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Generalization properties of neural network
approximations to frustrated magnet ground states
Tom Westerhout1✉, Nikita Astrakhantsev2,3,4✉, