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Abstract

One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain’s associative memory
traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region
and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic
trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale
recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not
present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed
increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during
contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with
behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique
recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore,
our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that
real-time memory traces can be decoded on a moment-to-moment basis over any single trial.
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Introduction

What are neural population-level memories in real-time? Can

we decode neural populations’ memory traces as the subjects form

and recall memories? How meaningfully can real-time memory

traces in the brain be related to a behavioral readout? These

enduring questions have attracted a keen interest of many

philosophers, psychologists, neuroscientists and beyond [1–3].

Great progresses have been toward our understanding of memory

processes at the molecular, synaptic, anatomical, and single

neuron levels in the past decades [4–8]. Yet, real-time transient

dynamics of neuronal population-level memory traces still remains

unknown.

The CA1 region of the hippocampus is well known to be a

crucial site for processing associative memories which typically

contain information about what, where, and when major events

occurred. One of the classical associative memory tasks widely

used by researchers is the trace conditioning memory paradigm

[3,7–12]. There are several variations in term of the nature of

conditioned (tone, light, odor, etc) and unconditioned stimuli (mild

electrical foot-shock, air-puff to eyelid, etc). These protocols can

produce long-lasting associative memories in the brains of various

animal species. In a typical trace conditioning paradigm, the

presentations of a preceding conditioned stimulus (CS), such as a

neutral tone, and a subsequent unconditioned stimulus (US), such

as mild foot-shock to foot or air-puff to eyes, are separated in time

by an inter-stimuli interval [8–12]. With repetitions of paired CS-

US presentations in a given environment, humans and laboratory

animals can form the rich associative memories of events and their

temporal relationship, as well as the context in which the

associative events take place. It has been shown that this classical

Pavlov conditioning induces increased neuronal discharges in the

hippocampus and cerebellum [3,7,9–11]. Such learning para-

digms have also been shown to produce changes in latency

responses and membrane potentials [3,9–15]. The well-defined,

salient nature of cues and memory produced by this classic

conditioning test offers an excellent paradigm for search of the

neural basis of memory traces [3].

As a prevalent phenomenon in the brain, large response-

variability in single neuron activity within any single trial typically

makes it difficult to reliably decode the neural activity patterns on

a moment-to-moment temporal basis in a given single trial. That

is, the trial-to-trial variability of single neuron responses (activity

changes of a single neuron) does not allow the reliable prediction

of, and consequently, understand whether and/or how brains

form snap-shot memory representation of events at any given

moment in time. In another words, spike raster plots, while being

quite useful to determine neurons’ response-selectivity, are not a

very effective approach to decoding real-time memory patterns.

Moreover, data-averaging practice over trials intrinsically limits

the analysis to a selected single time point (say, marked by the

presentation of the conditioned stimulus during the recall tests as

time zero). This would inevitably lead to loss of most crucial

information about memory traces if they are reappeared in

tandem with variable intervals across different trials. Therefore,

one of the major goals for the memory field is to understand how
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memory is represented as transient dynamic patterns at the

neuronal population level on a moment-to-moment basis and then

to demonstrate the explicit relationship between those neural

patterns with a behavioral readout during learning and recall.

Since brains are likely to achieve real-time representation of

memories through the coordinated activity of ensemble neurons

[16,17], we employed our newly developed large-scale ensemble

recording techniques to simultaneously measure the activity

patterns of large numbers of neurons in the CA1 region of the

mouse hippocampus when animals were learning and retrieving

various associative memories. We used the trace-fear conditioning

protocol to produce trace-fear memory as well as contextual fear

memory. A wide range of lesion studies on mice, rats, monkeys,

and humans all suggest that both contextual and trace fear

conditioning memory requires the structural integrity of the

hippocampus [2,7–15,18–24]. This classic Pavlov learning para-

digm allows us to directly examine the ensemble patterns in the

hippocampus in responses to explicit cues as the CA1 population

engages in multiple stages of memory processing. More impor-

tantly, this classic memory test can further enable us to assess the

causal relationship between these memory traces and behavioral

performances during the acquisition and retrieval of associative

memories.

Results

Encoding Patterns Produced by Trace Conditioning
Stimuli
We used the trace fear conditioning paradigm to train ten adult,

wild-type male mice (5–6 month old). Our trace conditioning

contained a neutral tone (CS, 85dB, 2 sec) which was followed by

a delayed mild foot shock (US, 0.75 mA, 0.3 sec) delivered via a

metal grid floor in a fear conditioning chamber (Fig. 1A). The

fixed time interval, or ‘‘trace’’ interval, between the CS and the

US was 20 seconds (Fig. 1B). This long-duration trace condition-

ing is extremely sensitive to hippocampal-lesion animals [3,8,

18–23]; it can produce various memories such as the memories for

the shock event, the causal relationship and timing information of

the tone and shock, as well as the corresponding environment.

Our experiments started with a three-day habituation session prior

to training, in which the mice were introduced to two distinct

chambers (5 minutes in each chamber, per day). One chamber was

for fear conditioning (learning) and the other for a one-hour trace

fear memory retention test (recall). It has been shown that this type

of pre-exposure to the context can ensure the formation and recall

of specific contextual memory [25,26]. We then show that seven

repetitions of CS-US parings produced an increasing amount of

immediate freezing during memory acquisition (Fig. 1D). At the

one-hour contextual retention test, when the mice were brought

back to the original conditioning chamber, the animals exhibited

significant freezing during the 5-min contextual recall (Fig. 1E),

indicating robust contextual fear memory. However, freezing

tapered off by the end of the retention test, reflecting adaptive

behavioral changes in the absence of US reinforcement.

After the contextual retention test, the mice were returned to

the home cage for a brief break and then were placed into a novel

chamber (recall chamber) for the trace retention test. As expected,

the animals showed active exploratory behaviors in the recall

chamber during the 3-min pre-tone period (Fig. 1F). However, as

soon as the conditioned tone (2-sec) was played, the animals would

freeze immediately and often remained in the freezing state for a

significant period. During trace recall, the 2-sec tone was

presented to the mice seven times with a 1-min interval, and the

animals showed robust tone-induced freezing (Fig. 1F). The group

data further confirmed that our long-duration trace conditioning

protocol was highly effective in eliciting the formation of robust

contextual fear memories (Fig. 1G, p,0.001) as well as trace fear-

conditioning memories in mice (Fig. 1H, p,0.001). On the

contrary, the unpaired CS/US protocol was ineffective in

producing trace conditioning memory in our animals (Fig. S1),

which is highly consistent with the well documented observations

in literature [e.g. see 3, 7, 8, 11].

Using the large-scale in vivo recording technique that we have

recently described for monitoring neural ensemble activity in the

brain of freely behaving mouse [27–29], we set out to

simultaneously record the activity of over two hundred neurons

from the CA1 region of the mouse hippocampus as the animal

underwent the acquisition and retrieval of fear memory. We first

confirmed that our recordings were taken place in the CA1 region

of the hippocampus by both post-experiment histological staining

of the electrode positions (Fig. S2A) and unique CA1 physiological

markers (e.g. ripples) (Fig. S2B and 2C). Furthermore, we

confirmed our recordings were stable throughout the entire

recording experiments based on the comparisons of the waveforms

for the spikes recorded at the beginning and end of the

experiments (Fig. S3 for putative excitatory units; and Fig. S4

for putative interneurons). The consistent waveforms during shock

events also suggested that no electrical artifacts were taken for

spikes (Fig. S3, S4).

An example of spike rasters for a subset of simultaneously

recorded responsive units is shown (Fig. 2A, also see Fig. S5A).

While the conventional spike raster histograms can provide some

basic assessment of the response properties for recorded units by

either averaging the responses of multiple units at a single trial

(Fig. S5B) or by averaging the single-unit responses over multiple

trials (Fig. S6A and C), it is difficult to use these simple-order

methods or the visual inspection of spike rasters for the deeper and

quantitative understanding of ensemble patterns and real-time

dynamics of these simultaneously recorded units.

Thus, we employed a MDA method, a supervised dimension-

ality reduction-based statistical pattern classification method, to

uncover the neuronal population level-encoding patterns from

large-scale datasets [17,28,30]. Firing patterns during prior

training rest period (gray ellipsoid), conditioned tone presentation,

and foot shock epochs are shown after being projected to a three-

dimensional space obtained by using MDA (Figure 2B). Each dot

within an ellipsoid is a statistical result for the ensemble of the

simultaneously recorded neurons from a single trial. The MDA

representation of these ensemble responses was built from five

trials for the CS ellipsoid (excluding the tone during the first

pairing), for the US ellipsoid from 6 trials of US, and the rest

ellipsoid from sampling 14 resting epochs (for matching 7 CS and

7 US epochs). The boundaries of each ellipsoid reflect the 2 sigma

boundaries as we fitted the dot clusters with Gaussian distributions

in the MDA space. We validated the MDA classification power by

performing ‘‘test’’ using the remaining trials (1 to 3 trials left out of

the training model). The ‘‘leave-one-out’’ validation method

revealed that our statistical pattern classification can achieve up

to 99% prediction accuracy (see Table S1). Thus, the MDA-based

statistical pattern classification method enabled the qualitative and

quantitative measurement of various population encoding patterns

associated with conditioned stimuli and conditioned stimuli as

distinct Gaussian ellipsoids in the MDA subspaces. With all

experimental categories, those distinct patterns formed by these

stimuli were well separated (see the all-category MDA plots in Fig.

