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Abstract

The ability to control desires, whether for food, sex, or drugs, enables people to successfully 

function within society. Yet, in tempting situations, strong impulses often result in self-control 

failure. Although many triggers of self-control failure have been identified, the question remains 

as to why some individuals are more likely to give in to temptation than others. Here, we 

combined functional neuroimaging and experience sampling to determine if there are brain 

markers that predict whether people act upon their food desires in daily life. To that end, we 

examined food cue-related activity in the nucleus accumbens (NAcc), as well as activity 

associated with response inhibition in the inferior frontal gyrus (IFG). NAcc activity was 

associated with greater likelihood of self-control failures, whereas IFG activity supported 

successful resistance to temptations. These findings demonstrate an important role for the neural 

mechanisms underlying desire and self-control in people’s real-world experiences of temptations.
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The inability to curb desires and control impulses has far-reaching implications and costs for 

individuals and society at large (Baumeister, Heatherton, & Tice, 1994; Schroeder, 2007). 

Indeed, it has been estimated that up to 40% of deaths in the United States every year are 

attributable to self-control failures (Mokdad, Marks, Stroup, & Gerberding, 2004; 

Schroeder, 2007). Many models portray self-control as the outcome of a balance between 

the strength of impulses (e.g., desires and cravings) and the exertion of self-control (Hare, 

Camerer, & Rangel, 2009; Heatherton & Wagner, 2011; Hofmann, Friese, & Strack, 2009; 

Metcalfe & Mischel, 1999). These models also predict that whenever this balance is tipped 

in favor of impulses, a person is especially prone to self-control failure (Heatherton & 

Wagner, 2011). Although previous research has identified some predictors of self-control 

failure, such as negative affect or resource depletion (see Wagner & Heatherton, In Press, 

for review), it is still unclear why certain people generally succeed at regulating their 

impulses and behaviors while others consistently fail. Indeed, identifying those individuals 

who are most likely to give in to temptation in the short term may help health practitioners 
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develop programs that prevent this behavioral tendency from turning into a chronic, 

unhealthy lifestyle in the long run (e.g., overeating and obesity in the food domain).

To address this question, we set out to model how successful (and unsuccessful) people are 

in controlling their desires to eat on a daily basis. While merely asking people to report their 

past eating behaviors might adequately capture differences in self-control, there are several 

reasons why retrospective self-report can be problematic. For instance, people’s recall of 

past behaviors may be subject to memory biases (Gorin & Stone, 2001; Schwarz, 1999) and 

could lead them to misreport how often they have succumbed to a temptation. People also 

tend to grossly underestimate the number of eating decisions they make on a daily basis 

(Wansink, 2007). Together, this can make it difficult to test hypotheses about why some are 

better at self-control than others using retrospective measures that rely on participants 

having perfect recall of past events. Because of this, it can be difficult to tease apart 

competing accounts of diet failure, such as those that posit that excessive appetite and desire 

strength are critical factors (Hofmann & Dillen, 2012) compared to others that propose that 

compromised willpower is to blame (Mischel, Cantor, & Feldman, 1996).

One way to get around the inherent response biases in self-reports is to assess underlying 

neural correlates. We took this approach in the present study by pairing functional 

neuroimaging with subsequent smartphone experience sampling technology to test whether 

reward activity in response to viewing appetizing food cues (Demos, Heatherton, & Kelley, 

2012; Kelley, 2004; Wagner, Boswell, Kelley, & Heatherton, 2012) predicts the strength of 

everyday food desires, and whether activity in brain regions previously identified in studies 

of response inhibition (Berkman, Falk, & Lieberman, 2011; Menon, Adleman, White, 

Glover, & Reiss, 2001) predicts an individual’s successful resistance of those desires. To 

elicit food cue specific reward activity, we used a cue-reactivity paradigm adapted from 

previous work in our lab (e.g., see Demos et al., 2012) and to examine the role of regions 

related to self-control, we administered a go/no-go response inhibition task (Casey et al., 

1997).

We then determined whether brain activity in response to food cues or evoked during a self-

control task (i.e., go/nogo) predicted participants’ daily eating behaviors, as assessed via 

experience sampling. Specifically, we tested whether activity in the ventral striatum 

(specifically the nucleus accumbens, NAcc) predicted desire for food, tendency to give in to 

desire, and amount of food consumed. We also tested whether activity in self-control regions 

(e.g., the inferior frontal gyrus; IFG) predicted successful resistance to these desires and 

thereby decreased likelihood of eating. Overall, we aimed to determine whether these brain 

markers would be able to predict daily eating behaviors and affect self-regulatory outcomes

—above and beyond self-report.

Methods

Thirty-one female participants completed an initial fMRI scanning session consisting of the 

abovementioned cue reactivity and response inhibition tasks. At the end of the scanning 

session we also collected trait-level measures of interest, such as dieting status (Herman & 

Polivy, 1980) and sensitivity to external food cues (van Strien, Peter Herman, & Anschutz, 
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2012). The fMRI session was followed by experience sampling of participants’ food desires 

and eating behaviors for one week, in accordance with Hofmann and colleagues’ procedure 

(Hofmann, Baumeister, Förster, & Vohs, 2012). Specifically, all participants were provided 

with Blackberry smartphones and each day were signaled with seven short surveys 

(randomly administered across seven 2-hour intervals) that prompted them to report on 

recent desire episodes that might have occurred within the last half hour. Whenever 

participants indicated a food desire they were asked to report on the following variables: 

desire strength, resistance to that desire, enactment (whether or not they gave in to the desire 

and already ate), and if so, amount eaten.

Participants

We recruited thirty-one females (mean age = 21.1 years, range = 18-28) from the Dartmouth 

College community to participate in the study. Sample size was determined based on 

previous studies conducted using the brain-as-predictor approach (see Berkman et al., 2011), 

and based on sample sizes of studies conducted using our cue reactivity paradigm (Wagner, 

Altman, Boswell, Kelley, & Heatherton, 2013). Accordingly, we sought to enroll 30 

participants in the study with the stop rule being that eligible participants had to be able to 

complete all phases of the study by the end of the relevant term of participation. We ran only 

female participants to be consistent with previous cue-reactivity studies that sampled from 

the same population (Demos et al., 2012), as well as to avoid the confound of gender effects 

on eating behaviors (Holm-Denoma, Joiner, Vohs, & Heatherton, 2008). All participants 

were right-handed, had normal or corrected-to-normal vision, and reported no history of 

psychiatric or neurological disorders. Because we were interested in capturing variability in 

eating behaviors in the general population, we did not recruit participants based on dieting 

status per se, but in order to account for differences in dietary restraint, all participants 

completed the Restraint Scale (Heatherton, Peter, Polivy, King, & McGree, 1988; Herman & 

Polivy, 1980). At the beginning of the study, we informed participants that the study was 

about cognition and emotion in everyday life. Upon successful completion of the fMRI and 

experience sampling portions of the study, participants were debriefed on the general goals 

of the study. All participants gave their informed consent based on guidelines set by 

Dartmouth’s Committee for the Protection of Human Subjects.

Stimuli

All images in the food cue reactivity task were adapted from previous work in our lab 

(Demos et al., 2012; Demos, Kelley, & Heatherton, 2011). In total, there were 90 high-

caloric foods, including 30 dessert items, 30 fast food meals, and 30 snacks. Stimuli in the 

go/no-go task consisted of different images types (e.g., social scenes, food images). In the 

present analyses images were collapsed across all go and no-go conditions to test whether 

domain-general response inhibition would encompass and be predictive of resistance to food 

impulses.

Imaging Apparatus

All neuroimaging data were collected with a 3T Philips Intera Achieva scanner (Philips 

Medical Systems, Bothell, WA) equipped with a SENSEitivity Encoding head coil. Stimuli 

were presented using SuperLab 4.0 (Cedrus Corporation) and projected to an Epson 
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ELP-7000 LCD screen positioned at the end of the scanner bore. Participants were able to 

view the screen via a mirror mounted on the head coil. Participants made all responses with 

button-presses on a Lumina LU-400 fMRI response pad.

Imaging procedure

In the fMRI scanning session, all participants completed the cue reactivity task first, 

followed by the go/no-go task. In the food cue reactivity task, we instructed participants to 

make simple perceptual judgments as to whether each image they viewed depicted an indoor 

or outdoor scene. All judgments were made with a button press. Since the task incorporated 

multiple image types, including images of people and nature scenes, participants were naïve 

to the true purpose of the task. In the go/no-go task, we asked participants to respond to 

certain image types (go condition) by making a button press and to withhold responding for 

other image types (no-go condition) by refraining from pressing the button. All go/no-go 

conditions were counterbalanced.

