useless, 2 = easy/useless, 3 = hard/useful, 4 = very hard/very

useful. We used these tasks because previous studies have

shown that they are highly decodable with fMRI (Johnson et al.

2009; McDuff et al. 2009; Koen and Rugg 2016). Four runs of

encoding were collected, and each run contained 2 blocks of

objects from each of the 2 tasks (the order of the 4 blocks was

randomized). The task was instructed with a cue at the begin-

ning of the block (e.g., “Artist task”). Each object stimulus was

presented for 1 s, followed by a blank interval of 2 s. There were

12 trials per block (36 s duration), followed by 15 s of rest. The

total duration of each run was 3min 42 s.

In the item repetition phase (Fig. 1B), half of the objects

from each task in the initial encoding phase (i.e., 48 objects for

each of artist and function) were presented again, and partici-

pants determined how organic the object was on a 4-point

scale: 1 = very artificial, 2 = artificial, 3 = natural, 4 = very natu-

ral. Each of the 96 objects was presented for 1 s, followed by a

blank interval of 3.5 s: We used a longer SOA in this phase with

the goal of providing more time for item and task reactivation

that could impact source memory. All stimuli were presented

in a single run without a rest period, lasting 7min 33 s.

The source memory test (Fig. 1C) came as a surprise to parti-

cipants. It contained the 96 objects that had been presented in

both the encoding and repetition phases (repeated condition)

and the 96 objects shown only in the encoding phase (nonre-

peated condition). On each trial, one object was presented on

the screen and participant’s memory was measured in a 2-step

procedure: First, a choice option was shown below the object

(i.e., “Artist or Function?”) and participants were instructed to

specify which task had been performed on the object during the

initial encoding phase. Second, immediately after the task

response, a 4-point confidence scale (1 = very unsure, 2 =

unsure, 3 = sure, and 4 = very sure) was presented below the

object, and participants reported their confidence level. Each

object was presented for 6 s, though participants were encour-

aged to respond within 5 s. If they failed to respond on a given

trial, the object was omitted from later analyses (around 3% of

total trials). We did not measure item recognition in the memory

test: That is, all objects were old, and we did not ask participants

to report whether an object was old or new. In a behavioral pilot,

we included novel lure object images and measured item recog-

nition, but found that incorrect recognition rates were negligible

(false alarms = 6.4%; misses = 7.3%). We thus excluded the

recognition memory test from the full fMRI study.

After the memory test, participants completed 3 runs of a

functional localizer (Fig. 1D), in which new object images were

presented in 1 of the 3 tasks: artist, function, and organic. Each

run contained 6 blocks, with 2 blocks from each of the 3 tasks in a

random order. Each object was presented for 1 s, followed by a

blank interval of 2 s. There were 12 trials per block (36 s duration).

Each block was followed by 15 s of fixation, which was treated as

a baseline “rest” category. Total run duration was 5min 24 s.

Behavioral Analysis

We measured memory performance by dividing responses

from the source memory test into 8 levels of confidence: 4 =

very sure “artist” to −3: very sure “function”. These judgments

were quantified using receiver operating characteristic (ROC)

analyses (Green and Swets 1966; Macmillan and Creelman

2005). For each of the repeated and nonrepeated conditions, we

created an ROC curve across the 8 confidence levels and calcu-

lated the area under the curve (AUC). Calculating these curves

precisely requires a substantial amount of data, and thus we

pooled trials across participants beforehand. We assessed the

reliability of the AUC difference between conditions across par-

ticipants using a bootstrapping approach in which entire
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participants were resampled with replacement 1000 times

(Efron 1979), and AUC was computed (for each resampling)

based on the trials pooled across all resampled participants.

This provided a population-level confidence interval (CI) for

each effect, and also allowed for null hypothesis testing based

on the proportion of bootstrapped samples in which the effect

was reversed.

Data Acquisition

Experiments were run with the Psychophysics Toolbox (http://

psychtoolbox.org). Neuroimaging data were acquired using a

3 T MRI scanner (Siemens Skyra) with a 16-channel head coil. A

scout anatomical scan was used to align axial functional slices.

Functional images covering the whole brain were acquired with

a T2* gradient-echo EPI sequence (TR = 1.5 s; TE = 28ms; flip =

64; iPAT = 2; matrix = 64 × 64; slices = 26; thickness = 4mm,

resolution = 3 × 3mm2). High-resolution (MPRAGE) and copla-

nar (FLASH) T1 anatomical scans were acquired for registration,

along with field maps to correct B0 inhomogeneities.

Preprocessing

fMRI data were preprocessed with FSL (http://fsl.fmrib.ox.ac.uk).

Functional scans were corrected for slice-acquisition time and

head motion, high-pass filtered (128 s period cut-off), spatially

normalized (5mm FWHM), and aligned to the middle volume.

