
1

Neural PID Control of Robot Manipulators with
Application to an Upper Limb Exoskeleton

Wen Yu, Senior Member, IEEE, Jacob Rosen

Abstract— In order to minimize steady-state error with respect
to uncertainties in robot control, PID control needs a big integral
gain, or a neural compensator is added to the classical PD control
with a large derivative gain. Both of them deteriorate transient
performances of the robot control. In this paper, we extend the
popular neural PD control into neural PID control. This novel
control is a natural combination of industrial linear PID control
and neural compensation. The main contributions of this paper
are semiglobal asymptotic stability of the neural PID control and
local asymptotic stability of the neural PID control with a velocity
observer are proven with standard weights training algorithms.
These conditions give explicit selection methods for the gains of
the .linear PID control. A experimental study on an upper limb
exoskeleton with this neural PID control is addressed.

I. INTRODUCTION

Proportional-integral-derivative (PID) control is widely used
in industrial robot manipulators [1]. In the absence of robot
knowledge, a PID controller may be the best controller,
because it is model-free, and its parameters can be adjusted
easily and separately [2]. However, an integrator in a PID
controller reduces the bandwidth of the closed-loop system.
In order to remove steady-state error caused by uncertainties
and noise, the integrator gain has to be increased. This leads
to worse transient performance, even destroys the stability.
Therefore, many robot manipulators use pure proportional-
derivative (PD) control or PD control with a small integral
gain [3].

It is known that a PD controller can guarantee stability
(bounded) of a robot manipulator in regulation case. However,
asymptotic stability is not achieved when the manipulator
dynamics contain gravitational torques vector and friction.
From control viewpoint, this steady-state error can be removed
by introducing an integral component to the PD control. It is
PID control. Besides the transient performance and stability
problems of the integrator, theory analysis is also difficult for
industrial linear PID control. In order to ensure asymptotic
stability of the PID control, a popular method is to modify
the linear PID into nonlinear one. For example, the position
error was modified into nonlinear form in [4]; The integral
term was saturated by a nonlinear function in [5]; The input
was saturated in [6]; An extra integral term in the filtered
position was added in [7]; The variable structure control and
neural control were combined with the classic PID control
in [8] and [9]. Only a few researchers worked on the linear
PID. The stability (not asymptotic stability) of the linear PID
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control was proven in [10], where the robot dynamic was re-
written in a decoupled linear system and a bounded nonlinear
system. In [11], asymptotic stability of linear PID was proven,
however conditions for linear PID gains are not explicit.

Model-based compensation with PD control is an alter-
native method for PID control [2], such as adaptive grav-
ity compensation [12], Lyapunov-based compensation [14],
desired gravity compensation [11], and PD+ with position
measurement [13]. They all needed structure information of
the robot gravity. Some nonlinear PD controllers can also
achieve asymptotic stability, for example PD control with time-
varying gains [15], PD control with nonlinear gains [16], and
PD control with sliding mode compensation [8]. But these
controllers are complex, many good properties of the linear
PID control do not exist.

Intelligent compensation for PD control does not need
mathematical model, it is a model-free compensator. It can be
classified into fuzzy compensator [17], fuzzy PID [18], neural
compensator [19] and fuzzy-neural compensator [20][21]. The
basic idea behind these controllers is to use a filtered tracking
error in the Lyapunov-based analysis [3]. By proper weight
tuning algorithms, which are similar with robust adaptive
control methods [22], the derivative of the Lyapunov function
is negative, as long as the filtered tracking error is outside
of the ball with radius 


 here  is the upper bound of

all unknown uncertainties,  is the derivative gain in PD
control. These neural PD controllers are uniformly ultimate
boundedness (UUB), and tracking errors go to smaller with
increasing the gain  The cost of large  is the transient
performance becomes slow. Only when  →∞ the tracking
error converges to zero [19].

It is well known that the simplest method to decrease
the tracking error is to add an integral action, i.e., change
the neural PD control into neural PID control. A natural
question: why do we not add an integrator instead of increasing
derivative gain in the neural PD control?

There are two different approaches to combine PID con-
trol with the intelligent control, such as neural control. The
first one is neural networks are formed into PID structure
[23][24][25]. By proper updating laws, the parameters of PID
controllers are changed such that the closed-loop systems are
stable. They are not real industrial PID controllers, because the
PID gains (weights of the neural networks) are time-varying.
The second method is intelligent techniques are used to tune
the parameters of PID controllers, such as fuzzy tuning [26],
neural tuning [27][28], and expert tuning [29]. The controllers
are still industrial linear PID, however the stability of closed-
loop system is not guaranteed. The neural PID control of this
paper overcomes the above disadvantages. It is an industrial
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linear PID controller adding a neural compensator. The main
obstacle of this neural PID is theoretical difficult in analyzing
the stability. Even for linear PID, it is not easy to prove
asymptotic stability [11]. Without theoretical guarantee for this
neural PID control, industrial applications cannot be carried
out safely. From the best of our knowledge, theory analysis
for this neural PID control is still not published.