Both tasks implemented a rapid event-related design. In the cue reactivity task, each trial 

consisted of an image (a food item, people, or a nature scene) displayed for 2.5 seconds. We 

randomized the order of trial types and inter-stimulus interval (ISI). During the ISI, a white 

fixation cross was displayed on a black background to create jittered intervals of variable 

fixation (0-12.5 seconds) for more accurate estimation of task effects. In the go/no-go task, a 

stimulus was presented on a black background for 500 milliseconds, followed by a jittered 

ISI ranging from two to 9.5 seconds. Across both runs of the task, there were in total 108 go 

trials and 36 no go trials.

For each task, data were collected in two functional runs. Each run of cue reactivity task 

consisted of 250 whole-brain volumes and each run of the go/no-go task consisted of 266 

volumes, with the same acquisition parameters for both tasks (36 axial slices per whole-

brain volume, 3.5-mm thickness, 0.5-mm gap; 3 × 3 mm in-plane resolution).

Image Preprocessing and Analysis

The fMRI data were analyzed using Statistical Parametric Mapping software (SPM8, 

Wellcome Department of Cognitive Neurology, London, UK) in conjunction with a suite of 

tools for preprocessing and analysis (available at http://github.com/ddwagner/SPM8w). For 

each functional run, data were preprocessed to remove sources of noise and artifact, and 

corrected for differences in slice-timing. Functional data were realigned within and across 

runs to correct for head movement and were unwarped to reduce residual movement-related 

image distortions that realignment may have failed to correct. Functional data were 

normalized into a standard stereotaxic space (3-mm isotropic voxels) based on the SPM8 

EPI template that follows the ICBM 152 brain template space (Montreal Neurological 

Institute). To spatially smooth the normalized images, a Gaussian kernel was applied (6-mm 

full width at half maximum). For the go/no-go task, three participants’ data were not 

included in subsequent analyses (one participant failed to complete the task and two 

participants showed extreme motion-related artifact).

For each participant and for both tasks, we ran a general linear model (GLM) that included 

task effects and covariates of no interest (instruction trials, error trials for the go/no-go task, 
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a linear trend and six motion parameters derived from realignment corrections). GLMs were 

convolved with a canonical hemodynamic response function and used to compute parameter 

estimates for comparisons at each voxel. For the cue reactivity task, contrast images 

comparing food versus all other stimuli (people and nature scenes) were entered into a 

second-level random effects analysis, with the participant treated as the random effect.

For the go/no-go task, both go and no-go trials were modeled separately. Since we were 

interested in interrogating brain activity associated with response inhibition, for each subject 

we generated contrast images comparing no-go versus go trials. These images were 

subsequently subjected to a second-level random effects analysis, with the participant again 

treated as the random effect. Importantly, any trials in which participants made errors, 

whether omission or commission errors, were excluded from all analyses. This allowed for 

easier interpretation of response inhibition related activity in the no-go > go contrast.

To localize our nucleus accumbens region of interest (ROI) from the cue reactivity task, we 

applied a functionally defined, spherical mask (4 mm) to the right nucleus accumbens (MNI 

coordinates: 12, 9, −3) based on previous work in our lab (Demos et al., 2011). In the 

present study, this ROI showed significant food cue specific activation, t(30) = 2.87, p = .

007. We extracted the mean beta values from this region to be used in subsequent multilevel 

regression models predicting intensity and enactment of food desires, and amount eaten.

For the go/no-go task, we first ran Monte Carlo simulations using AFNI’s AlphaSim to 

calculate the minimum cluster size at an uncorrected threshold of p < .005 (required for a 

whole brain correction of p < .05). We performed simulations (1,000 iterations) on the 

volume of the study-wide whole-brain mask. These simulations estimated a minimum 

cluster size of 180 voxels. Based on this estimation, we selected a spherical ROI (6 mm) in 

the left inferior frontal gyrus centered on peak voxels (MNI coordinates: −36, 30, −3). 

Again, we extracted beta values from this ROI to be used in our multilevel models.