S7A and S7B).

In order to monitor the transient dynamics of CA1 ensemble

activity patterns, we combined the MDA method with a sliding-

Real-Time Memory Traces
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Figure 1. Associative trace fear conditioning. (A) Illustration of a fear conditioning chamber for producing a tone-shock trace fear memory. A
neutral tone precedes a mild foot-shock via a metal grid floor. (B) The trace interval between the offset of the tone (2 sec) and the onset of the foot
shock (0.3 sec) is 20 seconds. (C) Schematic representation of experimental paradigm for trace fear conditioning. On the training day, the experiment
begins as follows: one-hour pre-training sleep/rest in home cage; pre-training exploration in the conditioning chamber; trace conditioning in the
conditioning chamber; one-hour post-training rest/sleep in home cage; contextual recall in the conditioning chamber; trace conditioning recall in a
novel chamber. (D) Immediate freezing in mouse#1 increased as the CS-US pairing repeated during the training phase. (E) Contextual freezing in the
1-h contextual retention test suggests the contextual fear formation in mouse #1; at the end of the 5-min test, freezing decreased as there was no
reinforcement shock. (F) Robust trace freezing upon the recall tone. The tone was presented for seven times (trials) with a 1-min interval. (G) As a
group (n = 10), there was a significant contextual freezing as revealed by the 1-h contextual retention test (62.5%65.5%, p,0.001). (H) The same set
of mice showed a significant increased freezing during the 1-h trace retention test (n = 10, 61.5%65.3%, p,0.001).
doi:10.1371/journal.pone.0008256.g001
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Figure 2. Ensemble dynamic patterns during learning. (A) Sixty-sec spike rasters of a selective set of CA1 units during the first CS-US pairing
(105 units shown out of 208 simultaneously recorded units from mouse #1 for demonstration). The different colors represent several groups of cells
with different response properties. The units listed at the bottom were selected from the non-responsive group (see details in SF 4). (B) MDA analysis
shows ensemble patterns and dynamic trajectories in response to the first CS before the US arrived. The grey, blue and red ellipsoids represent the
resting state, tone, and foot-shock clusters, respectively. The grey trajectory shows a transient (,1-sec) ensemble dynamics at the moment marked by
the arrow B near the zero time point in (A) in response to the first tone before the paired US arrived. This trajectory remained largely within the rest
cluster, indicating that CA1 did not respond to the neutral tone initially. (C) A robust dynamic trajectory moving from the Rest cluster to Shock cluster
was detected when the first paired US was delivered at the time point marked by the arrow C in (A). This transient trace lasted about 1.5 seconds. (D)
The sixty-sec spike rasters demonstrate neural activity of the same set of cells shown in (A) during the third CS/US pairing. (E) The CS presentation in
this third trial elicited a robust pattern (blue trajectory). The duration corresponds to the blue bar length in (D) marked by the arrow E. (F) The third
paired US triggered an associative trajectory that transversed the shock cluster and the conditioned tone cluster. The color-coded trajectory,
spanning for about 3 seconds, corresponds to the moment indicated by the colored bar in (D). (G) Two more examples of the unique US-CS
associative trajectories elicited by foot shock at the fourth and sixth trials in the same animal (mouse #1) are shown here. The arrows indicate the
moving directions of the ensemble trajectories. (H) The six-by-seven color matrix shows the occurrences of US-CS association patterns over seven
trials from the six recorded mice. The blue squares indicate that foot shock (US) only triggered US ensemble trajectories early on, whereas the yellow
squares indicate the US-CS association trajectory was elicited by foot shock, which became more prevalent after pairings.
doi:10.1371/journal.pone.0008256.g002
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window technique for assessing the temporal dynamics of neural

processing. By using the fixed matrix coefficients produced by the

MDA method, we computed the transient projection of neural

ensemble responses throughout the recorded datasets with a 10-

msec sliding window [17,28,30]. As such, the temporal evolution

of the ensemble activity patterns could be directly visualized as

transient dynamical trajectories in these encoding subspaces on the

10-msec to 10-msec time frame [28,30]. The continuous plotting

of these 10-msec dots would give rise to high temporal resolution

dynamical trajectories in the MDA spaces. For example, upon the

first tone (before the first paired foot shock arrived), the CA1

trajectory did not show any significant protrusion outside the Rest

ellipsoid (Fig. 2B), indicating the neutral tone at this stage did not

evoke significant ensemble responses in the hippocampus. On the

contrary, the first foot-shock (20 seconds after the CS) elicited a

robust CA1 ensemble trajectory that began in the Rest ellipsoid,

and quickly visited the corresponding Shock ellipsoid (US cluster)

before returning to the Rest (Fig. 2C).

As the pairing between the CS and the US was repeated over

learning trials, the subsequent CS began to produce distinct

ensemble patterns that were often not so obvious from the mere

visual inspection of spike rasters (Fig. 2D). For example (as shown

in Fig. 2E), by the third trial the conditioning tone triggered a

robust dynamic trajectory, which started from the Rest ellipsoid,

moved quickly to the conditioned Tone (CS) ellipsoid and then

came back to the Rest ellipsoid.

More importantly, the foot shock (US) at this stage elicited the

associative form of the ensemble trajectories that differed from the

first US response: namely, the trajectory first visited the US cluster,

but then shot directly to the CS cluster before returning to the Rest

ellipsoid (Fig. 2F). This trajectory had the associative dynamic path

that linked the foot shock ellipsoid to the conditioned tone

ellipsoid. As a rule, this trial-dependent emergence of US-CS

association traces (in response to the US) (Fig. 2G, also see Fig.

S7C and S7D) was never present during the first US presentation

(1st pairing) across all recorded mice, but began to emerge during

the second or third CS/US pairing (see group data in Fig. 2H,

each yellow square indicates the presence of such associative

trajectories). Of six recorded mice over seven learning trials, US-

CS association patterns occurred 28 times out of a total 42 CS-

paired US (7 trials x 6 mice), prevalent after multiple pairings

(Fig. 2H). Thus, these associative trajectories, usually moving from

the Rest-to-US-to-CS-to-Rest direction, reflect CA1 learning of

the causal association of tone and foot shock.

Hierarchical Organization of Response Selectivity within
Neuron Population
Our observations of distinct ensemble encoding patterns during

trace conditioning have prompted us to investigate how CA1

neurons correspond to various features of the events or stimuli.

Thus, we utilized an agglomerative hierarchical clustering method

to our data sets [28,30]. The clustering analysis revealed the

existence of various neural groups with distinct response properties

(Fig. S6). Few cells (0.6% of the recorded units) seemed to be

general, meaning that they responded to all types of stimuli

[including CS before pairing (CSb), CS during the pairing (CSd),

CS after the pairing (CSa), as well as US]. Some cells (6.5%)

exhibited sub-general responsiveness (responding to CSd, CSa, and

US); yet some cells changed their firing rates to CSd and US

(19.1%). Another set of cells responded to CSa as well as US

(1.7%). Interestingly, a small percentage of cells appeared to only

respond to CSb (2.2%), or CSa (4.5%). We also observed that some

CA1 cells were selective to the foot shock (18.2%) but not to the

tones. Again, it is worthy note that variability of single neurons

during the rest period and in response to stimuli (as shown in the

spike rasters of Fig. S6A and S6C) creates a difficulty in predicting

whether real-time memory traces were formed or retrieved in the

hippocampus at a given moment within any single trial.

Nonetheless, data averaging over trials (such as shown in Fig.

S6B and S6D) provided useful information about the response-

selectivity of these neurons. Overall, the response selectivity of

CA1 cells can be classified in a hierarchical and categorical

manner, ranging from general responsive units to various specific

responsive units (Fig. S6E).

Learning Pattern Replays during and between CS/US
Pairings
At the behavioral level, the mice exhibited a significant amount

of immediate freezing during training (seven pairings were given

during a 10-min period). This behavioral freezing was accompa-

nied by the prominent presence of significant ripple oscillations

(see the spectrogram of local field potentials on the top panel of

Fig. 3A). What is happening to the population-level encoding

patterns during this period? To approach this question, we

examined whether the ensemble encoding patterns triggered by

CS/US stimuli would undergo spontaneous reactivations even

during this learning phase. Our analysis revealed multiple

spontaneous excursions from the Rest ellipsoid within the CS/

US inter-stimuli interval as well as after the US presentation (sees

triangles at the bottom of Fig. 3B). For example, during the third

CS-US pairing, there were two reactivations occurring within the

20-sec CS-US interval. The first reactivated ensemble trace

occurred at 2.8 seconds after the tone offset (the blue triangle at

the 4.8-sec time point in Fig. 3B and 3C) and the second

reactivated trace happened at 7.5 seconds after the tone offset (the

pink triangle at the 9.5-sec time point in Fig. 3B and 3D) after the

CS presentation ended. Also, one reactivation was further

observed at 21.4 seconds after the offset of the US (the red

triangle at the 43.4-sec time point in Fig. 3B and 3E). These post-

stimulation, spontaneous trajectories (Fig. 3C, 3D and 3E) had the

characteristic geometric shapes similar to the original ensemble

traces (see Fig. 2E, 2C, and 2F). These spontaneous, transient

trajectories also took place on a similar time-scale and exhibited

the same directional specificity. Additionally, they were confined

in the same plane as the original traces observed during the

presentation of actual stimuli. Our measurement of the time points

of these transient trajectories suggests that these immediate,

spontaneous reactivations occurred very rapidly, typically within

several seconds to minute(s) with random time intervals.