In this paper, the well known neural PD control of robot
manipulators is extended to the neural PID control. The
semiglobal asymptotic stability of this novel neural control is
proven. Explicit conditions for choosing PID gains are given.
When the measurement of velocities it is not available, local
asymptotic stability is also proven with a velocity observer.
Unlike the other neural controllers of robot manipulators, our
neural PID does not need big derivative and integral gains to
assure asymptotic stability. We apply this new neural control to
a 7-DOF exoskeleton robot in University of California - Santa
Cruz (UCSC). Experimental results show that this neural PID
control has many advantages over classical PD/PID control,
the neural PD control, and the other neural PID control.

II. SEMIGLOBAL ASYMPTOTIC STABILITY OF NEURAL PID
CONTROL

Many industrial rigid robots (without �exible links and high-
frequency joint dynamics) can be expressed in the Lagrangian
form

 ()
··
 + 

³

·

´ ·
 + () +  (̇) =  (1)

where  ∈  represents the link positions.  () is the
inertia matrix,  ( ̇) = {} represents centrifugal force,
 () is a vector of gravity torques,  (̇) is friction. All terms

 ()  
³

·

´
  () and  (̇) are unknown.  ∈  is

control input. The friction  (̇) is represented by the Coulomb
friction model

 (̇) = 1̇ +2 tanh (3̇) (2)

where 3 is a large positive constant, such that tanh (3̇)
can approximate  (̇)  1 and 2 are positive coeffi-
cients. In this paper we use a simple model for the friction as
in [3] and [11],

 (̇) = 1̇ (3)

When  () and  (̇) are unknown, we may use a neural
network to approximate them as


³

·

´
=  () +  (̇)

̂
³

·

´
= c(

·
) 

³

·

´
= ∗(

·
) +  ()

(4)
where  ∗ is unknown constant weight, c is estimated
weight, 

³

·

´

is the neural approximation error,  is a
neural activation function, here we use Gaussian function such
that (

·
) ≥ 0.

Since the joint velocity ̇ is not always available, we may
use a velocity observer which will be discussed in Section
III to approximate it. This linear-in-the-parameter net is the
simplest neural network. According to the universal function

approximation theory, the smooth function 
³

·

´

can be
approximated by a multilayer neural network with one hidden
layer in any desired accuracy provided proper weights and
hidden neurons

̂
³

·

´
= c(̂

h

·

i
)  () = ∗( ∗

h

·

i
)+

³

·

´

(5)
where c ∈ × ̂ ∈ ×  is hidden node number, ̂
is the weight in hidden layer. In order to simplify the theory
analysis, we first use linear-in-the-parameter net (4), then we
will show that the multilayer neural network (5) can also be
used for the neural control of robot manipulators. The robot
dynamics (1) have the following standard properties [2] which
will be used to prove stability.

P1. The inertia matrix  () is symmetric positive definite,
and

0   { ()} ≤ kk ≤  { ()} ≤    0 (6)

where  {} and  {} are the maximum and minimum
eigenvalues of the matrix 

P2. For the Centrifugal and Coriolis matrix  ( ̇)  there
exists a number   0 such that

k ( ̇) ̇k ≤  k̇k2    0 (7)

and ̇ ()− 2 ( ̇) is skew symmetric, i.e.


h
̇ ()− 2 ( ̇)

i
 = 0 (8)

also
̇ () =  ( ̇) +  ( ̇)

 (9)

P3. The neural approximation error 
³

·

´

is Lipschitz

over  and
·


k ()−  ()k ≤  k− k (10)

From (4) we know

 () +  (̇) = ∗(
·
) + 

³

·

´

(11)

Because  () and  (̇) satisfy Lipschitz condition, P3 is
established.

In order to simplify calculation we use the simple model
for the friction as in (3), the lower bound of

R
 ()  can be

estimated asZ 

0


³

·

´
 =

Z 

0

 () +

Z 

0

 (̇) −
Z 

0

 ∗()

(12)
where  () is the potential energy of the robot, 


=  () 

Since (·) is a Gaussian function,  ∗()  0 By  ()  0Z 

0


³

·

´
  1 −10 − 1

2

√
 ∗

where
R 
0
() = 1

2

√
 erf (). Since the workspace of a ma-

nipulator (the entire set of points reachable by the manipulator)
is known, min {} can be estimated. We define the lower
bound of

R 
0
 ()  as

 = 1min {}−10 − 1
2

√
 ∗ (13)
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Given a desired constant position  ∈  the objective of
robot control is to design the input torque  in (1) such that
the regulation error

̃ =  −  (14)

̃ → 0 and
·
̃ → 0 when initial conditions are in arbitrary large

domain of attraction.
The classical industrial PID law is

 = ̃ +

Z 

0

̃ ()  +

·
̃ (15)

where   and  are proportional, integral and derivative
gains of the PID controller, respectively.