Selection of ROIs

We defined ROIs for object processing (LOC) and for task proces-

sing. LOC was defined anatomically from the Harvard-Oxford

cortical atlas in FSL and transformed into each participant’s

space. We defined the task ROI on an individual-subject basis in

3 steps: 1) We picked voxels selective to each of the 3 tasks (art-

ist, function, and organic) by performing a general linear model

(GLM) analysis of the localizer, with regressors for each task and

rest. We ran 3 contrasts (artist vs. others, function vs. others,

and organic vs. others) and selected voxels whose absolute z-val-

ues were above 2.3 (P < 0.01). 2) We then took the union of the

surviving voxels of each contrast. 3) The resulting image was

masked to include gray matter and hippocampus based on the

Harvard-Oxford subcortical atlas, and overlapping regions with

LOC were excluded to minimize any potential confounding

effects of item reactivation. We provide more detailed informa-

tion about the task ROI in the Supplementary Materials.

Measuring Item Reactivation

We measured how reliably the initial representation of each

item was reinstated in the second phase by calculating the

Pearson correlation of the patterns of activity elicited in the

LOC on the initial and repeated presentations, 4.5 s after stimu-

lus onset. We did not estimate univariate activation for single

trials using a trial-wise GLM. To maximize the number of items

that could be presented in limited scanning time, we used rela-

tively short SOAs (3 s for phase 1 and the localizer, and 4.5 s for

phase 2), knowing that such a design would impede GLM analy-

ses. Indeed, a separate pilot fMRI study with an SOA of 4 s

that compared item specificity for scene images (i.e., same-

item > different-item pattern similarity) on time-shifted, pre-

processed raw data versus trial-wise parameter estimates of

univariate activation from a GLM found reliably great item

specificity with the former approach. This mirrors the reliable

item specificity we observed in the present study based on

preprocessed raw data, and is consistent with our previous

studies (Kim et al. 2014, 2017; see Results).

A side effect of using short SOAs is that item-specific pat-

terns from phase 1 will contain fading traces of information

from preceding trials (Chan et al. 2017), and pattern similarity

between phases 1 and 2 might be influenced by retrieval of this

preceding-trial information. Crucially, even if this happens, we

do not think that preceding-trial retrieval could artifactually

give rise to the predicted negative relationship between phases

1 and 2 pattern similarity and subsequent source memory:

Because items were blocked by task, successive items were

studied using the same task, thus, if anything, retrieval of the

preceding item should help source memory, not hurt it.

Measuring Task Information

We measured the amount of task information in the first phase

(to index task encoding) and in the second phase (to index task

reactivation) using multivariate classification, which was con-

ducted with the Princeton Multi-Voxel Analysis Toolbox (www.

pni.princeton.edu/mvpa) using penalized logistic regression

with L2-norm regularization (penalty = 1). To classify the initial

encoding and item repetition phases, we trained the classifiers

on the localizer runs and tested on each of the phases. First, we

trained a separate model for each of 4 categories (i.e., artist vs.

others, function vs. others, organic vs. others, and rest vs.

others) on the localizer runs and tested on each of the initial

encoding and item repetition phases. For each fMRI volume in

the test set, each classifier estimated the extent to which the

activity pattern matched the activity patterns for the 2 catego-

ries (e.g., artist vs. others) on which it was trained (from 0 to 1).

We refer to these category-level pattern match value as “classi-

fier evidence.” We operationalized task (re)activation as differ-

ence in the classifier evidence of each item’s initial task versus

the other one. For example, for an item whose initial task was

artist, we subtracted function evidence from artist evidence

and vice versa.

To validate our approach, we first performed 2 kinds of clas-

sification analyses: 1) within the localizer (using cross-valida-

tion) and 2) across the localizer and initial encoding phases. For

the within-localizer cross-validation, we trained the 4 classi-

fiers (artist, function, organic, and rest vs. others) using 2 of the

localizer runs and tested them on the remaining run (and then

swapped training and test runs), and measured classification

accuracy (chance level = 0.25). Specifically, we counted a trial

as hit when classifier evidence of a target task was greater than

the others (e.g., for an item whose orienting task was artist, we

coded it as hit when artist evidence is greater than the other

categories). We then applied the same procedures for across-

phase classification: The 4 classifiers trained on 3 runs of the

localizer were tested on the initial encoding phase, and classifi-

cation accuracy was measured (chance level = 0.25). In princi-

ple, we can also measure task (re)activation by training

classifiers on phase 1; we provided the results of this analysis

in the Supplementary Materials.

Relating Neural Measures to Source Memory

We measured a linear relationship between each of the neural

measures (item reactivation, task encoding, and task reactiva-

tion) and subsequent source memory. First, we measured

memory strength by dividing the source memory responses

into 8 levels of confidence: 4 = very sure source correct (e.g., art-

ist response to artist task items) to −3: very sure source

Item Overlap Impairs Context Memory Kim et al. | 2685
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incorrect (e.g., function response to artist task items). We then

examined the relationship between each of the neural measures

and memory strength using the linear regression. The resulting

beta coefficient represents the direction of the relationship

between the neural measure and memory: positive sign = posi-

tive relationship (i.e., better memory when a neural measure is

higher) and negative sign = negative relationship (i.e., worse

memory when a neural measure is higher). We performed this

analysis by pooling trials across participants to measure a reli-

able relationship, and we assessed the population-level reliability

of the result using a bootstrap procedure where we resampled

participants with replacement. When running this analysis, we

standardized each neural measure within each participant before

pooling across participants, to ensure that any relationship we

observe between a neural measure and subsequent memory

reflects within-participant variance as opposed to across-

participant variance.