Importantly, we noticed that the averaged numbers of

immediate reactivations (pooled from six recorded mice) within

the 20-sec CS-US time interval increased in proportion to the

numbers of conditioning trials (Fig. 3F, blue triangles and plot).

Similarly, the numbers of reactivations that took place after the

foot shock (during the 60-sec period after the paired foot shock)

also increased over trials (Fig. 3F, red triangles and plots).

Moreover, the increase in the total numbers of immediate

reactivations was well correlated with the increase in the amounts

of immediate freezing. For example, in mouse #1, both the total

numbers of reactivations (all three major types) and the amounts of

immediate freezing increased rapidly in the first three trials, but

reached their plateaus by the fourth trial (Fig. 3G). Cross-

correlation analysis showed that the correlation between freezing

and reactivations was highly significant (r = 0.9657, p,0.001).

Again, the group data (from six mice) also confirmed that the trial-

dependent increases in the total numbers of reactivations (Fig. 3H)

were highly correlated with the averaged amounts of immediate

freezing over learning trials (r = 0.9551, p,0.001). Thus, the

Real-Time Memory Traces
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Figure 3. Reactivations of ensemble dynamic patterns during learning. (A) Spectrogram of local field potentials during the third CS-US
pairing training. The blue color bar on the top indicates the non-freezing state, whereas the red bar indicates the freezing state of the animal. The
color scale represents spectral power. The time scale is matched with the spike raster shown below. (B) Three post-stimulus immediate reactivations
of the ensemble encoding patterns during the third learning trial were detected, marked by small triangles at the bottom of the spike raster. The
sixty-sec spike-raster plot from mouse #1 is the same as the one shown in Fig. 2D. (C) An immediate reactivation, shown by the blue trajectory, was
detected at the moment marked by the blue triangle at the bottom of (B). Similar to its original encoding pattern (shown in Fig. 2E), this reactivation
trajectory transiently visited the CS cluster. This CS Trace (type-I) lasted about 0.8 seconds. (D) A second reactivation, shown by the pink trajectory,
occurred at ,9 sec shown by the pink triangle in (B). This trajectory visited the US cluster. This US Trace (Type-II) lasted about 0.7 seconds. (E) A third
reactivation (red trajectory) took place at 43 sec, indicated by the red triangle in (B). This 1-sec association trajectory (Type-III), just like the encoding
traces shown in Fig. 2F, first visited the US cluster and then toward the CS cluster before returning to the Rest. The same directionality was
maintained. (F) Averaged numbers of reactivations (all three major types of traces) in six recorded mice over seven learning trials. The blue open
triangles presents the averaged reactivation numbers within the 20-sec interval of the same CS-US pairing, whereas the red open triangles show the
averaged reactivation numbers within the 60-sec after the paired US was delivered. The linear regression lines suggest the accumulative effects of
pairings on the ensemble trace formation. (G) Numbers of immediate reactivations and the amounts of immediate freezing over seven trials in mouse
#1. Cross-correlation analysis shows the correlation between freezing responses and occurrence numbers of reactivations was highly significant
(r = 0.9657, p,0.001). Averaged freezing responses and the total numbers of reactivations were calculated from the period between the tone offset
and the 60-sec after US presentation. (H) Averaged immediate freezing responses and the total numbers of reactivations were calculated from six
mice. The correlation between freezing and reactivations was again highly significant (r = 0.9551, p,0.001).
doi:10.1371/journal.pone.0008256.g003
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repeated CS/US pairings clearly had an accumulative effect on

the formation/consolidation of various encoding patterns.

Memory Traces during Contextual Fear Recall
During recall tests, we first measured contextual fear memory

using a one-hour contextual retention test which engages both the

hippocampus and amygdala [8,18–21,31,32]. As expected, the

conditioned mice exhibited robust freezing when the animals were

re-exposed to the original shock chamber (Fig. 1E and 1G). Our

analysis revealed that the re-exposure of the animals to these

contextual cues triggered rapid and repeated re-emergence of the

various encoding ensemble patterns, often in tandem during the

freezing epoch (Fig. 4A). Importantly, the appearance of the first

CA1 recall pattern always preceded the onset of the first

behavioral freezing, with an averaged leading time of about 1.4

seconds. This fits well with the predicted causal relationship

between fear memory trace recall and behavioral readout.

For example, mouse #1 entered the freezing state 8 seconds

after re-introduced to the conditioning chamber. The observed

first retrieved pattern emerged 360 mini-seconds before the animal

froze (see the top red bar in Fig. 4A). During the first freezing

epoch (,23 seconds), eight transient trajectories were detected (see

triangles at the bottom of Fig. 4A). These dynamic ensemble

trajectories oscillated among the Rest-to-CS cluster (Fig. 4B, Type-

I), Rest-to-US cluster (Fig. 4C, Type-II), and Rest-to-US-CS

association subspace (Fig. 4D, Type-III). In the second freezing

epoch that lasted about 20 seconds, another set of trace retrievals

(8 trajectories) was observed (see triangles in Fig. 4A bottom, right

side). The order of the appearances of these ensemble traces

during the second freezing epoch was different from that during

the first epoch.

In addition to the three major types of ensemble trajectories that

were originally seen during the learning phase, we also noticed

that other types of trajectories were present during contextual

recall. Some trajectories would fall between the CS and the US

ellipsoids without directly touching either one of them (Fig. 4E,

other types). Interestingly, we also observed that on several

occasions a new kind of US-CS association trajectories appeared.

These trajectories showed a reversed movement (CS-to-US),

moving from the Rest to the CS cluster and then directly to US

cluster before returning to the Rest (Fig. 4F). Our composition

analysis of the pooled data from six mice shows that 48% of the

various traces retrieved belonged to Type-I (CS-traces); 15% and

16% of the retrieved patterns were Type-II (US traces) and Type-

III (CS-US association traces), respectively; while other types

constituted the remaining 21% (Fig. 4G).

Interestingly, the numbers of ensemble patterns retrieved were

also highly correlated with the amounts of freezing during

contextual recall. As illustrated in Fig. 4H, the numbers of

patterns recalled in mouse #1 co-varied tightly with the amounts

of behavioral freezing over the 5-min period of the contextual

recall test. The fitting curves showed a highly significant

correlation between the freezing response and the occurrence of

the retrieved ensemble traces (r = 0.8840, p,0.001). Furthermore,

the averaged numbers of memory patterns retrieved during

contextual recall in six recorded mice also exhibited a near linear

function over averaged freezing responses (Fig. 4I, r = 0.8956,

p,0.05).

During contextual freezing, we noted that there was a dramatic

increase in the number of sharp-wave ripples, which can be

detected by filtering and thresholding the CA1 local field

potentials in the 100,250 Hz (ripple) frequency band (Fig. S8A

and S8B). As evident from the power spectral density plot (Fig.

S8B), the ripples were prominently taking place during freezing,

but not in the non-freezing state of the recall sessions. Since ripples

have been shown to increase after learning behaviors in rats

[33–36], we investigated the relationship between ensemble trace

retrievals and ripple occurrences. We measured the exact time

points for both ensemble pattern retrievals and hippocampal

ripples and then compared the co-occurrences of these two types

of the events (Fig. S8C-F). Our analysis shows that 87.5% of

ripples occurred during the contextual freezing state were

associated with ensemble pattern retrievals (61 sec time window)

(Fig. S8G). Conversely, 49.2% of ensemble pattern retrievals were

accompanied (within 61 sec time window) with obvious ripples (5

standard deviation above the mean power) (Fig. S8H).

Memory Patterns during Traced-Fear Recall
After the contextual retention test, the mice were subjected to the

one-hour trace memory recall test by placing the animals in a non-

conditioned chamber which had a different floor, color, context,

and geometric shape (see Fig. 1A). In our trace retention test, the

tone was given seven times with a 1-min interval between each

presentation. As expected, prior to the re-exposure to the recall

tone, the mice had a very low amount of freezing (Fig. 1F and 1H;

see the top blue bar Fig. 5A). However, upon the presentation of the

recall cue, the animals quickly entered the freezing state (Fig. 5A,

red bar, also see Fig. 1F and 1H). The behavioral measurement

shows that the time latency between the end of the 2-sec tone

presentation and the onset of cued freezing was between 0.5 to 5

seconds (averaged at 1.9861.51 sec) (see Fig. S9).

Since the tone during trace recall was presented to the animals

in a novel environment which was different from the original

training chamber, we first examined whether the major informa-

tion carried by conditioned tones would change as the contextual

environments differed. We approached this question by assessing

various categories of distinct events in the global MDA analysis.