When the unknown dynamic
°°° ³ ·´°°° in (4) is big, in

order to assure asymptotic stability, the integral gain  has to
be increased. This may cause big overshoot, bad stability, and
integrator windup. Model-free compensation is an alternative
solution, where  () is estimated by a neural network as in
(4). Normal neural PD control is [3]

 = ̃ +

·
̃ + ̂ (16)

where ̂
³

·

´
= c(

·
) With the filtered error  = ̃+Λ

·
̃

(16) becomes

 =  + ̂ (17)

The control (17) avoids integrator problems in (15). Unlike
industrial PID control, they cannot reach asymptotic stability.
The stability condition of the neural PD control (16) is kk 



  is a constant [32]. In order to decrease kk,  has
to be increased. This causes long settling time problem. The
asymptotic stability ( → 0) requires  →∞

In this paper, an integrator is added into the normal neural
PD control (16), it has a similar form as the industrial PID in
(15),

 = ̃ +

·
̃ +

Z 

0

̃ ()  + ̂ (18)

Because in regulation case ̇ = 0
·
̃ = −̇ the PID control

law can be expressed via the following equations

 = ̃ −̇ +  +c(
·
)

̇ = ̃  (0) = 0
(19)

We require the PID control part of (19) is decoupled, i.e.
 and  are positive definite diagonal matrices. The
closed-loop system of the robot (1) is

 () ̈ +  ( ̇) ̇ + ̃
³

·

´

= ̃ −̇ + 

̇ = ̃

(20)

where ̃ =  − ̂

̃ = ∗() +  ()−c() = ̃() +  () (21)

here ̃ =  ∗ −c In matrix form, the closed-loop system
is





⎡⎢⎣ 

̃
·
̃

⎤⎥⎦ =
⎡⎢⎢⎢⎣

̃

−̇
̈ +−1

Ã
̇ + ̃() + 

³

·

´

−̃ +̇ − 

!
⎤⎥⎥⎥⎦

(22)

The equilibrium of (22) is

∙
 ̃

·
̃

¸
= [∗ 0 0]  Since at

equilibrium point  =  and
·


= 0 the equilibrium is£


¡

¢
 0 0

¤
 We simplify 

¡
 0

¢
as 

¡

¢


In order to move the equilibrium to origin, we define

̃ =  − 
¡

¢

(23)

The final closed-loop equation becomes

 () ̈ +  ( ̇) ̇ + ̃(
·
) + 

³

·

´

= ̃ −̇ + ̃ + 
¡

¢

·
̃ = ̃

(24)

The following theorem gives the stability analysis of the
neural PID control. From this theorem we can see how to
choose the PID gains and how to train the weight of the
neural compensator in (19). Another important conclusion is
the neural PID control (19) can force the error ̃ to zero.

Theorem 1: Consider robot dynamic (1) controlled by the
neural PID control (19), the closed loop system (24) is
semiglobally asymptotically stable at the equilibrium  =∙
 − 

¡

¢
 ̃

·
̃

¸
= 0 provided that control gains satisfy

 () ≥ 3
2

 () ≤ 
()
 ()

 () ≥  +  ()

(25)

where  =
q

()()
3   satisfies (10), and the weight

of the neural networks (4) is tuned by
·
̂ = −(

·
) (̇ + ̃) (26)

where  is positive design constant, it satisfiesq
1
3 () ()

 ()
≥  ≥ 3


¡
−1

¢
 ()

(27)

Proof: See Appendix.
Remark 2: From above stability analysis, we see that the

gain matrices of the neural PID control (19) can be chosen
directly from the conditions (25). The tuning procedure of the
PID parameters is more simple than [6][4][11][16][10]. No
modeling information is needed. The upper or lower bounds
of PID gains need the maximum eigenvalue of  in (25), it
can be estimated without calculating  For a robot with only
revolute joints [2]

 () ≤   ≥ 

µ
max


| |
¶

(28)

where  stands the -th element of   ∈ × A 

can be selected such that it is much bigger than all elements.
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Remark 3: The main difference between our neural PID
control with the other neural PD controllers is the stability
condition is changed, we require the regulation error

k̃k  1 () () (29)

The other neural PD controllers need

k̃k  2



(30)

where 1 and 2 are positive constants. Obviously, if the
initial condition is not worse and satisfies (29), (29) is always
satisfied, and k̃k will decrease to zero. But (30) cannot be
satisfied when k̃k becomes small, so  has to be increased.

Remark 4: If the unknown  () is estimated by the multi-
layer neural network (5). The modeling error (21) becomes

̃ =  − ̂ = ∗( ∗
h

·

i
) + 

³

·

´
−c(̂

h

·

i
)

= ̃(̂
h

·

i
)− ∗(̂

h

·

i
) + ∗( ∗

h

·

i
) + 

³

·

´

= ̃(̂
h

·

i
) + ∗0̃

h

·

i
+ 1 + 

³

·

´

= ̃
h
(̂

h

·

i
) + 0̃

h

·

ii
+c0̃

h

·

i
+ 1

³

·

´
(31)

where 1 () = 1 + 
³

·

´
 1 is Taylor approximation

error. The closed-loop equation (24) becomes

 () ̈ +  ( ̇) ̇ + ̃
n
(̂

h

·

i
) + 0̃

h

·

io

+c0̃
h

·

i
+ 1

³

·

´

= ̃ −̇ + ̃ + 
¡

¢

·
̃ = ̃

(32)

If the Lyapunov function in (54) is changed as

 =  +
1

2

³e −1

e ´ (33)

then the derivative of (33) is
·
  = ̇ − ̇ ̃(

h

·

i
)