To examine the possibility that relationships between neu-

ral measures and memory depended on the initial orienting

task, we divided trials by the initial tasks and measured the

relationships for each of the tasks separately. For both item-

wise pattern similarity (based on residuals after regressing out

task templates) and task reactivation, there was no significant

interaction with initial task (item reactivation: difference in β =

−0.07, CI = [−0.21, 0.07], bootstrap P = 0.320; task reactivation:

difference in β = −0.05, CI = [−0.22, 0.13], bootstrap P = 0.594).

Thus, henceforth we report results collapsed across task.

Simulations of Approaches for Measuring Item-Specific

Reactivation

Our main hypothesis concerns the relationship between the

reactivation of an item’s representation and subsequent source

memory. To test this, we needed a way of measuring reactivation

of item features. Our basic approach (as described above) was to

compute pattern similarity in LOC for the 2 presentations of each

stimulus in the initial encoding (phase 1) and item repetition

(phase 2) phases, respectively, and then to correlate this measure

with source memory for the task from initial encoding (e.g.,

phase 1). However, this analysis is complicated by the fact that

LOC pattern similarity is potentially influenced by 2 factors—

reactivation of item features and reactivation of generic artist or

function task features—which could influence memory in differ-

ent (potentially opposing) ways. That is, reactivation of the item

representation could lead to retroactive interference (for reasons

described in the Introduction) whereas reactivation of task fea-

tures could boost subsequent source memory (as in Koen and

Rugg 2016; Kuhl et al. 2010). For this reason, it was essential to

use an analysis procedure that could separate the effects of item

versus task reactivation.

To compare different procedures, some that we devised and

others used in the literature (Kim et al. 2014; Koen and Rugg

2016), we ran simulations of 2 situations: 1) where subsequent

memory was affected by item reactivation but not task reactiva-

tion, and 2) where subsequent memory was affected by task

reactivation but not item reactivation. Our goal was to find an

analysis procedure that would report a positive result only in the

first situation (i.e., item reactivation is driving subsequent mem-

ory). In other words, through these simulations, we aimed to

make sure that our measure of item reactivation truly reflects

“item-specific” information: That is, it would then provide a posi-

tive result in the case where item reactivation affects memory,

but not in the case where task reactivation (but not item reacti-

vation) influences memory. Therefore, any procedure meeting

these criteria (a positive result when item reactivation drives

memory, and a null result if task reactivation influences mem-

ory) would be valid for our purpose. In this sense, we would like

to note that our simulations were a form of control analysis, and

were not intended to fully model the joint contributions of item

and task reactivation or their interaction. The simulation results

are summarized here, and the simulation methods are described

in fuller detail in the Supplementary Material.

Approach 1: Same-Item Minus Different-Item Pattern Similarity

Similar to our study, Koen and Rugg (2016) investigated the effects

of item-specific pattern reactivation on source memory. To mea-

sure item-specific reactivation (while excluding task reactivation),

they computed pattern similarity for pairs of the same item (e.g.,

A-first-presentation to A-second-presentation) and subtracted out

the average pattern similarity of that item with other items

encoded with the task (e.g., A-first-presentation to B-second-

presentation, B-first-presentation to A-second-presentation, where

A and B were encoded in the same task). They then related this dif-

ference measure to source memory.

Intuitively, one might think that comparing A to other items

(B, C) encoded with the same task would control for task reacti-

vation. However, in our simulations, we found that this method

yielded significant results both when memory was driven by

item reactivation and when memory was driven by task reacti-

vation but not item reactivation (Ps < 0.001). This result can be

explained by the fact that same minus different pattern simi-

larity controls for the average level of task reactivation, but it

does not fully control for trial-by-trial variability in task reacti-

vation (see Supplementary Materials). Given that this analysis

does not decisively discriminate item and task reactivation

effects on memory in our simulations, we explored other

approaches.

Approach 2: Permutation Analysis

We previously used permutation analysis to track reactivation

of item features (Kim et al. 2014). This involves scrambling the

pairings of items (across phases 1 and 2) 1 000 times and, for

each scramble, recalculating pattern similarity and its relation-

ship to memory. A z-score of the original effect (based on the

intact pairings) with respect to this null distribution can be

calculated.

This analysis produced different results across the 2 simula-

tions (situations A and B). When item reactivation drives mem-

ory, the original effect was reliably greater than the permuted

effects (P < 0.001). In contrast, when task reactivation drives

memory, the original effect was not different from the per-

muted effects (P = 0.53). This pattern of results confirms that

the permutation analysis can identify relationships between

item feature reactivation and memory and is not misled by

trial-by-trial variance in task reactivation.