Experience sampling procedure

Following the fMRI scan, all participants underwent a short training session in which they 

received oral and written instructions on how to use the Blackberry smartphones. The 

experience sampling protocol was administered on the smartphones via a customized Java 

ME software application that determined the assessment schedule, questionnaire 

administration, and logging of data.

Participants carried the smartphones on their person during the one-week experience 

sampling period. Each day, seven signals were distributed across a 14-hour time window, 

with each signal occurring randomly within a 2-hour time block, as per Hektner and 

colleagues’ recommendation (Hektner, Schmidt, & Csikszentmihalyi, 2007). Any two 

signals were constrained to be at least 30 minutes apart. If the smartphone was turned off 

during the time of a signal, the program postponed the signal until later in the time block, or, 

if the time block passed, the response would be logged as missing. If the smartphone was 

turned on but participants did not respond within 15 minutes of the signal’s onset, the 

program would turn off and would categorize the response as missing. To ensure enough 

data collection points per participant, the experience sampling period was extended an 
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additional day if participants responded to fewer than five signals on any given day. If that 

occurred, a pop-up message would occur on the screen, asking participants to carry the 

device an additional day. For each signal, participants reported the following: (1) desire 

strength: the experienced strength of the food desire on a scale from 0 (none at all) to 6 

(irresistible); (2) resistance: how much they attempted to resist these desires on a scale from 

0 (not at all) to 6 (very much); (3) enactment: whether or not they gave in to the desire and 

already ate (yes/no); and, if so (4) amount eaten: how much they had eaten on a scale from 1 

(a tiny bit) to 6 (much more than a regular portion/stuffed).

None of the participants reported any difficulty or disruption associated with responding to 

the questionnaires, since the average response time for each signal was only 2.65 minutes. 

And overall there was high compliance, as participants completed an average of 83% of all 

signals during the experience sampling period and reported having food desires more than 

half of the time (54.4%).

Multi-level analysis procedure

All multi-level regression models were run using the software package Hierarchical Linear 

Modeling (HLM) (Raudenbush, 2004). Across all models, dependent variables were not 

transformed but since enactment of food desires is a dichotomous variable, logistic 

multilevel regression was applied by specifying the Bernoulli model in HLM (Raudenbush, 

2004). All Level 1 predictors, such as the measurements of desire and resistance during the 

experience sampling period, were person-mean centered, whereas Level 2 predictors, such 

as personality measures, were grand-mean centered. To incorporate neural data from the cue 

reactivity and response inhibition tasks into the models, we treated beta values from the 

ROIs described above as Level 2 continuous predictors (grand-mean centered). For all 

models, we accounted for individual differences in dietary restraint by including scores from 

the Restraint Scale (Heatherton et al., 1988; Herman & Polivy, 1980) and scores from the 

external eating subscale of the Dutch Eating Behavior Questionnaire (van Strien et al., 2012) 

as level 2 predictors.

To address our main questions, we ran several hierarchical linear regression models with 

situational variables (e.g., desire strength, resistance) at Level 1 and person-based variables 

(e.g., NAcc activity, personality measures) at Level 2 to accommodate the nested structure 

of the experience sampling data (i.e., observations within persons). All models incorporated 

Level 1 random intercepts, and models 2 and 3 included Level 1 random slopes for the 

relationship between resistance and the given outcome variable—as determined by variance 

components tests (all p’s < .005) (Hox, 2010).

Results

In the first model, we regressed desire strength on two brain predictors used in all 

subsequent, reported models. The brain predictors included signal change values from (1) a 

region of the NAcc that showed significant activation for appetitive food images during the 

cue reactivity task, and (2) an area in interior frontal gyrus associated with successful 

response inhibition from the go/no-go task (see Methods for ROI selection procedures). 

Individuals with higher NAcc activity in response to appetitive food images during fMRI 
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scanning experienced more intense food desires than individuals with lower NAcc activity, 

B = 0.27, p = .003 (Fig. 1). Additionally, participants who reported being more sensitive to 

external food cues (van Strien et al., 2012), tended to have stronger desires, B = 0.05, p = .