+̇ ̃
h
(̂

h

·

i
) + 0̃

h

·

ii
+ 

Ãe −1

·e! (34)

If the training rule (26) is changed as
·c = −

n
(̂

h

·

i
) + 0̃

h

·

io
(̇ + ̃)

·b = −
c0 (̇ + ̃)



(35)

Theorem 1 is also established.
One common problem of the linear PID control (18) is

integral windup, where the rate of integration is larger than
the actual speed of the system. The integrator’s output may
exceed the saturation limit of the actuator. The actuator will
then operate at its limit no matter what the process outputs.
This means that the system runs with an open loop instead
of a constant feedback loop. The solutions of anti-windup
schemes are mainly classified into two types [34]: conditional
integration and back-calculation. It has been shown that none
of existed methods is able to provide good performance over
a wide range of processes [35]. In this paper we use the

conditional integration algorithm. The the integral term is
limited to a selected value:

 = ̃ +

·
̃ + 

∙


Z 

0

̃ ()  max

¸
+ ̂ (36)

where  [ max] =

½
 if kk  max

max if kk ≥ max
 max is

a prescribed value to the integral term when the controller
saturates. This approach is also called prelodding [36]. Now
the linear PID controller becomes nonlinear PID. The semi-
global asymptotic stability has been analyzed by [6]. When
max is the maximum torque of all joint actuators, max =
max (|max |)  max = max (||)   ≤ 1 A necessary
condition is

max ≥ 3̄ k ()k ≤ ̄

where  () is the gravity torque of the robot (1), ̄ is the
upper bound of  ()   is a design factor in the case of not
all PID terms are subjected to saturation. For the controller
(36),  can selected as  = 1

4 

Following the process from (4) to (13), the neural PID with
anti-windup controller (36) requires

max ≥ 3̄°°° ∗( ·) + 
³

·

´°°°

≤
°°° ∗( ·)°°°+ °°°³ ·´°°° ≤ ̄

(37)

where ̄ is the upper bound of the neural estimator,  ∗
(

·
) and 

³

·

´

are defined in (4).
We can see that the first additional condition for the neural

PID with anti-windup is the neural estimator must be bounded.
While the linear neural PID only requires the neural estimation
error satisfy Lipschitz condition (10).

Since max (or max) is a physical requirement for the
actuator, it is not a design parameter. In order to satisfy the
condition (37), we should force ̄ as small as possible. A
good structure of the neural estimator may make the term°°° ∗( ·)°°° smaller, such as multilayer neural network in
Remark 3. There are several methods can be used to find a
good neural network, such as the genetic algorithm [37] and
pruning [38]. Besides structure optimization, initial condition
for the gradient training algorithm (26) also affects ̄ Since
the initial conditions for ̂ and ̂ in (35) do not effect the
stability property, we design an off-line method to find a better
value for ̂ (0) and ̂ (0). If we let ̂ (0) =0  (0) = 0

the algorithm (35) can make the identification error conver-
gent, i.e., ̂ () and ̂ () will make the identification error
smaller than that of 0 and 0 ̂ (0) and ̂ (0) are selected
by following steps:

1) Start from any initial value for ̂ (0) = 0 ̂ (0) =
0

2) Do training with (35) until 0
3) If the k̃ (0)k  k̃ (0)k  let ̂ (0) and ̂ (0) as a

new ̂ (0) and ̂ (0)
0, i.e., ̂ (0) = ̂ (0)  ̂ (0) =

̂ (0)  go to 2 to repeat the training process.
4) If the k̃ (0)k ≥ k̃ (0)k, stop this off-line identifica-

tion, now ̂ (0) and ̂ (0) are the final value for
̂ (0) and ̂ (0).
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III. NEURAL PID CONTROL WITH UNMEASURABLE

VELOCITIES

The neural PID control (19) uses the joint velocities ̇ In
contrast to the high precision of the position measurements
by the optical encoders, the measurement of velocities by
tachometers may be quite mediocre in accuracy, specifically
for certain intervals of velocity. The common idea in the design
of PID controllers, which requires velocity measurements,
has been to propose state observers to estimate the velocity.
The simplest observer may be the first-order and zero-relative
position filter [2]

 () =


+ 
 ()   = 1 · · · (38)

where  () is an estimation of ̇  and  are the ele-
ments of diagonal matrices  and ,  =  {},  =
 {}    0   0 The transfer function (38) can be
realized by ½

̇ = − (+)ė = +
(39)

The linear PID control (19) becomes

 = ̃ − +  +c()

̇ = ̃  (0) = 0
̇ = − (+)
 = +

(40)

where  and  are positive definite diagonal matrices,
 and  in (38) are positive constants.

The closed-loop system of the robot (1) is





⎡⎣ 



̇

⎤⎦ =
⎡⎢⎢⎣

̃

− +̇

−1
∙ − ( ̇) ̇ − ̃()−  ()

+̃ − + ̃ + 
¡

¢ ¸

⎤⎥⎥⎦
(41)

The equilibrium of (41) is
h
̃  ̇

i
= [0 0 0] 

The following theorem gives the asymptotic stability of
the neural PID control with the velocity observer (38). This
theorem also provides a training algorithm for neural weights,
and explicit selection method of PID gains.

Since the velocities are not available, the input of the neural
networks becomes

̂
³

·

´
= c( )

or ̂
³

·

´
= c(̂ [ ]

(42)

Theorem 5: Consider robot dynamic (1) controlled by
neural PID controller (40), if  and  of the velocity observer
(38) satisfy

 ()
2()

≤  ()
()
 ()

 () ≤ 1
4 ()

()
2 ()

 ( − ) ≥ 1
2 ()

(43)

where  is positive design constant, provided that the PID
control gains of (40) satisfy

 ()− 1
2 ()

≥ 1


∙
 () + 

¡
−1

¢
+1+2

2  +
2

2  () +

2 

¡
−1

¢ ¸
 () ≥ +

1
2(

−1)+ 1
2 ()+() () ()

2(−1−)−1
 () ≤ 

3  ()
(44)

where  satisfies (10),  () is the condition number of 

and the weight of neural networks is tuned by
·
̂ = −( )

£
̃ +  +−1 (̇ +)

¤
(45)

then the closed loop system (41) is locally asymptotically
stable at the equilibrium

 =

∙
 − 

¡

¢
 ̃

·
̃

¸
= 0 (46)

in the domain of attraction

k̃k ≤  ()



∙
 ( − )− 1

2
 ()

¸
+
1


kk (47)

Proof: See Appendix.
Remark 6: The conditions (43) and (44) decide how to

choose the PID gains. The first condition of (44) is

 () ≥ 1

 () +Ω

Ω = 1


∙


¡
−1

¢
+ 1+2

2 
+
2  () +

1
2

¡
−1

¢ ¸+ 1
2 ()

(48)
the third conditions of (44) is  () ≥ 3


 ()  they

are compatible. When  is not big, these conditions can
be established. The second condition of (44) and the third
condition of (43) are not directly compatible. We first let
 as small as possible, and  as big as possible. So 

can not be big. These requirements are reasonable for our
real control. If we select  =  +  form the third
condition of (43),  ≥ 1

2  The second condition of (44)
requires 

¡
−1 − 

¢
 1

2  there exists 1   ≥ 1
2 and a

small  such that 
h
 (+ )−1 − 

i
 1

2 . After and
 are decided, we use the second condition of (44) to select


IV. EXPERIMENTAL RESULTS OF THE NEURAL PID
CONTROL FOR AN EXOSKELETON ROBOT

Recently a research group in UCSC has successfully con-
structed a 7-DOF exoskeleton robot, see Figure 1. In this
paper, we apply our neural PID control in this exoskeleton. The
computer control platform of the UCSC 7-DOF exoskeleton
robot is a PC104 with an Intel Pentium4@2.4 GHz processor
and 512 Mb RAM. The motors for the first four joints are
mounted in the base such that large mass of the motors can
be removed. Torque transmission from the motors to the joints
is achieved using a cable system. The other three small motors
are mounted in link five.

Fortunately, this upper limb exoskeleton is fixed on the
human arm, the behavior of the exoskeleton is the same as the
human arm, see Figure 2. It is composed of a 3-DOF shoulder
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Fig. 1. The UCSC 7-DOF exoskeleton robot.

J4

J1-J3

J5-J7

shoulder

elbow

wrist

hand

Force Sensor-1

Force Sensor-2

Force Sensor-3

Fig. 2. Human arm vs. exoskeleton

(J1-J3), a 1-DOF elbow (J4) and a 3-DOFon wrist (J5-J7).
J1-J3 are responsible for shoulder �exion-extension, adduc-
tion and internal–external rotation, J4 create elbow �exion-
extension, J5-J7 are responsible for wrist �exion–extension,
pronation-supination and radial–ulnar deviation. We regard J1,
J2 and J3 in Figure 5 as three spherical joints of the human
shoulder, see Figure 2. Also J5, J6 and J7 in Figure 5 are
considered as three spherical joints of the human wrist.

The exoskeleton’s height was adjusted for each user in a
seated position, see Figure 3. The users left hand is an enable
button which released the brakes on the device and engaged the
motor. The objective of the admittance control is to move the
end-effector of the exoskeleton robot from an initial position
into six slotted holes, see Figure 4.

The reference signals are generated by admittance control in
task space. These references are sent to joint space. The robot
in joint space can be regarded as free motion without human
constraints. The whole control system is shown in Figure 5.
The objective of neural PID control is make the transient
performance faster and less overshoot, such that human feel
comfortable. In Figure 2, Force Sensor-1 and Force Sensor-2
are used to detect the human feeling, while Force Sensor-3 is
used to generate the control command.

The real-time control program operated in Windows XP

Fig. 3. The adimittance control of the UCSC exoskeleton

Fig. 4. The end-effector of the exoskkeleton
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1
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+

−
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+

7q

1q

qv ≈
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d

Fig. 5. The neural PID conrol of the exoskeleton.
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with Matlab 7.1, Windows Real-Time Target and C++. All
of the controllers employed a sampling frequency of 1.
The properties of the exoskeleton with respect to base frame
are shown in Table 1.

Table 1. Parameters of the exoskeleton
Joint Mass (Kg) Center of Mass (m) Link Length (m) Joint Offset (m)

1 3.4 0.3 0.7 0.3
2 1.7 0.05 0.1 0
3 0.7 0.1 0.2 0.1
4 1.2 .02 0.05 0
5 1.8 .02 0.05 0.1
6 0.2 0.04 0.1 0
7 0.5 0.02 0.05 0.1

The two theorems in this paper give sufficient conditions
for the minimal values of proportional and derivative gains
and maximal values of integral gains. We use the parameters
in Table 1 and (28) to estimate the upper and the lower bounds
of the eigenvalues of the inertia matrix  ()  and  in (10).
We select  ()  3  ()  1  = 10 We choose
 = 4 ()

()
such that  () ≤ 

3  () is satisfied.
 = 008  is chosen as  = (30)  = 7

12  so  =
(1758) The joint velocities are estimated by the standard
filters ė () = 

+ 
 () =

18

+ 30
 () (49)

The PID gains are chosen as

 =  [150 150 100 150 100 100 100]
 =  [2 1 2 2 02 01 01]
 =  [330 330 300 320 320 300 300]

(50)

such that the conditions of Theorem 2 are satisfied. The
initial elements of the weight matrix  ∈ 7×7 are selected
randomly from−1 to 1 The active function in (26) is Gaussian
function

 = exp
n
− ( −)

2
100

o
  = 1 · · · 7 (51)

where  is selected randomly from 0 to 2 The weights are
updated by (45) with  = 10

The control results of Joint-1 with neural PID control is
shown in Figure 6, marked "Neural PID". We compare our
neural PID control with the other popular robot controllers.
First, we use the linear PID (15), the PID gains are the same
as (50), the control result is shown in Figure 6, marked "Linear
PID-2". Because the steady-state error is so big, the integral
gains are increased as

 =  [50 20 30 30 10 10 10] (52)

The control result is shown in Figure 6, marked "Linear
PID-1", the transient performance is poor. There sill exists
regulation error. Further increasing  causes the closed-loop
system unstable. Then we use a neural compensator to replace
the integrator, it is normal neural PD control (16). In order to
decrease steady-state error, the derivative gains are increased
as

 =  [970 900 970 970 970 800 800] (53)

1.05 1.1 1.15 1.2 1.25 1.3

0

0.1

0.2

0.3

Time (second)

Angle (rad) J-1

Reference

Neural  PID
Neural PD 

Linear  PID-2
Linear  PID-1

Fig. 6. Comparison of seveal PID controllers for Joint 1.

0.8 0.9 1 1.1

0.1

0.2

Time (second)

Angle (rad) J-2

Neural  Net in PID form

PID tuning with Neural  Net

PID+neural compensator

Fig. 7. Comparison of three neural PID controllers for Joint 2.

the control result is shown in Figure 6, marked "Neural PD".
The response becomes very slow.

Now we use Joint-2 to compare our neural PID control with
the other two types of neural PID control. The control results
of these three neural PID controllers are shown in Figure
7. Here we use a three-layer neural network with 3 nodes
which have integral, proportional and derivative properties.
A backprogration-like training algorithm is used to ensure
closed-loop stability [23], it is marked "Neural Net in PID
form". Then we use a one-hidden layer neural network to tune
the linear PID gains as in [?], it is marked "PID tuning via
neural net". It can be found that the "Neural net in PID form"
can assure stability, but the transient performance is not good.
The "PID tuning via neural net" is acceptable except its slow
response.

Finally, we use the other joints, Joint 3 to Joint 7, to compare
our neural PID with the other popular robot controllers. The
results are shown in Figure 8-12.

Clearly, neural PID control can successfully compensate
the uncertainties such as friction, gravity and the other un-
certainties of the robot. Because the linear PID controller has
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1 1.05 1.1 1.15

0

0.1

0.2

0.3

Time (second)

Angle (rad) J-3

Neural  PID

Linear  PID-2

Fig. 8. Linear PID via neural PID for Joint 3.

1.7 1.8 1.9 2

0

0.1

0.2

0.3

Time (second)

Angle (rad) J-4

Linear  PID-2

Neural  PID

Fig. 9. Linear PID-2 via neural PID for Joint 4.

1.05 1.1 1.15 1.2 1.25 1.3

0

0.1

0.2

0.3

Time (second)

Angle (rad) J-5

Neural  PID

Neural  PD

Fig. 10. Neural PD via neural PID for Joint 5.

1.9 1.95 2 2.05

0

0.1

0.2

0.3

Time (second)

Angle (rad) J-6

Linear  PID-1

Neural  PID

Fig. 11. Linear PID via neural PID for Joint 6.

2.1 2.2 2.30

0.1

0.2

0.3

Time (second)

Angle (rad) J-7

Neural  PID

Neural  PD

Fig. 12. Neural PD via neural PID for Joint 7.

no compensator, it has to increase its integral gain to cancel
the uncertainties. The neural PD control does not apply an
integrator, its derivative gain is big.