Approach 3: Regression + Permutation Analysis

Although the permutation analysis handles the case where

task reactivation in the second phase varies across items, it can

be misled if task activation at encoding (for a given item) is cor-

related with task reactivation for that item at retrieval. That is,

if a task is highly active during encoding, it might be reacti-

vated more during the item repetition, and permuting the item

pairings will eliminate this, giving the appearance of item-

specific information. Indeed, when we simulated this situation

(i.e., where reactivation of task features but not item features is

correlated with subsequent memory, and task activation at
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encoding for a given item is correlated with task reactivation),

the permutation test yielded a significant result (P < 0.001). The

fact that the permutation test can show a significant result

when (in the simulated data) there is no actual relationship

between item feature reactivation and subsequent memory

indicates that this test is also unsuitable for our purposes.

To address this issue, we adopted a different approach of

regressing out the localizer template activity patterns for each

task from every item’s representation prior to calculating pat-

tern similarity and its relationship to source memory. After

removing task information in this manner on a trial-by-trial

basis, our simulation where item-specific reactivation drives

memory survives the permutation test (P < 0.001), but both

forms of the simulation where task reactivation drives memory

(i.e., where there is item-wise variance in task reactivation

alone, and where there is also correlated item-wise variance in

task encoding and task reactivation) both fail for the first time

(Ps > 0.37). So far in this simulation, we have regressed out the

task template determined a priori, whereas in our experiment,

the task templates were estimated by averaging activity pat-

terns from the artist and function tasks (respectively) in the

localizer. To examine the impact of this difference, we re-ran

the same regression + permutation simulation based on esti-

mated task templates, which were acquired by averaging the

noisy patterns from phase 1 and 2. This new approach provided

the same qualitative results as above: a positive result only for

the case where item-specific reactivation drives memory (P <

0.001), and null results for both cases where task reactivation

influences memory (Ps > 0.55).

Having confirmed the validity of regression + permutation

analysis, we applied it to our data in following steps: First,

based on the localizer, we defined an activation template for

each of initial tasks (i.e., artist and function) over LOC voxels by

averaging patterns from the corresponding task. Second, we

regressed out the template for each task from the correspond-

ing patterns in the first and second phases (e.g., for an item

whose initial task was artist, we regressed out the artist tem-

plate from both patterns for that item). We then measured

item-wise pattern similarity in the residual patterns, and

related it to source memory by measuring a linear relationship

between the two. Third, we performed a permutation analysis

by scrambling the original pairings of first and second phase

trials within each task and participant (e.g., permuting items

whose initial task was artist). For each of 1000 permutations,

we recalculated pattern similarity and related it to memory.

Finally, a z-score of the original, task-residualized relationship

(beta coefficient score) based on the intact pairings was calcu-

lated with respect to the null distribution of beta coefficients.

Searchlight Analysis

We measured the relationship between item-wise pattern simi-

larity and memory based on the assumption that the item-wise

pattern similarity measure contains item-specific information,

and we focused on the LOC given that this region has been

shown to represent item-specific information (Cichy et al. 2011;

Eger et al. 2008). However, it is possible that other brain regions

might show the same relationship. Thus, we performed an

exploratory searchlight analysis.

Each participant’s EPI volume was aligned to standard space,

and we swept a 14-mm-voxel cubic searchlight (radius = 3 vox-

els) throughout the EPI volume. In each searchlight, we first

computed an item-specificity score using a 2-step permutation

analysis (see Simulations of Approaches for Measuring Item-

Specific Reactivation): We regressed out generic task information

from patterns in the first and second phases, and recalculated

the same-item pattern similarity. We then permuted the original

item pairings across the first and second phases and remeasured

the item-wise pattern similarity. Finally, we tested whether the

same-item pattern similarity from intact pairings is greater than

the item-wise pattern similarity scores of permuted pairings.

Second, we measured a relationship between item-wise pattern

similarity and source memory based on the 2-step permutation

analysis. We assigned the final 2 outcomes (i.e., an item-

specificity score and relationship between item-wise pattern

similarity and source memory) to the center voxel of each

searchlight. The 2 resulting maps were masked to exclude white

matter. We then examined the reliability of each of the 2 analy-

ses across participants by applying a bootstrap test for every vox-

el. Finally, we selected voxels with Ps < 0.001 (uncorrected) in

both analyses.

Results

Subsequent Source Memory Behavior

Overall, participants successfully discriminated the correct and

incorrect initial task (mean A’ = 0.56, bootstrap P < 0.001).

Consistent with the idea that item repetition increases retroactive

interference, source memory for the initial task was lower for

repeated compared with nonrepeated items (AUC difference =

−0.07, CI = [−0.09, −0.04], bootstrap P < 0.001; Fig. 1E).

Initial Pattern Similarity Results

We first confirmed that LOC activation patterns contained

information about items (Cichy et al. 2011; Eger et al. 2008), by

showing that pattern similarity between the first and second

phases was greater when the item was the same versus when 2

different items from the same task were compared (bootstrap

P < 0.001). To address the possibility that this pattern might

reflect item-wise variance in task activation rather than item-

specific information, we performed a 2-step permutation analy-

sis (see Materials and Methods). First, we regressed out generic

task information from patterns in the first and second phases,

and recalculated the same-item pattern similarity. Second, we

permuted the original item pairings across the first and second

phases and remeasured the item-wise pattern similarity.

Finally, we tested whether the same-item pattern similarity

from intact pairings is greater than the item-wise pattern simi-

larity scores of permuted pairings. Indeed, the original same-

item pattern similarity was reliably more positive than a null

distribution of permuted pattern similarity scores (average

z-score = 5.26, CI = [1.65, 9.56], bootstrap P = 0.002 Fig. 2A).

Task Classifier Results

Within-localizer cross-validation: We examined the validity of

the task classification by checking the within-localizer cross-

validation accuracy. Overall classification accuracy was reliably

greater than the chance level of 0.25 (accuracy = 0.47, bootstrap

P < 0.001). We then measured cross-validation accuracy for

each of 3 tasks (Table 1), and all of the accuracy measures were

well above chance (bootstrap P < 0.001). A one-way ANOVA

showed a significant main effect of task (F2,60 = 16.89, P < 0.001).

Bootstrap tests revealed that accuracy of the organic task was

significantly lower than the other tasks (bootstrap Ps < 0.001),
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and accuracy of artist task was numerically higher compared

with function task (bootstrap P = 0.164).

Across-phase classification: We also checked accuracy of

across-phase classification by training on the full localizer data-

set and testing on the initial encoding phase. Overall classifica-

tion accuracy was reliably greater than the chance level of 0.25

(accuracy = 0.67, bootstrap P < 0.001). There was no significant

difference between artist and function tasks (bootstrap P =

0.762; Table 1).

Task Encoding Results

Several previous studies (Gordon et al. 2014; Kuhl et al. 2012;

Kim et al. 2014; Koen and Rugg 2016) have reported positive

relationships between multivariate measures of encoding

strength and subsequent memory. Consistent with this, greater

classifier encoding strength for the corresponding task (e.g., art-

ist minus function classifier evidence) during phase 1 was asso-

ciated with better task memory on the final test (β = 0.19, CI =

[0.11, 0.27], bootstrap P < 0.001; Fig. 2B). We tested whether the

positive relationship varied as a function of repetition condi-

tion. There was no significant difference in the relationships

for repeated versus nonrepeated items (difference in beta coef-

ficient = 0.06, CI = [−0.04, 0.16], bootstrap P = 0.232).

Relationship Between Item Reactivation and

Subsequent Source Memory

We hypothesized that reactivation of the item representation

from the first phase during the second phase would lead to

retroactive interference with the source memory for the initial

task. Consistent with our hypothesis, higher pattern similarity

between the first and second phases was associated with worse

source memory (β = −0.08, CI = [−0.15, −0.01], bootstrap P =

0.006; Fig. 3C).

This observed negative relationship might be driven by

item-wise variance in task reactivation rather than item reacti-

vation. We controlled for this confound using a 2-step permu-

tation analysis (see Materials and Methods): First, we regressed

out generic task information from patterns in the first and sec-

ond phases (Fig. 4A), and recalculated pattern similarity and its

relationship to source memory. Second, we scrambled the origi-

nal pairings of items across the first and second phases and

recalculated the relationship for each permutation (Fig. 4C). If

item reactivation modulates subsequent source memory, as

hypothesized, then the relationship based on residual intact

pairings (excluding task information) should be more negative

than the null distribution of relationships from permuted par-

ings (excluding both task and item information).

After the first step of regressing out task information, the

relationship for intact pairings remained negative (β = −0.08, CI =

[−0.16, −0.01], bootstrap P = 0.028; Fig. 4B). In addition, this rela-

tionship tended to be more negative than the null distribution of

permuted relationships after the second step (average z-score =

−1.07, CI = [−2.28, 0.02], bootstrap P = 0.054; Fig. 4D). The finding

that the negative relationship remained robust even after the

conservative process of excluding potential task effects, com-

bined with an opposite effect of task reactivation on source

memory (see following sections), strongly supports our argu-

ment that the negative relationship was driven by item rein-

statement rather than task reactivation.

Searchlight Results

The above analyses were performed within the LOC given that

this region has been shown to represent item-specific informa-

tion (Cichy et al. 2011; Eger et al. 2008). However, item-wise pat-

tern similarity in other brain regions might influence subsequent

source memory as well. To examine this possibility, we swept a

cubic searchlight through a whole brain. For each searchlight,

we performed the 2 main analyses. First, given the assumption
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Figure 2. Manipulation checks. (A) Item-wise pattern similarity in LOC based on intact pairings was higher than pattern similarity scores based on permuted pairings.

(B) Greater task encoding strength in phase 1 was associated with better task memory on the final test, as reflected in a positive beta coefficient. The thick blue regres-

sion line is from the original data. Thin translucent green regression lines are from the 95% confidence interval of 1000 bootstrap results. Each line is overlaid with

others, and darkness depicts the density. Dark gray dots represent memory responses. Light gray histograms represent a distribution of encoding evidence for each

level of memory strength, and pink lines mark the mean value of each of encoding evidence. **P < .01, ***P < 0.001.