Our analysis shows that tone-triggered responses during both

learning and the recall test could still form a single CS cluster that

was well separated from all other events (Fig. 5B, left panel). This

indicates that the major information carried by the tones during

training and the recall was similar despite the contextual

difference. However, the subtle contextual difference could be

resolved by using a second-step MDA analysis under which the CS

ensemble trajectories elicited during recall can be separated from

the CS ensemble trajectories during training (Fig. 5B, blue vs. pink

ellipsoids in the right panel).

With this sensitive 2-step MDA method, we assessed how

ensemble patterns were retrieved during trace recall. We found

that the cue (tone) triggered a string of ensemble pattern retrievals

(9 transient trajectories) within the 1-min period (see various

colored triangles at the bottom of Fig. 5A). These dynamic

trajectories included tone traces (Fig. 5C) and shock traces

(Fig. 5D), as well as other types of traces (Fig. 5E; for additional

examples, see Fig. S10). Our statistical analysis of major

trajectories retrieved from the six mice showed that the

conditioned tone patterns constituted about 53% of the total

numbers of pattern retrieval, the shock patterns were about 28%,

and the remaining 19% belonged to other types.

To further understand the temporal dynamics of trace memory

recall, we plotted the time distribution of various ensemble trace

retrievals over the retention test period. We found that the

conditioned tone patterns underwent multiple retrievals in mouse

#1, fluctuating over each 1-min recall session (Fig. 6A).

Interestingly, the ensemble traces specifically corresponding to

the shock experiences exhibited a distinct recall peak around 20

seconds after the offset of the tone, which is the expected moment

for the shock (Fig. 6B). The peak retrievals of the US ensemble
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Figure 4. Ensemble dynamic patterns during contextual recall. (A) The top panel shows the spectrogram of local field potentials during the
60-sec epoch of the contextual recall test in mouse #1. The blue bar on the top indicates the non-freezing state, whereas the red bar indicates the
freezing state of the animal. The color scale represents spectral power. The time scale is matched with the spike raster shown below. The colored
triangles at the bottom indicate the moments at which encoding patterns re-appeared. (B) The blue trajectory shows that a representative CS trace
(Type I) was retrieved, indicated by the star marked with B at the bottom of the raster in (A). This transient dynamic lasted about one second. (C) The
pink trajectory shows a representative US trace that lasts about 0.7 seconds (marked by the pink triangle with C in (A), Type II). (D) The red trajectory
is a representative US-CS association trace (the red triangle with D in (A), Type III). This trajectory occurred for about 0.8 seconds. (E) The green trace
shows a type of different traces often seen during recall test. It visited the space between the US and CS clusters and lasted about one second. (F) The
colored trajectory shows a Type III trace that was retrieved at the time indicated by the red triangle with F in (A). This trajectory occurred in the non-
freezing state, and interestingly, had a reversed directionality, namely, moving from the CS ellipsoid to the US ellipsoid. It lasted about three seconds.
(G) The percentages of different types of ensemble patterns during contextual recall in six mice. (H) Freezing responses and the total numbers of
pattern retrievals were calculated and compared during the entire 5-min contextual recall test (mouse#1). The blue circles are the freezing responses
counted in every 30 seconds; the red circles show the averaged numbers of three major types of ensemble traces counted in the same 30 seconds.
Cross-correlation analysis shows that the correlation between freezing responses and occurrences of pattern retrievals was significant (r = 0.8840,
p,0.001). (I) Averaged freezing responses in six mice are also tightly correlated with their averaged numbers of total pattern retrievals during the
contextual recall tests (r = 0.8956, p,0.05). Each circle represents the data from a single mouse. This between-animals plot indicates that the numbers
of pattern retrieved is almost in linear proportion to behavioral performances as measured by the amounts of contextual freezing. The animal which
had a fewer number of pattern retrieved also showed lower fear memory freezing, whereas the mice which had high numbers of pattern recalled
exhibited highest amount of freezing.
doi:10.1371/journal.pone.0008256.g004
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Figure 5. Ensemble dynamic patterns during the trace recall test. (A) The top panel shows the spectrogram of local field potentials during a
60-sec epoch of trace recall in mouse#1. The blue bar on the top indicates the non-freezing state, whereas the red bar indicates the freezing state of
the animal. The time scale is matched with the spike raster shown below. Colored triangles at the bottom indicate the various moments at which
encoding patterns were retrieved. To initiate the trace memory recall, a 2-sec tone was played. (B) Global MDA analysis shows that the data from the
recall chamber and the conditioning chamber formed a single tone-pattern ellipsoid. The conditioned tone patterns (see the rectangle in the left
panel) were recomputed by a second-step MDA to achieve finer separation for the difference of contextual environments. The purple trajectory is the
recall-triggered CS pattern at the time when the tone was played, indicated by the purple triangle with a starred B in (A). (C) Type-I trajectory (purple)
was retrieved during the first 1-min trace recall trial. This trajectory occurred at 53.5 seconds, indicated by the purple triangle with a starred C in (A).
(D) Type-II trajectory (pink) was retrieved during trace recall. This trajectory occurred at 28.2 seconds, indicated by the pink triangle with a starred D in
(A). (E) Additional types of ensemble trajectories were also detected during the trace recall trials. In particular, the dark green trajectory seemed to
visit both the tone-at-recall cluster and the tone-at-training cluster. Whereas the light green trajectory visited the subspace between the tone-at-
training cluster and the US cluster. (F) The averaged percentages of different types of ensemble patterns retrieved during the trace recall sessions
from six recorded mice.
doi:10.1371/journal.pone.0008256.g005
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Figure 6. The peaked re-appearance of the US patterns at the traced time interval indicates the memory of time. (A) Representative
ensemble tone traces during trace recall (Left panel). The right panel shows the time distribution of the averaged occurrences of this type of trajectories
over seven recall-trials in mouse #1. Time zero indicates the moment when the recall tone was delivered. The numbers of trajectories were pooled
every 5 seconds. (B) Representative ensemble shock traces during the traced memory recall session are shown (Left panel). The right panel shows the
time distribution of the averaged occurrences of this type of trajectories over seven recall-trials in the same mouse. The same analysis reveals a salient
peak in the occurrences of the US trajectories around the traced interval time point. Time zero indicates the onset moment when the recall tone was
delivered. The tone lasted 2 seconds, thus the absolute amount of time between the offset of the tone and the retrieval peak was around 20 seconds.
(C) The peaked occurrences of the US ensemble trajectories were observed in five out of the six recorded mice. Each colored plot represents a mouse.
(D) The color matrix shows the retrievals of the US ensemble traces in six individual mice around the traced interval time (2062.5 sec after the offset of
the recall tone) at each of the seven trials. Yellow squares represent the occurrences of the correct US ensemble patterns, whereas blue squares indicate
the absence of US patterns at the time point of this trace interval. (E) The exact time distribution of the 31 correct US pattern retrievals around the
traced interval time in all six mice. Please note that the 22-sec time point is from the onset of the recall tone (which lasts 2 seconds). (F) Lack of distinct
peak in the traced fear freezing over the 1-min recall trials. Blue triangles show the five-second averaged freezing responses over seven recall-trials (1-
min per trial) from six recorded mice. Red stars show the US pattern retrieval distribution. Correlation between the averaged freezing response and
occurrences of US traces was still significant (r = 0.5851, p,0.05), despite the absence of a distinct peak in freezing.
doi:10.1371/journal.pone.0008256.g006
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traces around the 20-sec time point were observed in five out of six

recorded mice (Fig. 6C). On the trial-to-trial basis, the US

ensemble patterns consistently re-appeared around this moment in

all seven recall trials for mouse #1 and #5; whereas the other four

mice had the US trace retrieval at this right moment four or five

times out of the total seven trials (Fig. 6D). Collectively, out of 42

tone-trace recall trials, 31 US-trace retrievals were observed in

these mice. The exact time distribution of US retrievals around

this 20-sec time point in these mice was shown in Fig. 6F (22-

seconds after the onset of the 2-sec tone). The fact that it was the

US ensemble pattern being uniquely and consistently re-elicited at

this conditioned time interval suggests that these ensemble

trajectories further signifies the retention of memory for time. It

is noteworthy to point out that there was no salient peak in

behavioral freezing during this 1-min trace recall period (Fig. 6F).

However, there is a still significant, but lower, correlation between

the reactivation numbers and the amounts of freezing (r = 0.5851,

p,0.05). The lack of significant changes in freezing behavior

nicely illustrates that unprecedented decoding power of the large-

scale recording and decoding algorithms. This is especially

valuable given the fact that various memory traces, including

cued fear memory, can all cause freezing upon the tone-recall,

which is exceedingly difficult to be distinguished by measuring

freezing behaviors.

Discussion

Extensive behavioral and lesion studies show that the hippo-

campus is involved in both the encoding and retrieval of various

associative memories, including trace fear conditioning memory

[3,4,6,7,18–23]. By the classical definition, real-time memory

traces are the neural population-level dynamic patterns that are

initially formed during learning and would then reappear at the

time when animals actively engage in cue-induced memory recall.