The structure of neural compensator is very important. The
number of hidden nodes  in (5) constitutes a structural prob-
lem for neural systems. It is well known that increasing the
dimension of the hidden layer can cause the ”overlap” problem
and add to the computational burden. The best dimension to
use is still an open problem for the neural control research
community. In this application we did not use hidden layer,
and the control results are satisfied. The learning gain  in
(45) will in�uence the learning speed, so a very large gain can
cause unstable learning, while a very small gain produce slow
learning process.

V. CONCLUSIONS

The neural PID proposed in this paper solves the problems
of large integral and derivative gains in the linear PID control
and the neural PD control. It keeps good properties of the
industrial PID control and neural compensator. Semiglobal
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asymptotic stability of this neural PID control is proven. When
the joint velocities of robot manipulators are not available,
local asymptotic stability is assured with filtered positions.
The stability conditions give explicit methods to select PID
gains. We also apply our neural PID to the UCSC 7-DOF
exoskeleton robot. Theory analysis and experimental study
show the validity of the neural PID control.
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VII. APPENDIX

Proof: [Proof of Theorem 1]We construct a Lyapunov
function as

 = 1
2 ̇

̇ + 1
2 ̃

̃ +
R 
0

³

·

´
 −  + ̃

¡

¢

+3
2
¡

¢

−1 
¡

¢
+ 

2 ̃
−1 ̃

+̃ ̃ − ̃̇ + 
2 ̃

̃ +
1
2 

³f−1
f´

(54)
where  is defined in (13) such that  (0) = 0  is a design
positive constant. We first prove  is a Lyapunov function,
 ≥ 0 The term 1

2 ̃
̃ is separated into three parts, and

 =
P4

=1 

1 =
1
6 ̃

̃ + ̃
¡

¢
+ 3

2
¡

¢

−1 
¡

¢

2 =
1
6 ̃

̃ + ̃ ̃ + 
2 ̃

−1 ̃

3 =
1
6 ̃

̃ − ̃̇ + 1
2 ̇

̇

4 =
R 
0
 ()  −  +


2 ̃

̃ +
1
2 

³f−1
f´
≥ 0
(55)

It is easy to find

1 =
1

2

∙
̃


¡

¢ ¸ ∙ 1

3 

 3−1

¸ ∙
̃


¡

¢ ¸ (56)

Since  ≥ 0 1 is a semi positive definite matrix, 1 ≥
0When  ≥ 3

(−1 )()


2 ≥ 1
2

Ãr
1

3
 () k̃k−

s
3

 ()

°°°̃°°°!2 ≥ 0 (57)

Because

 ≤ kk kk ≤ kk kk kk ≤ | ()| kk kk
(58)

when  ≤
√

1
3()()

 () 

3 ≥ 1
2

Ãp
 () k̇k−

r
1

3
 () k̃k

!2
≥ 0 (59)

Obviously, ifr
1

3

¡
−1

¢

3
2
 ()

1
2
 () ≥  () (60)

there existsq
1
3 () ()

 ()
≥  ≥ 3


¡
−1

¢
 ()

(61)

This means if  is sufficiently large or  is sufficiently

small, (60) is established, and 
³
̇ ̃ ̃

´
is globally pos-

itive definite. Using 


R 
0

³

·

´
 =


 
0



·







=

̇
³

·

´
 


¡

¢
= 0 and 



£
̃

¡

¢¤
=

·
̃



¡

¢


the derivative of  is

̇ = ̇̈ + 1
2 ̇


·
̇ +

·
̃


̃ + 
³

·

´

̇

+
·
̃



¡

¢
+ 

Ãf−1

·f!
+

·
̃−1 ̃ +

·
̃


̃ + ̃
·
̃ − 

µ ·
̃


̇ + ̃
·
̇ + ̃̈

¶
+̃

·
̃

(62)
Using (8), the first three terms of (62) become

−̇ ()− ̇̇ + ̇ ̃ + ̇
¡

¢
+ ̇ ̃(

·
) (63)

And

̇ ≤ − [ ()−  ()−  k̃k] k̇k2
− [ ()−  ()− ] k̃k2 (64)

If

k̃k ≤  ()


(65)

and
 () ≥ (1 + ) ()
 () ≥ 1


 () + 

(66)

then ̇ ≤ 0 k̃k decreases. Then (66) is established. Using
(60) and 

¡
−1

¢
= 1

 ()
 (66) is (25).

̇ is negative semi-definite. Define a ball Σ of radius   0
centered at the origin of the state space, which satisfies these
condition

Σ =

½
̃ : k̃k ≤  ()


= 

¾
(67)

̇ is negative semi-definite on the ball Σ There exists a ball
Σ of radius   0 centered at the origin of the state space on
which ̇ ≤ 0 The origin of the closed-loop equation (24)
is a stable equilibrium. Since the closed-loop equation is
autonomous, we use La Salle’s theorem. Define Ω as

Ω =
n
 () =

h
̃ ̇ ̃

i
∈ 3 : ̇ = 0

o
=
n
̃ ∈  : ̃ = 0 ∈  ̇ = 0 ∈ 

o (68)

From (62), ̇ = 0 if and only if ̃ = ̇ = 0. For a solution
 () to belong to Ω for all  ≥ 0, it is necessary and sufficient
that ̃ = ̇ = 0 for all  ≥ 0. Therefore it must also hold that
̈ = 0 for all  ≥ 0. We conclude that from the closed-loop
system (24), if  () ∈ Ω for all  ≥ 0, then