023. No other effects reached significance (see Table 1 for all estimated model parameters).

In the second model, our outcome variable was whether or not people gave in to their 

temptations to eat (i.e., enactment; see Table 2 for complete results from the enactment 

model). We replicated previous work (Hofmann et al., 2012) by showing that situational 

variation in food desire strength and resistance affected the likelihood of enactment, with 

desire strength predicting more frequent enactment, Blog = 0.32, p <.001, and higher 

resistance to food desires predicting less frequent enactment, Blog = −0.30, p = .004. In 

addition to these effects, there was a main effect of NAcc activity on enactment, such that 

those participants who showed higher NAcc activity in the cue reactivity task were more 

likely to give in to their temptations to eat, Blog = 0.38, p = .014. (Fig. 1). Greater sensitivity 

to external food cues (van Strien et al., 2012) also predicted enactment, Blog = 0.05, p = .

022.

In this model we also observed moderating effects of IFG activity associated with successful 

response inhibition from the go/no-go task. On average, individuals with higher IFG activity 

during the go/no-go task less frequently acted upon their desires, as indicated by greater IFG 

activity weakening the relationship between desire strength and enactment, Blog = −0.30, p 

= .003, as well as enhancing the inhibitory link between resistance and enactment, Blog = 

−0.42, p = .019. An interaction plot (Fig. 2) shows that in particularly tempting situations 

(i.e., those characterized active resistance to those desires) high IFG individuals (+1 SD) 

were considerably more successful at regulating their food consumption compared to low 

IFG individuals (-1 SD). For instance, at high levels of resistance, low IFG individuals were 

an estimated 8.2 times more likely to give in to a food desire than those high in IFG activity 

(Fig. 2).

The last model we ran included the same predictor variables as the desire and enactment 

models, but with amount of food eaten as the outcome variable. We found a similar pattern 

of effects, including main effects of NAcc activity (B = 0.23, p = .025) and food cue 

sensitivity (B = 0.05, p = .002) on amount eaten. IFG activity weakened the relationship 

between desire strength and amount eaten, B = −0.19, p = .012, such that those individuals 

with higher IFG activity ate less when faced with temptations to eat (i.e., an experienced 

desire). See Table 3 for results from the third model.

Discussion

Taken together, the results from the present study provide initial evidence for neural markers 

of everyday eating behaviors that can identify individuals who are more likely to give in to 

temptations to eat. Food cue reactivity in the NAcc, a part of the mesolimbic dopamine 

system associated with reward processing (Schultz, 2006), played a significant role 

predicting strength of food desires, enactment of those desires, and even amount eaten. 

Additionally, the moderating effects of IFG activity suggest that the IFG is a critical brain 

region that can influence self-regulatory outcomes, especially when people are faced with 
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strong temptations and self-control is required (Fig. 2). Those individuals who recruited the 

IFG more during the response inhibition task tended to be less likely to succumb to 

temptations and also ate less.

The present findings also demonstrate the importance of individual differences in how 

people experience and respond to temptation in their day-to-day lives. These differences 

appear to arise from not only how temptation is experienced in the moment (as measured by 

desire strength and desire resistance), but also from neural mechanisms associated with both 

reward processing (NAcc) and response inhibition (IFG). Indeed, the models we report here 

indicate that variation in these brain regions’ activity predicts how well (or poorly) 

individuals exert self-control when confronted with temptations to eat. We observed these 

effects in models that accounted for variance captured by self-report, suggesting that 

neuroimaging can provide an independent means to validate different accounts of why 

certain people are prone to self-regulation failure. And rather than supporting one account 

exclusively over another, our findings support multiple accounts of self-control failure. For 

example, cue exposure is a well-known threat to self-regulation (Heatherton & Wagner, 

2011), and our study’s NAcc effects demonstrate that higher reward-related activity during 

cue exposure is associated with greater likelihood of failure to resist temptations to eat. 

Other theories propose that self-regulatory failure is more likely whenever executive 

functions, supported by various regions of prefrontal cortex (e.g., IFG, Aron, Robbins, & 

Poldrack, 2004), are not engaged to modulate or dampen the reward value of a tempting 

stimulus (Heatherton & Wagner, 2011). In accordance with this account, we observed that 

individuals who showed lower IFG activity associated with response inhibition were prone 

to give in to their temptations, while those with higher IFG activity were more successful in 

resisting desires to eat.