Neuroscientists try to decipher the brain’s memory traces by

searching for reliable correlation between firing patterns of

neurons and behavioral measurement. However, due to a large

amount of response-variability at the single neuron level in the

brain even in response to identical stimulus, single neuron-based

decoding schemes often produce significant errors in predictions

about the stimulus identities or external and internal information.

The traditional way to deal with the response-variability of single

neurons is to average spike discharge of the neurons over repeated

trials. Although the data averaging across trials permits the

identification of tuning properties of the individual neurons,

unfortunately, this practice invariably loses crucial information

regarding real-time encoding process in the brain. In fact, the

brain is unlikely to use the data averaging over many trials as the

way to represent snap-shot memories because a memory is a

transient state at a given moment in time. Moreover, in many

situations, there is no explicit time point to be used as time zero for

averaging spike raster. A good example is that in the contextual

fear retention test, there is no fixed time point for the animals to

recall fear memory after they re-enter the shock chamber. In

addition, the traditional peri-event spike raster or histogram

methods have limited the analysis to a single time point when the

tone or cue was presented at retention tests (e.g. the time point

when the tone is played as time zero for peri-event plots in the

single neuron approach). But this would overlook other subsequent

memory traces that might appear in tandem with variable intervals

between each single trace. As a result, the use of recall-tone as time

zero would average out such valuable information.

On the other hand, many laboratories have focused on place

cell models to study hippocampal activity patterns. Despite of

enormous information has been collected over the past several

decades, there are on-going controversies within the place cell

researchers as to whether place cell phenomenon qualifies as

episodic memory phenomenon or merely reflects some kinds of

sensory responses during spatial path integration [37,38].

Intriguingly, it has been kept within the place cell research

community that place cells loss their firing selectivity if the animals

are not running at or above a certain speed (e.g. if a rat sits right at

the place field of a given place cell, that particular place cell would

not exhibit much place-selectivity, but rather fluctuate its firing

widely) [39]. This peculiar dependency of place-selective firing on

running motion seems to differ from our ability in forming or

recalling spatial memory of places (which can occur regardless we

are in motion or sit still). This raises the key question as to what

degree place firing reflects passive sensory responses as to actual

memory encoding.

Moreover, the dilemma of place cell studies as an episodic or

associative memory paradigm may also lie at the difficulty in using

this model for classic associative conditioning (due to the

continuous variables during spatial running). As a result, the

direct link between place cell firings and behavioral readout in

memory acquisition and retention tests has not been demonstrated

so far. For example, this is no evidence in explicitly linking place

cell replay to cue-induced behavioral memory readout at memory

retention tests (e.g. to demonstrate that place cell firing would

replay upon presenting a recall cue with the rats not in running

motion, and then to correlate such replay with behavioral scores of

spatial memories).

To overcome the above technical or experimental limitations,

the present study employs the classic Pavlov fear conditioning

paradigm, coupled with large-scale recording and decoding

methods to investigate the real-time population-level activity

patterns in the hippocampus in relation with trial-to-trial memory

scores. The choice of Pavlov conditioning offers several advan-

tages: 1) the hippocampus is widely known to be crucial for such

associative function, especially with longer CS-US interval and

context; 2) the well defined cues allow researchers to measure the

behavioral readout for memory formation and then to correlate

behavioral readout with transient ensemble patterns, thereby

fulfilling the definition for the observed transient dynamics as

actual memory traces.

What do real-time memory traces in the hippocampus look like

over the course of learning and recall? How do the associative

memory traces differ from unconditioned stimulus-evoked re-

sponses? Does the brain retrieve a single memory trace or multiple

memory traces upon a cued signal? If a train of memory traces are

retrieved, what are they? And are there any temporal structures or

relationship in its recall sequence? How do memory traces

correlate with behavioral performances during the recall tests?

These fundamental questions are fascinating, and the trace

conditioning task is an ideal paradigm to examine these issues

since it is well known to produce a variety of memories (at least in

the human brain) that can include a shock or air-puff event, the

causal and temporal relationship between a tone and a shock, as

well as the environment in which an event occurs. It is conceivable

that rich collection of various memory components can all

contribute to and/or influence behavioral outputs.

It is often acknowledged that behavioral readout represents a

good, but not very precise, assessment of the internal memory

processes in the brain. By using large-scale ensemble recording

techniques and statistical pattern recognition algorithms [17,28,40],

we systematically assessed and scanned the recorded neural activity

patterns during the acquisition and retrieval of this classic associative

memory. Obviously, merely visual inspection of the spike rasters are
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not very effective to detect and understand the neural population-

level patterns and dynamics in the high dimensional data, we have

employed MDA method capable of measuring and visualizing the

ensemble neural activity patterns. Because our sliding window is 10

milli-seconds, this means that continuous fine points showed for

trajectories in MDA space represent the activity changes in 10 ms

time resolution. This sliding window scans the entire recording

session on the moment-to-moment basis, thereby providing

unprecedented insights into how the hippocampus encodes and

retrieves memory. It is worthy note to point out that 500 ms time

epoch for MDA calculation was chosen based on the fact that most

CA1 neurons’ responses occurred in this time range, thus this time

bin can best capture such features. Coupling of these matrix features

with the 10 ms-high temporal resolution sliding window has enabled

us to look into the real-time transient dynamics associated with

memory acquisition and recall in the following ways:

First, CA1 ensemble patterns evoked by the CS-US pairing

change rapidly from unconditioned forms to conditioned associa-

tive forms. That is, the CS-US pairing resulted in the rapid

appearance of robust CS ensemble traces after one or two trials in

the mouse CA1 region. Interestingly, as the conditioned tone trace

emerged, US-triggered ensemble responses which originally

evoked only US-specific transient trajectories began to turn into

the US-to-CS association trajectories. The emergence of these new

types of association trajectories suggests that circuitry-level

dynamics have succeeded in capturing the CS-US causal

relationship. Interestingly, the temporal sequence of association

trace is reflected by its movement direction: these transient

trajectories moved from the US cluster to the CS cluster in the

MDA encoding subspaces. These associative patterns required the

repetition of CS/US pairings, and can appear as early as the

second pairing and become prevalent during the late stage of

learning phase in all animals. The formation of such associative

memory traces is likely the product of synaptic plasticity. It would

be of great interest to examine the molecular basis of these

associative patterns in using NMDA receptor conditional knock-

outs or other genetically modified animals with enhanced or

impaired memory or in which memory can be rapidly erased

[41–44].

Second, the encoding patterns produced by learning replay

immediately within seconds during the trace conditioning

acquisition phase, and more importantly, they correlated tightly

with learning scores. The reappearance of temporal trajectories

often retained their original directional movement and geometric

shapes and subspace plane. Importantly, the immediate sponta-

neous reactivations following CS/US stimulations exhibited a

clear trial-dependent property, that is, the numbers of reactiva-

tions increase in proportion to trial numbers. While there are few

reactivations at the beginning of the trials (e.g. the first pairing),

reactivations become more prevalent at late trials. The near linear

correlation between the trace reactivation numbers and the levels

of behavioral learning (immediate freezing) suggests that post-

learning immediate reactivation may be an important physiolog-

ical indicator for assessing network-level trace formation in the

hippocampus. Our finding collaborates well with the previous

findings showing that neurons in the brain also undergo

reactivations after spatial running [36,45–47] or novelty stimula-

tion [48] or episodic events [17,28]. Importantly, our present study

has greatly extended those observations by linking the pattern

replay frequency with behavioral scores of learning.

Third, to meet the primary criterion that transient neural

ensemble patterns represent true memory traces, one need to

demonstrate that those patterns observed during learning are to be

retrieved upon the recall cues and they would again correlate with

memory scores. In line of this criterion, we have indeed observed

that these CA1 dynamics patterns reappeared at the time of both

contextual and traced fear retention tests. Using contextual cues or

trace cue (tone) in the absence of shock is important feature for

demonstrating classic associative memories. Importantly, this well

defined, retention test has offered us to link the physiological

ensemble patterns to cued-induced memory recall performances

that so far have not been demonstrated in place cell model

experiments [37].

We find that on average, ensemble traces were retrieved at a

rate of 6-14 times per minute in the mouse hippocampus during

the retention tests. Importantly, the numbers of retrieved patterns

in the context recall tests were tightly correlated with behavioral

performances in the memory retention tests at both the individual

and group levels, thereby meeting the criteria of functional

readout.

It is also important to note that the time scale for retrieved

memory patterns in our recall test is similar to that of the memory

encoding patterns in the learning phase. Furthermore, as

predicted, we have observed the causal relationship between

appearances of the first memory trace and the recall-induced

freezing. That is, the first recalled memory trace consistently

precedes freezing behavior on the average of 1.4 seconds. Given

the fact that we calculated the time delay between the off-set of the

first memory trace and the onset of freezing, the causality should

be beyond questionable. Thus, our present experiments provide a

piece of crucial evidence that neural ensemble patterns formed

during learning indeed reappear and precede behavioral recall,

thereby fulfilling the major criterion for those transient dynamics

as population-level memory traces.