³

·

´
= 

¡
 0

¢
= ̃ + 

¡
 0

¢
·
̃ = 0

(69)

implies that ̃ = 0 for all  ≥ 0 So  () =
h
̃ ̇ ̃

i
= 0 ∈

3 is the only initial condition in Ω for which  () ∈ Ω for
all  ≥ 0.
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Finally, we conclude from all this that the origin of the
closed-loop system (24) is locally asymptotically stable. Be-
cause 1


≤ 

¡
−1

¢
 ()  the upper bound for k̃k can

be

k̃k ≤  ()


 () () (70)

It establishes the semiglobal stability of our controller, in the
sense that the domain of attraction can be arbitrarily enlarged
with a suitable choice of the gains. Namely, increasing  the
basin of attraction will grow.

Proof: [Proof of Theorem 2]We construct a Lyapunov
function as

 =
1
2 ̇

̇ + 1
2 ̃

̃ +
R 
0
 ()  −  + ̃

¡

¢

+3
2
¡

¢

−1 
¡

¢
+ 

2 ̃
−1 ̃

−̃̇ + ̃
¡
 +−1

¢
̃ + 1

2
−1 − ̇

+−1̃ + 1
2 

³f−1
f´

(71)
where the definition of  is the same as Theorem 1.  is
a design positive constant. We first prove  is a Lyapunov
function,  ≥ 0 The term 1

2 ̃
̃ is separated into three

parts, and  =
P6

=1 

1 =
1
6 ̃

̃ + ̃
¡

¢
+ 3

2
¡

¢

−1 
¡

¢

2 =
1
6 ̃

̃ + ̃ ̃ + 
2 ̃

−1 ̃

3 =
1
6 ̃

̃ − ̃̇ + 1
4 ̇

̇

4 =
1
4


¡
−1

¢
 + −1̃ + ̃

¡
−1

¢
̃

5 =
1
4


¡
−1

¢
 − ̇ + 1

4 ̇
̇

6 =
R 
0
 ()  −  +

1
2 

³f−1
f´
≥ 0

(72)

Here 1 and 2 are the same as (55), i.e.

 () ≤ 

3
 () (73)

For 3 if  ≤
√

1
6()()

 ()

3 ≥ 1
2

Ãr
1

2
 () k̇k−

r
1

3
 () k̃k

!2
≥ 0 (74)

Because  () ≤ 
¡
−1

¢
 () and 

¡
−1

¢
=

1
 ()

 it is easy to find that,

if 
¡
−1

¢ ≤p (−1) ((−1)) or ()
2()

≤
 ()

()
 ()

4 ≥ 1
2

⎛⎝ 1
2

¡
−1

¢ kk2 − 2 ¡−1¢ kk°°°̃°°°
+2

¡¡
−1

¢¢ °°°̃°°°2
⎞⎠ ≥ 0
(75)

If  () ≤ 1
2

p
 ((−1)) () or  () ≤

1
4 ()

()
2 ()

5 =
1

2

∙
1

2


−1 + 2̇ +
1

2
̇̇

¸
≥ 0 (76)

Because 6 ≥ 0 obviously, there exist   and  such that

2 ≤ 1
6
()()

2 ()
 ()
2()

≤  ()
()
 ()

 () ≤ 1
4 ()

()
2 ()

(77)

This means if  is sufficiently large or  is sufficiently
small, (60) is established, and  is globally positive definite.
Now we compute its derivative. The derivative of  is

̇ ≤ −̇̇ − −1 − ̃̃ +  k̃k2
+̇̇ +  k̃ − k k̇k2
+̃̃ + ̃−1̃ +  +

1
2 kk2 + 1

2 k̃k2
+̃

¡
 − −−1

¢
 + ̇

+

"f

Ã
−1

·f + ( )̇ + ( )̃ + ( )

!#
(78)

Because ̇ = − +̇ and  =  {}  the last term is
zero if we apply the updating law (45). Using (58), (78) is

̇ ≤ −̇
½

 ( − )−  k̃ − k
− 1
2() ()

¾
̇

−
µ


¡
−1 −

¢− 1
2 − 1

2 ()

−()
2  ()

¶


−̃
µ


¡
 − −−1

¢− 
−12 − 

2  ()

¶
̃

(79)
Using  () () ≥  () ≥  () ()   can be
"" or "", the last condition of (77) can be replaced by°°̃ − 1



°°

≤ 1


h
 ( − ) ()− 1

2() () ()
i

It is the attraction area (47).
Using  ()+ () ≥  (+) ≥  ()+ () 

the second condition of (77) is


£¡
−1 − 

¢


¤ ≥ 
¡
−1 − 

¢
 ()

≥ 1
2 +

1
2 () +

()
2  ()

(80)

It is the condition for  in (44). Also

 () ≥  ()+
¡
−1

¢
+
1 + 2

2
+



2
 ()

It is the condition for  in (44). The condition for  in (44)
is obtained from (73). The rest part of the proof is the same
as Theorem 1.
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