Table 1 Task classification accuracy

Artist Function Organic

Within-localizer cross-validation

0.52 (0.49, 0.56) 0.48 (0.44, 0.52) 0.39 (0.36, 0.43)

Across-phase classification

0.67 (0.63, 0.70) 0.67 (0.63, 0.70)

Chance performance was 0.25. 95% confidence intervals are provided in

parentheses.
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that item-wise pattern similarity contains item-specific informa-

tion, we computed item-specificity score based on the regression

+ permutation procedure. That is, we examined whether item-

wise pattern similarity of the original item pairings across the

first and second phases is greater than those of permuted pair-

ings. Second, we measured the trial-by-trial relationship between

item-wise pattern similarity and source memory based on the

regression + permutation approach. Note that we performed

both analyses in a 2-tailed manner: That is, the analyses could

identify both positive and negative effects (e.g., for the item-

specificity test, an effect is positive when pattern similarity of the

original parings is greater than those of permuted parings, or

negative if the pattern is opposite). Several clusters in the bilat-

eral LOC (right LOC: 50 voxels and 7 voxels, left LOC: 46 voxels),

and right occipital fusiform gyrus (2 voxels) survived statistical

tests of both analyses (bootstrap Ps < .001 uncorrected).

Replicating the main findings above, we found both a positive

main effect of item specificity and a negative relationship

between item-wise pattern similarity and source memory in all

of the clusters (Fig. 5). No clusters showed the other possible

combinations of effects (i.e., positive item specificity and positive

relationship, negative item specificity and positive relationship,

and negative item specificity and negative relationship).

Relationship Between Task Reactivation and

Subsequent Source Memory

In addition to examining the effect of item reinstatement on

initial source memory, we also considered the effect of task

reactivation. We measured the amount of information about

the initial task when each item was repeated in the second

phase by calculating classifier evidence of the initial task com-

pared with that of the other task (e.g., artist minus function

task classifier evidence) using multivariate classification

trained on the localizer (Fig. 6A,B). In contrast to the negative

effect of item reinstatement, greater task reactivation was asso-

ciated with better subsequent source memory (β = 0.11, CI =

[0.01, 0.20], bootstrap P = 0.028; Fig. 6C). This positive effect of

task reactivation on source memory was reliably greater than

the negative effect of item reactivation (difference in β = 0.19,

CI = [0.07, 0.29], bootstrap P = 0.002).
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Figure 3. Relating pattern similarity to source memory across items. (A) Pattern similarity was measured for each item between the first and second phases. (B) A

trial-by-trial relationship between item-wise pattern similarity and subsequent source memory was measured using the linear regression. (C) There was a reliable

negative relationship between item-wise pattern similarity and source memory across items. **P < .01.
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Ruling Out Alternative Accounts

Univariate confounds: We have assumed that item-wise pattern

similarity reflects neural overlap of an item representation

across the first and second phases, and that this neural overlap

affects subsequent retrieval of the initial task. In principle,

however, univariate activation in the second phase might have

affected both pattern similarity and subsequent source mem-

ory. For example, imagine that a participant was in an inatten-

tive state for some of the trials in the second phase. Lower

activation for those trials (vs. more attentive trials) could

reduce item-wise pattern similarity across the first and second

phases (Coutanche 2013; Davis and Poldrack 2013; Davis et al.

2014; Aly and Turk-Browne 2016). Furthermore, subsequent

source memory for the initial task on those inattentive trials

might be better, because there was less learning of second-

phase information, leading to less retroactive interference. In

short, if univariate activation in the second phase is a factor

affecting both item-wise pattern similarity and source memory,

the observed negative relationship between the 2 would be

spurious.

To address this issue, we ran an analysis to directly examine

the role of univariate activation. We computed the relationship

between univariate LOC activation in the first and second

phases and subsequent source memory using similar proce-

dures as for pattern similarity. Specifically, for each phase, we

measured average activity across LOC voxels on every trial

(without regressing out task patterns) and calculated its linear

relationship with subsequent source memory for the initial

task. Univariate activation was not related to source memory in

either phase (phase 1: β = 0.04, CI = [−0.05, 0.12], bootstrap P =

0.388; phase 2: β = −0.04, CI = [−0.12, 0.04], bootstrap P = 0.296).

The difference in univariate activation between the 2 phases

(phase 1 minus phase 2) also failed to predict source memory

(β = 0.06, CI = [−0.03, 0.15], bootstrap P = 0.184). If the observed

negative relationship between item-wise pattern similarity and

source memory was driven by univariate activation, this rela-

tionship should have been more robust than for pattern simi-

larity; to the contrary, the effect was not significant and in fact

in the wrong direction numerically. Thus, these findings are

consistent with our interpretation that the negative relation-

ship between item-wise pattern similarity and subsequent

source memory reflects neural overlap of items across the 2

phases.

Task encoding confounds: Even though the negative relationship

between item-wise pattern similarity and source memory

remained significant after task-related information was carefully

removed from patterns using the regression + permutation
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Figure 4. Testing specificity of item reinstatement effects. (A) Generic task information was regressed out of the item patterns from the first and second phase using

the task templates from the localizer. (B) Using the residual patterns, the relationship between item-wise pattern similarity and source memory was recalculated and

remained reliably negative. (C) We further narrowed in on item-specific variance by submitting the residual item patterns to a permutation test. (D) The z-score of the

original negative relationship tended to be more negative than the null relationships calculated after permuting the item pairings between the first and second

phases. *P < .05.