Intriguingly, some ensemble traces or trajectories observed

during recall were not seen during the learning phase (e.g. the

reversal of CS-to-US association trajectory sequence rather than

the original US-to-CS association trajectory movement). Emer-

gence of richer ensemble patterns at the time of recall may reflect

not only the successful retention of various associative relationships

at the time of learning but also the possible on-going re-

modification or updating of existing memories by the recall

experience itself [8,23,24,49–55]. At this stage, we do not know

whether this reversal trajectory movement reflects the fear

extinction process as the tone was played without reinforcement

of shock pairing.

Fourth, the observation that the significant amounts of ensemble

pattern retrievals were accompanied by sharp-wave ripples

provides us a unique opportunity to examine the correlation of

memory processing with hippocampal ripples that are often

reported in the literature [33–35,56]. Our analysis indicates that

near half (about 49%) of ensemble pattern retrievals were

accompanied (within 61 sec time window) with obvious ripples,

whereas the other half were not. It is possible that remaining recall

patterns in the absence of obvious ripples may be still

accompanied by subtle ripples that were less than 5 standard-

deviations above the mean power). An alternative interpretation

would be that hippocampal ripples play an important, but not

necessarily essential role in memory recall. This may explain well

why the effects of suppression of ripples on spatial memory were

observable, but relatively mild [56]. In the fear conditioning

paradigm, it is likely that CA1 ripples might reflect the effect of

behavioral immobility on hippocampal oscillatory properties

because ripples are known to occur uniquely during the state of

locomotion immobility in rodents. Future studies will be needed to

clarify this issue.

Fifth, our decoding method has revealed the memory of time for

the expected shock events. The unique retrieval peak for the US
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shock traces at the time point of expected shock suggests that the

animals retained not only the memory of the correct event, but

also the memory of its timing. This level of decoding power is

particularly interesting to us since at the behavioral level the

animals were in the heightened freezing state through the most of

the recall time (at the scale of 1-minute). This persistent freezing

reduces the sensitivity of behavioral readout, and thereby, unable

to allow the distinction of various memory components (contextual

memory, cued memory, time memory, etc). For example, the

presentation of a recall tone would easily cause the animals to

freeze right away because the mice retrieved tone/shock

association memories, this can easily mask the behavioral readout

for the memory for time for the expected shock event. This level

of decoding power is highly useful given the fact that many

of our own memory thought processes can occur without

necessarily being expressed at behavioral level intentionally or

unintentionally.

From our analyses, it is quite clear that CA1 ensemble traces

that had undergone trace memory recall are rich and diverse.

Quite often, the various ensemble trajectories were retrieved in

tandem (,9–10 times per minute on average during either

contextual recall or trace recall). Although our visual inspection

has not revealed any obvious simple-order temporal sequences in

their emergences, it remains possible that some types of high-order

temporal relationship may still exist. On the other hand, cognitive

literatures often emphasize that memory contents/or sequences

seem to always differ slightly at each recall, even when the human

subjects were presented with the same question. Thus, it would be

a great topic for more detailed investigations.

It has been known that many brain regions are engaged in

processing associative memories [5–7,31,32,57–62], so it is

essential to understand the ensemble patterns in these regions

during trace fear conditioning in future experiments. Moreover,

since our trace conditioning protocol requires animals to hold their

attention for long-period of time (20 seconds), it will be logical to

explore the roles of attention and working memory component on

hippocampal memory representation [57,63,64]. The time

duration of CS-US interval is an important factor for trace

memory in trace fear conditioning, so one may also study how the

interval influences the accuracy of the memory for time. All

together, it is likely that the investigations of the above questions

will lead to better understanding of how the hippocampal

ensemble patterns described here contribute to the global

representation of various episodic memories in the brain [65].

In conclusion, the population-level associative memory patterns

in real-time can be mathematically described and intuitively

visualized on a moment-to-moment basis at any given single trial.

More importantly, our present study demonstrates the meaningful

relationship of these transient neural dynamics of memory traces

with behavioral scores of learning and recall not only within each

animal but also across animals. The ability to decode brain’s

diverse memory traces in real-time from the acquisition to recall

phase may have wide implications and many useful applications.

Methods

Ethic Statements
All animal work described in the study have been conducted

according to NIH guidelines and approved by MCG Institutional

IACUC committee.

In Vivo Recording and Spike Sorting
96-channel or 128-channel recording arrays were constructed as

previously described [27,28] and employed to record neural

activity from hippocampal CA1 region in freely behaving mice

(ten male B6BCA/J mice, six mice with the best unit yield were

analyzed here). Each steretrode/tetrode was constructed by

twisting a folded piece of 25/13 mm H-Formvar wire and was

thread through one of the polyimide tubes. The spacing of our

steretrodes/tetrodes is about 50–150 mm. Each mouse was

implanted with two independently movable bundles of either 32

steretrodes or 16 tetrodes (64 channels on each side of the

hippocami) to bilateral hippocampi under deep anesthesia using

60 mg/kg ketamine (Bedford Laboratories, OH) and 4 mg/kg

Dormitor (Pfizer Animal Health, NY). The electrode bundles were

positioned above the dorsal hippocampi (2.0 mm lateral to bregma

and 2.3 posterior to bregma on both right and left sides). After the

mice recovered from surgery, the electrodes were advanced slowly,

over next five to ten days, through the cortex in daily increments of

about 0.07 mm until the tips of the electrodes reached the

pyramidal layers of the hippocampal CA1 region. The electrodes

were formatted in either stereotrodes or tetrodes.

The spike activity was recorded using Plexon Systems (Dallas)

and then sorted using the MClust 3.3 program (http://www.cbc.

umn.edu/,redish/mclust, David Redish). First, the recorded data

were filed as Plexon system format (*.plx). Before spike sorting, the

artifact waveforms were removed and the spike waveform minima

were aligned using the Offline Sorter 2.8 software (http://www.

plexon.com, Dallas, TX). The aligned data were then saved as files

in Neuralynx system format (*.nst). After that, the MClust 3.3

program was used to isolate different spiking units. Only units with

clear boundaries and less than 0.5% of spike intervals within a 1

ms refractory period are included in the present analysis.

Six sets of recording data were obtained from six mice for the

current analysis. The number of each recorded dataset contained

208 sorted units (for mouse#1), 258 units (for mouse#2), 242 units

(for mouse#3), 232 units (for mouse#4), 308 units (for mouse#5),

and 206 units (mouse#6), respectively. Isolated units were

classified as either putative excitatory pyramidal cells or interneu-

rons based on their characteristic firing activity including

waveforms, inter-spike intervals, and firing rates [66]. In general,

pyramidal cells fire at lower rates (,5 Hz) and have broader

waveforms (.300 ms); whereas, interneurons show the higher rates

(.5 Hz) and have relatively narrower waveforms. Additionally,

Pyramidal cells occasionally fire complex-spike bursts of two to

seven spikes at 3–10 ms inter-spike intervals, reflected by their

characteristic autocorrelograms and inter-spike interval histo-

grams. Further analysis is based on the sorted data; therefore, no

electric artifacts were included during the shock events (Fig. S3,

S4). To confirm the recording sites of the electrodes, all recorded

animals were anesthetized after all the experiments and 10 mA

current was applied to each recording electrode for 5 seconds in

order to mark the positions of the stereotrode bundles. Nissl

staining was used to confirm the electrode positions. The stability

of the ensemble recordings were judged by waveforms and inter-

spike-intervals at the beginning, during, and after the experiments.

Some of the representative units were shown in Fig. S2 and S3

(including examples from stereotrodes and tetrodes).

Fear Conditioning Task
The fear conditioning chamber was a square chamber

(10061006150) made of plastic boards with a 24-bar inescapable

shock grid floor, and the recall chamber was a triangular chamber

made of foam boards with a smooth and opaque floor. Thus, these

two chambers are distinct geometrically, contextually, and visually.

Both chambers had one transparent wall, and thus freezing

responses of animals in the chamber could be observed by

experimenters from the small hole on the surrounding black
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curtain and were automatically videotaped by computers. In each

test, only one animal was trained and recorded. Before training,

the mouse was habituated in both chambers for five minutes per

day, and three days in total (a tone was played 10 times when the

mice were habituated in contextual chamber). We and others have

found that some CA1 cells may respond to novelty (such as a tone

that the animals have never heard before). But the neutral tone

triggered responses tend to decline dramatically. The habituation

protocol is used widely in the field because it gives the animals time

to better differentiate CS tone with other sound or noise (thereby,

reducing sound generalization).

On the training day, the recording began with a 1-h pre-

training sleep period in the home cage (a plastic tub where the

mice lived everyday) and then followed by a 3-min pre-training

exploration period in the shock chamber and then a 30-min period

during which a 2-sec tone (85 dB continuous tonic sound at

2800 Hz) was played ten times at random intervals. This allowed

us to determine the CA1 responses to naı̈ve tone. The animal was

then brought back to the home cage for a 30-min break before

trace fear conditioning began. During trace conditioning, the

conditioned stimulus (tone, 2-sec, 85 dB continuous tonic sound at

2800 Hz) was given and then followed by a 20-sec interval (after

the off-set of the tone) before the unconditioned stimulus (a

continuous 285-ms foot shock at 0.75 mA) was delivered in the

shock chamber. This CS-US pairing was repeated for seven times,

with 1–3 min random time intervals between CS/US sessions.