To conclude, the brain-behavior relationships in the present study support and extend 

previous research on everyday desires (Hofmann et al., 2012) and test theories of self-

control behaviors by incorporating neural markers of these behaviors. Related work has 

linked reward activity in the NAcc to long-term weight change (e.g., Demos et al., 2012), 

but the present study applied a brain-as-predictor approach (Berkman & Falk, 2013) to shed 

light on neural mechanisms of more proximal, short-term eating behaviors, which, over 

time, may give rise to chronic patterns of overeating and possibly weight gain. Future 

investigations should explore the extent to which brain systems associated with reward (e.g., 

NAcc) and self-control (e.g., IFG) can serve as neural markers of other appetitive and 

addictive behaviors—from binge drinking, to compulsive gambling, to risky sexual 

behaviors.
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Figure 1. 
Summary of effects of nucleus accumbens’ (MNI Coordinates: 12, 9, −3) activity on 

multiple behavioral outcomes in the experience sampling period (from all multilevel 

regression models). Desire strength refers to responses to the question “How strong is your 

desire to eat the food?” Enactment is operationalized as positively answering the question 

“Did you already consume some of the food you desire?” Amount eaten refers to responses 

to the question “How much did you eat?” See Tables 1 and 2 for all other predictors and 

effects.
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Figure 2. 
Interaction plot depicting reported resistance on the x-axis, probability of giving in to 

temptation to eat on the y-axis, and the moderating influence of left IFG (MNI Coordinates: 

−36, 30, −3) recruitment during successful response inhibition in the go/no-go task (lines 

represent +/ 1SD above and below mean IFG activity). Predicted log-odds have been 

transformed to probabilities.
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Table 1

Multilevel regression of desire strength on Level 2 trait/brain predictors. Level 2 (person) predictors include 

the NAcc region-of-interest (ROI) from the cue reactivity task and the inferior frontal gyrus (IFG) ROI from 

the go/no-go task, while controlling for external eating and dietary restraint (see above).

Predictor B SE p

Base predictors (Level 1)

 Intercept 4.20 0.09 <.001

Trait/brain predictors (Level 2)

 NAcc 0.27 0.08 .003

 IFG −0.13 0.21 .547

 Dietary restraint −0.02 0.02 .200

 External eating 0.05 0.02 .023
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Table 2

Multilevel logistic regression of enactment on desire, resistance, and Level 2 trait/brain predictors. Level 1 

predictors include desire strength (i.e., “How strong is your desire to eat the food?”) and resistance (i.e., “How 

much did you try to resist the desire to eat this food?”) participants reported throughout the experience 

sampling period.

Predictor B log SE p

Base predictors (Level 1)

 Intercept −0.39 0.68 .010

 Desire strength 0.32 0.09 < .001

 Resistance −0.30 0.09 .004

Trait/brain predictors (Level 2)

 NAcc 0.38 0.14 .014

 IFG 0.14 0.23 .555

 Dietary restraint −0.03 0.02 .160

 External eating 0.05 0.02 .022

Interactions with Desire Strength (DS)

 NAcc ×DS 0.19 0.10 .069

 IFG ×DS −0.30 0.10 .003

 Dietary restraint ×DS −0.03 0.02 .178

 External eating ×DS <.001 0.01 .979

Interactions with Resistance (RST)

 NAcc ×RST −0.23 0.07 .004

 IFG ×RST −0.42 0.17 .019

 Dietary restraint ×RST −0.03 0.02 .276

 External eating ×RST −0.02 0.02 .398
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Table 3

Multilevel regression of amount eaten on desire, resistance, and Level 2 trait/brain predictors.

Predictor B SE p

Base predictors (Level 1)

 Intercept 1.17 0.11 <.001

 Desire strength 0.23 0.06 < .001

 Resistance −0.21 0.06 .004

Trait/brain predictors (Level 2)

 NAcc 0.23 0.10 .025

 IFG 0.08 0.19 .667

 Dietary restraint <0.01 0.02 .879

 External eating 0.05 0.01 .002

Interactions with Desire Strength (DS)

 NAcc ×DS 0.20 0.06 .001

 IFG ×DS −0.19 0.08 .012

 Dietary restraint ×DS −0.02 0.01 .187

 External eating ×DS 0.02 0.01 .071

Interactions with Resistance (RST)

 NAcc ×RST −0.10 0.06 .089

 IFG × RST −0.14 0.11 .224

 Dietary restraint ×RST −0.01 0.02 .459

 External eating ×RST −0.01 0.01 .562
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