2690 | Cerebral Cortex, 2019, Vol. 29, No. 6

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
9
/6

/2
6
8
2
/5

0
3
6
0
7
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



approach, there is another way that the negative relationship

could be confounded with initial task encoding. Imagine that a

participant did not pay much attention to the orienting task in

the first phase. In this scenario, the item representations across

the 2 phases will be more item-centered (i.e., less affected by

task information), leading to higher item-wise pattern similarity.

Because the initial task was not reliably encoded, higher item-

wise pattern similarity would then be related to worse source

memory for the initial task.

This account makes the straightforward predictions that

greater task encoding in phase 1 (reflecting more attention to

the task) and task reactivation in phase 2 (reflecting stronger

task encoding) should be associated with lower item-wise pat-

tern similarity. However, although numerically negative, these

relationships (based on residuals after regressing out task tem-

plates) were not reliable (phase 1 task activation: β = −0.01, CI =

[−0.05, 0.02], bootstrap P = 0.432; phase 2 task reactivation: β =

−0.02, CI = [−0.05, 0.01], bootstrap P = 0.316), failing to support

the alternative account.

Discussion

We investigated how memory for the context in which an

object was encountered is influenced by encountering it again

in a novel context. Although the basic behavioral finding—

impaired subsequent source memory for the initial context—

has been demonstrated previously (McGovern 1964; Postman

and Underwood 1973; Richter et al. 2016), we tested a novel

explanation for this important phenomenon. Specifically, we

hypothesized that the extent to which the item is represented

the same way across contexts determines how much interfer-

ence the old context suffers. Consistent with this hypothesis,

we found a negative relationship between neural overlap

across item repetitions and subsequent source memory for the

initial context. In addition to this main finding, we found that

greater task reactivation in the second phase leads to better

source memory for the initial context, which is consistent with

previous studies suggesting that reactivation of a prior context

builds resistance to interference from a novel subsequent con-

text (Kuhl et al. 2010; Koen and Rugg 2016).

We used pattern similarity to index how much the initial

item representation was reactivated upon repetition. However,

taken at face value, this measure does not necessarily reflect

item information alone—it can also be influenced by variance in

task reactivation. We addressed this issue by showing: 1) that

the negative relationship persists after regressing out task infor-

mation, 2) that this relationship is eliminated after permuting

item pairings within task, and 3) that task reactivation per se

leads to an opposite (beneficial) effect on memory. Taken

together, these results strongly support our main conclusion

that reactivation of an item-specific representation leads to ret-

roactive interference.

Using a paradigm similar to ours, Koen and Rugg (2016) also

recently investigated the consequence of item repetition for

task memory. As in our study, participants performed one task

on an item during an initial phase and then performed a differ-

ent task on that item during a later phase; participants were

then required to recall both tasks for each item. Interestingly,

Koen and Rugg (2016) found a positive relationship between

item-specific reactivation during item repetition and subse-

quent source memory for the initial task—the opposite of what

we found.

However, we do not think that these results are necessarily

incompatible with ours. Our hypothesis was that reactivating

item-specific perceptual features in a new context might hurt

source memory, by linking the item’s representation to a new

context that later interferes with retrieval of the original con-

text (Hupbach et al. 2007; Gershman et al. 2013; Sederberg et al.

2011; St. Jacques et al. 2013). To test this hypothesis, we used

object stimuli with rich perceptual features and focused on a

region known to represent item-level features of objects (Cichy

et al. 2011; Eger et al. 2008). Crucially, while reinstating item-

level object features might be harmful for source memory, rein-

stating task-specific elaborations might be helpful for source

memory. For example, after making a pleasantness judgment

(an encoding task in Koen and Rugg’s study) about the word

“broccoli,” later reactivation might contain task information

specific to that item, such as that it has an unpleasant taste.

This retrieved information related to the initial task is unlikely

to be confused with other tasks in the final source memory

test. In fact, reactivation of this task-specific elaboration might

strengthen its association with the item and ultimately

improve source memory.

Speculatively, features of Koen and Rugg’s study may have

led to task-specific elaborations playing a greater role in their

results. For example, their item-specific analysis focused on a

task-selective mask, which may have increased the promi-

nence of task-specific elaborations (vs. perceptual features). To

assess the importance of this difference, we ran our item-

specific pattern similarity analysis in a task-selective mask and

did not obtain a significant relationship (in either direction)

with source memory (see Supplementary Materials), showing

that this difference was not unto itself responsible for the dis-

crepancy in results. Another possibility is that our paradigm

was less conducive overall to forming task-specific elabora-

tions. For example, our use of object pictures (vs. words) may

have led participants to engage more with the visual features

of the item and to form fewer elaborations; also, our task

instructions were slightly different (in the function task, we

simply asked participants to rate the usefulness of objects as

opposed to counting specific uses).