The mouse was then brought back to the home cage for 1-h post-

training sleep/rest. The immediate freezing was assessed for 30

seconds after each shock.

After a one-hour rest, two kinds of memory retention/recall

tests were conducted. The first one was the contextual memory

recall test during which the mouse was placed back to the shock

chamber again for five minutes. The other retention test was the

trace memory recall test during which the mouse was put into a

novel chamber and allowed to explore freely for three minutes

before the onset of a 2-sec tone was played (repeated seven times

with a fixed 1-min interval). After the completion of all retention

tests, the mouse was returned to its home cage to rest for 30

minutes. After the rest, the animal was then subjected to four

additional episodic events including metal sound, air-puff (10 p.s.i,

200 ms), earthquake-like shake (300 rpm, 200 ms), and drop (from

the 13 cm height). The last set of episodic events was conducted

after one-hour fear memory tests have been completed, and

thereby would not affect data on fear conditioning. Inclusion of

these startling episodic events was designed to provide additional

information when we performed MDA analysis (e.g. allowing us to

assess the global classification patterns among various stimuli and

further define some of the fine details). Such information would

permit us to ensure the statistical pattern classifications to be

highly reliable in multiple MDA subspaces.

Throughout all these procedures, animal behaviors were

recorded simultaneously by videotapes and synchronized with

spike data collection. Freezing response, defined as absence of

body movement except for respiration, was counted as the

measurement of fear memory. Immediate freezing responses

during training were measured for 60 seconds after the foot shock.

We counted ‘freezing’ by observing the animal behaviors frame by

frame based on the recorded video, the temporal resolution for the

video is 30 frames per second and the absolute amount of time that

the mice stayed in the continuous frozen state was summed and

compared to the total amount of time during which the mice were

not in the non-frozen state. The behavioral data presented in

Fig. 1D–H were generated from ten mice, with the remaining

figures and data collected from six of these ten mice. We used

computer-controlled mechanical devices for controlling the precise

timing and intensity of various stimuli.

Data Processing and Projection Method Analysis
A 500-ms bin was selected for sampling ensemble firing activity

based on the optimization of achieving the best statistical prediction

power [28,30]. Firing frequencies ( f ) were evaluated in two 500-ms

time bins immediately after the events started. Neuron responses

were defined by: Rn~ fpost{startle, n{fpre, n
� ��

f0zfpre, n
� �

where f0
(2–3 Hz) is the global mean response frequency of putative

excitatory neurons across the recorded neural population in an

animal, excluding high firing-rate interneurons (cut-off at 20 Hz)

and fpre, n is the base firing rate (computed from samples of firing

rates in two 500-ms time bins before startle stimuli). This

transformation emphasizes significant changes in firing patterns

for units with both low- and high baseline firing rates. Effectively,

responses of low-firing units are proportional to absolute firing rate

changes, while responses of high-baseline units are proportional to

the relative changes.

We used Multiple Discriminant Analysis (MDA) projection

method to classify and separate the neural responses correspond-

ing to different episodes into different classes [28,30]; these

methods generate an encoding subspace of low dimension (on the

order of number of classes). The projection method is useful in

revealing the inherent hierarchical structure that may exist in

large-size neural populations. Briefly, we computed firing

frequencies (f) in two 500-ms time bins immediately after the

delivery of the stimuli. Baseline activities were characterized by

computing the average firing rates during time intervals preceding

the startle stimuli. The selection of 0.5 sec for bin size for MDA

analysis is not arbitrary, but rather based on the optimization for

achieving the best statistical prediction power [28,30]. We have

described in great detail about how to best capture the statistical

information from large neural datasets using various multi-variant

methods [30]. In general, the selection of the input data can have a

profound impact on the performances of the statistical methods.

For example, while the duration of hippocampal neural responses

to tone or shock ranges from a few hundred milliseconds to tens of

seconds, the majority of such responses are within one second (but

larger than 50 or 100 ms). As such, a selection of too narrow a

time-window (such as 10 ms) would not capture critical details of

these responses, as it would cut off a large part of the relevant spike

responses. On the other hand, selection of a time window (such as

10 seconds) would be too large because the majority of the neurons

have returned to the base firing rates after a few seconds [30].

Also, previous research suggests that multivariate methods

perform better when the bin sizes used to create the input data

sets have a width above 100 ms in primary sensory and motor

regions. For our data sets we chose a 500 msec time interval to

include information about the initial activation and the subsequent

sustained activity, because the time bins are large enough to be

robust to time variation that may be caused by delays in responses

after the stimuli. A more detailed partition, of three or more bins

in the 1 second interval could improve the classification

performances, however as the dimension of the original subspace

grows, the computation becomes increasingly under-determined.

For our experimental data, we found that using time bins with

widths between 250 and 500 ms yield similar optimal perfor-

mances for the test data sets prediction. For more information, we

have explored this issue in detail and have further compared it

systematically with several statistical projection methods [30].

One set of population activity from seven repetitions of each

type of stimuli was randomly chosen to constitute our test data set.

The rest of the sampled population activities were then used to
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train our MDA statistical model. The matrix of mean responses

during each category (rest and startle states) was then computed

and used to compute the between-class scatter matrix

SB~
P

N

i~1

ni mi{mð Þ mi{mð Þt: Here ni is the number of elements

in each class, N is the number of classes, mi is the mean vector for

each class and m is the global mean vector. To take into account

the variations occurring for each class, we also computed the

within-class scatter matrix SW, which is defined as:

Sw~
P

N

i~1

Vi~
P

N

i~1

P

x[Di

x{mið Þ x{mið Þt. Here Di represents the

set of population responses triggered by the ith startle type. Using

these two matrices, it follows that a set of at most N-1 discriminant

projection vectors can be determined by computing the eigenvalue

decomposition of the matrix S{1
W

:SB.

For our data sets, the class covariance matrices SW are non-

invertible, which is a direct consequence of data under-sampling,

since the dimension of the number of recorded neurons is much

higher than the number of repeated trials. In practice, the matrix

SW can be rendered invertible using a regularization technique

which changes each class covariance matrices based on the

following formula: V
;
i~ 1{lð ÞVizlI, where Vi is the covariance

matrix for the ith class, l is a regularization parameter between 0

and 1, and I is the identity matrix. The parameter l is determined

automatically for each data set based on the optimization

procedure we developed previously; each particular choice is

determined by the particular distributions within each data

set [30]. After the computation of N – 1 discriminant dimensions,

we projected the neural patterns during startle episodes in

the low-dimensional encoding subspaces. We then used the

multivariate Gaussian distribution probability functions

(P xð Þ~
1

2pð ÞN=2
Vj j1=2

exp({ x{mð ÞtV{1 x{mð Þ
�

2)) to fit the projections

for each class. We subsequently enhanced our intuition about the

relationships among classes by visualizing the 2s boundary

ellipsoids for each class. We tested the robustness of our MDA

statistical model by employing different partitions of the training

and test data points. The use of the Multiple Discriminant Analysis

technique indicates that all different types of stimulations can be

successfully classified. In addition, we used a sliding-window

method on 10-ms to 10-ms basis to monitor the evolution of the

population state over the recorded data and identify the temporal

occurrences of patterns similar to the ones experienced during the

episodic events [28,30].

Supporting Information

Figure S1 The unpaired CS did not induce trace conditioning

memory, whereas paired CS produced robust trace conditioning

memory as assessed in the one-hour trace memory test. n = 10

mice for paired and unpaired groups. *** p,0.001.

Found at: doi:10.1371/journal.pone.0008256.s001 (0.04 MB JPG)

Figure S2 Confirming the position of recording electrodes in

the CA1 region of the mouse hippocampus. (A) Histological

confirmation of electrode placement. The top panel demon-

strates the position of the electrodes with orange bars in the

atlas of the mouse brain. The two examples (the middle and

bottom panels) show Nissl staining in the hippocampal CA1

region from one mouse. The arrows indicate the locations of

electrode tips in the CA1 pyramidal layers. (B) Physiological

confirmation of electrode placement by the occurrence of

ripples. Local field potentials (the upper panel) and the filtered

ripples (the lower panel) were shown from ten recording

channels.

Found at: doi:10.1371/journal.pone.0008256.s002 (1.24 MB JPG)

Figure S3 Stable recordings were confirmed as judged by the

waveforms and inter-spike interval (ISI) histograms of recorded

cells. Eight representative putative pyramidal cells are shown here.

(A)–(H) The left columns are waveforms and the right columns are

inter-spike interval histograms. The waveforms were plotted from

a 70-sec recording before (top row), during (middle row), and after

trace-conditioning trials. A 10-sec recording for each trial was

plotted. The ISIs were analyzed by using the corresponding data

and the bin size is 0.005 s. (A)–(D) are the data recorded from

steretrodes, and (E)–(H) are the data recorded from tetrodes.