RH L R

L RLH

x = 52 y = –72 z = –8

x = –34 y = –94 z = –8

A

B

Positive item-specificity and negative relationship

Figure 5. Exploratory searchlight results. (A) Right LOC (50 voxels) and (B) left

LOC (46 voxels) showed a positive main effect of item specificity and a negative

relationship between item-wise pattern similarity and source memory (Ps <

0.001, uncorrected). There were also smaller clusters with the same results

(data not shown): right LOC (7 voxels; 48, −82, 18), and right occipital fusiform

gyrus (2 voxels; 20, −76, −10).
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There are other accounts that might explain the discrepancy

between the previous study and ours. For example, in Koen

and Rugg (2016) the initial and second tasks were interleaved,

whereas they were blocked in our study. Interleaving might

have increased the overall level of task reactivation: For exam-

ple, switching between an initial and second task could have

led to greater residual activation of the initial task. This stron-

ger initial task reactivation might enhance integration of infor-

mation relating to the initial and second tasks, reducing

interference between the 2 (Zeithamova and Preston 2017). In

our case, task reactivation might have been weaker because

the initial and second tasks were separated, leading to less

integration and (consequently) more interference. Another dif-

ference between our study and Koen and Rugg (2016) is that—

in our study—the artist and function tasks did not recur in

phase 2, whereas in Koen and Rugg (2016) all of the tasks

occurred in all phases; participants in our study might there-

fore have been motivated to suppress memories relating to

phase 1 tasks during phase 2, leading to even weaker memory

reactivation. Prior studies from our lab (Detre et al. 2013; Kim

et al. 2014) have shown that weak (but nonzero) activation of a

memory can reduce the subsequent accessibility of that mem-

ory; these effects may have further contributed to our finding

that item reactivation was associated with worse (not better)

memory. Although we do not have definitive evidence for one

of these accounts, they provide an interesting area for future

research.

We argue that reinstatement of initial item features opens

a window for novel contextual information to be bound to

the initial item features, which subsequently interferes with

retrieval of an initial context. Insofar as the organic task is

a major feature of the novel (phase 2) context, this implies

that greater organic-task activity (for a particular item during

phase 2) might have a negative relationship with subsequent

source memory for the initial context. However, classifier evi-

dence for the organic task during phase 2 did not predict subse-

quent source memory (bootstrap P = 0.414; see Supplementary

Materials), suggesting that other aspects of the novel context

(besides the organic task itself) might be responsible for the

observed interference in subsequent source memory.

Although the effects of item and task reactivation on source

memory went in opposite directions, there was a numerically

negative correlation between item reactivation (based on resi-

duals after regressing out task templates) and task reactivation

scores (see Results). To test the specificity of each of these

effects, we first examined the observed negative effect of item

reactivation after controlling for task reactivation with partial

correlation, and we found that it remained reliable (β = −0.08,

CI = [−0.15, −0.01], bootstrap P = 0.022). When this analysis was

reversed, controlling item reactivation, the positive effect of

task reactivation was also reliable (β = 0.10, CI = [0.01, 0.19],

bootstrap P = 0.028). These results suggest that those opposite

effects of item and task reactivation were distinct from each

other.

Generally speaking, these results highlight the complex

nature of retroactive interference effects. As prior work has

shown, there is no simple answer to the question of how new

learning modulates the accessibility of existing knowledge:

Artist task

Phase 1

Phase 2

Organic task

A

Incorrect
- confidence 1

Artist Function

Phase 3Task localizer B

Artist or Function?

C

RestOrganic

Train classifiers to decode tasks in the localizer Task reactivation evidence

: Relevant (artist) - irrelevant (function) task evidence

50–5

Z-scored task reactivation evidence in phase 2

M
e
m

o
ry

 s
tr

e
n
g
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–1
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3

4

*ß1 = 0.11

*p < .05

Task mask for one participant

Artist Function Organic

Figure 6. Relating task reactivation to memory. (A) We trained the classifiers using the localizer runs based on task-selective voxels. (B) We measured reactivation of

the initial task (artist or function) in the second phase by testing the classifiers on the second phase data. Task reactivation was operationalized by subtracting rele-

vant task minus irrelevant task classifier evidence (e.g., artist minus function). (C) The relationship between this index of task reactivation and subsequent source

memory was significantly positive.
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There is some evidence that reactivation makes old memories

susceptible to retroactive interference (Forcato et al. 2007;

Gershman et al. 2013; Hupbach et al. 2007; Sederberg et al.

2011), but other studies observed the opposite effect that reacti-

vation alleviates retroactive interference (Kuhl et al. 2010; Koen

and Rugg 2016). Still others posit that the degree to which infor-

mation is activated determines whether it is strengthened or

weakened (e.g., Detre et al. 2013). Our findings contribute to

this debate by suggesting that—when an item appears in multi-

ple contexts—the specific content of the reactivated memory is

a key determinant of retroactive interference: If contextual fea-

tures uniquely related to the item in the initial experience are

strongly reactivated during new learning, this can strengthen

memory for these features (e.g., Koen and Rugg 2016; Kuhl et al.

2010; a trend in our study). However, crucially, when shared

item features are reactivated, our results show that this can

impair memory for the initial context.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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