Found at: doi:10.1371/journal.pone.0008256.s003 (2.84 MB JPG)

Figure S4 Stable recordings for putative interneurons in the

hippocampus. Waveforms and inter-spike interval histogram of

interneurons (eight representative units are represented here). (A)–

(H) The left columns are waveforms and the right columns are

inter-spike interval histograms. The waveforms were plotted from

a 70-sec recording before (top row), during (middle), and after

trace-conditionings (bottom row). A 10-sec recording for each trial

was plotted. The ISIs were analyzed by using the corresponding

data and the bin size is 0.005 s. (A)–(D) are the data recorded from

steretrodes, and (E)–(H) are the data recorded from tetrodes.

Found at: doi:10.1371/journal.pone.0008256.s004 (3.06 MB JPG)

Figure S5 A spike-raster plot of simultaneously recorded 208

CA1 units from mouse #1. (A) The sixty-sec spike-raster plot

demonstrates neural activity when a tone was delivered and then

followed by a foot shock in the third trial during the training. Only

a set of the 208 simultaneously recorded CA1 cells were shown

here. Two 500-ms black parallel windows demonstrate the MDA

sliding-windows for computing dynamic trajectories in MDA

subspaces. (B) The averaged histograms show neural activity

during training (the left column) and during trace recall (the right

column) for the corresponding colored units shown in (A) across all

trials. The histograms at the first row show that this group of

neurons had significant prolonged increased responses to the US

presentation as well as increased responses to the CS during

training. At trace recall, they also had significant increased

responses to the recall tone. But the variations in spike firings of

these neurons could not allow the confident assessment of the

traced retrieval, although we noted a blip around 24 seconds after

the recall tone was delivered. The data were pooled from all trials.

The histograms at the second row show that these US-responsive

neurons increased their firing rates at both onset and offset of the

tone during recall. Interestingly, this group seemed to have a

double peak in responding to the recall tone. The histograms at

the third row show that these US-responsive neurons had a smaller

response to the CS during training, and they also did not show

significant firing increases when the recall tone was delivered. The

fourth-row (dark blue) histograms show that this group of neurons

showed a transient increase in their firing rates responding to the

US during training, and they also seemed to have transient

responses to the tone during recall. The fifth-row histograms show

that a small set of responsive neurons decreased their firing rates

both to the US during training and the tone during recall. The

last-row histograms show that non-responsive neurons had no

significant responses to both the US and the CS during training,

and no responses to the tone during recall. X axis is time; Y axis is

responsive ratio of frequency over baseline firing rates.

Found at: doi:10.1371/journal.pone.0008256.s005 (3.77 MB JPG)

Figure S6 Representative units show neural responses to the US

and/or the CS over trials. (A) Spike rasters show firing activity of a

US-responsive unit. Red spike rasters show the firing activity of a

representative unit in response to the US conditioning; two rasters

in brown show the tone-triggered responses in the first two training
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trials; the five rasters in purple show the tone-triggered responses in

the last five training trials; the seven rasters in green show the tone-

triggered responses of this unit in the seven trials during trace recall

trials; the seven rasters in blue show the naı̈ve tone-triggered

responses before paring. Time is represented in seconds on the X

axis, and the trial number is listed on the Y axis. (B) The frequency

responses of the unit shown in (A), obtained by smoothing the spike

counts through a Gaussian kernel, indicate that this unit

significantly increased its firing rate only in response to the US.

(C) Spike rasters show firing activity of a US/CS responsive unit in

response to various stimuli. The seven rasters in red show the US-

triggered responses in this unit over trials; the two rasters in brown

show the tone-triggered responses during the first two training trials;

the five rasters in purple show the tone-triggered responses in the

last five training trials; the seven rasters in green show the tone-

triggered responses during traced recall; the seven rasters in blue

show that the naı̈ve tone did not trigger significant responses before

training. Time is represented on the X axis, and the trial number is

listed on the Y axis. (D) The frequency responses of the unit shown

in (C), obtained by smoothing the spike count through a Gaussian

kernel, indicate that this unit significantly increased its firing rate in

response to the US, the tone during training, and the tone during

recall. Please note that the responses to contextual recall are not

listed due to the lack of objective time points for setting time zero.

The need for averaging the firing responses of a single unit over

trials illustrates the importance of large-scale pattern classification

for revealing patterns, at any given time point, from the

simultaneously recorded cell population. (E) Hierarchical clustering

of the responses of 1454 recorded CA1 neurons to fear conditioning.

The data were pooled from six mice. Only 9 neurons showed

responsiveness to the tone before learning (CSb), the tone during

CS/US pairing (CSd), the tone at trace recall (CSa), and foot shock

(US); 94 neurons responded to US, CSd and CSa, which was

,6.5% of all recorded neurons; 24 neurons responded to US and

CSa; 277 neurons responded to US and CSd, which constituted

19.1% of all recorded neurons; 265 neurons responded to US but

not to tones; interestingly, 32 neurons responded only to CSb,

without any significant responses to tones after pairing, or to the US;

66 neurons responded only to CSa (4.5% of all recorded neurons);

the other remaining 47.2% neurons had no significant responses to

all four types of stimuli. The color bar on the left indicates the

normalized response magnitude.

Found at: doi:10.1371/journal.pone.0008256.s006 (0.66 MB JPG)

Figure S7 Visualization of various CA1 ensemble encoding

patterns and the transient dynamics in MDA subspaces. (A) MDA

analysis shows CA1 ensemble representations of various episodic

events in mouse #1. Please note that the naı̈ve tone (prior to

conditioning) overlapped significantly with the Rest cluster,

indicating that the naı̈ve tone did not trigger significant CA1

responses. (B) A rotated view of the MDA subspace shown in (A)

demonstrates that the ensemble representations of these events

were well separated. In MDA spaces, the discrete dots in various

shapes represent firing patterns in response to a give type of

stimulus (e.g. CS, or US, etc); color ellipsoids were constructed for

representing neural ensemble responses to various kinds of stimuli

by fitting Gaussian distribution to the projected points (discrete

dots) for each class. (C) Two representative US-CS association

trajectory traces at the third (blue) and fifth learning trials

(magenta), respectively, are shown here. At these learning stages,

the foot shock triggered the patterns that moved from the Rest state

to the US cluster, and then directly visited and hovered around the

CS for a while before returning to the Rest. (D) A rotated view of

MDA subspace in (A) shows the reliable moving paths of two

activation traces despite the variability at the single neuron level.

Found at: doi:10.1371/journal.pone.0008256.s007 (0.45 MB JPG)

Figure S8 Relationship between ripples and pattern retrievals

during the freezing state of contextual recall. (A) A representative

spectrogram during freezing is shown in the left panel. One typical

ripple oscillation is shown on a finer time scale in the top right panel.

It was filtered out from the recorded field potential using a 100–

250 Hz band-pass filter (the bottom right panel). (B) The power

spectral density plot shows a significant peak in 150–250 Hz range

during freezing (red). It was absent when the animal was in the

active exploration state (blue). (C) Three retrieved CS ensemble

traces were plotted here (in different colors) during the freezing state

of contextual recall. (D) Three retrieved US ensemble traces were

plotted during the freezing state of contextual recall. (E) An example

of co-occurrence of hippocampal ripples and a CS ensemble

trajectory is shown. The red line about the upper ripple oscillations

indicates the threshold line (5 s.d. above mean power). The blue

curve here corresponds to the blue trajectory shown in (C). The

projection distance of the CS trajectory was measured along the line

through the Rest and CS ellipsoid centers. (F) Co-occurrence of

ripples and a US pattern is illustrated here. The dynamic trajectory

is the same as the blue trajectory in (D). The projection distance of

the CS trajectory was measured along the line through the Rest and

US ellipsoid centers. (G) Occurrence distribution of retrieved three

major types of ensemble patterns in relation with ripples (61-sec

time window from the peak center of each ripple) during the

contextual recall freezing state. (H) Occurrence distribution of large-

amplitude ripples (5 s.d. above mean power) in relation with

retrieved ensemble patterns (61-sec time window from the peak of

each trajectory). About 49.2% of ensemble pattern retrievals were

accompanied with large-amplitude ripples.

Found at: doi:10.1371/journal.pone.0008256.s008 (0.53 MB JPG)

Figure S9 (A) Seven colored curves show the stable ensemble

trajectories during the seven trace recall trials in mouse #1. The

tone-triggered the peak responses within 200 mini-seconds. The

distance is computed by projecting activity trajectories onto the

line through both the centers of the CS ellipsoid and Rest ellipsoid.

(B) Seven circles show the time latency to freezing after offset of the

recall-tone traces during each of the seven recall trials. Color

corresponds to the trial number in (A). On average, the latency is

1.985761.5137 sec for this animal.

Found at: doi:10.1371/journal.pone.0008256.s009 (0.17 MB JPG)

Figure S10 Diverse reactivation patterns in CA1 during trace

memory recall. (A–D) Four distinct trajectories are separately

shown in MDA subspaces. These patterns occurred during the 1-

min trace recall period. (E–H) Rotated views of the same set of the

trajectories in MDA subspaces shown in (A–D). The same trace is

listed in the same row, side by side.

Found at: doi:10.1371/journal.pone.0008256.s010 (0.42 MB JPG)

Table S1 Robustness of the MDA statistical classification.

Found at: doi:10.1371/journal.pone.0008256.s011 (0.03 MB

DOC)
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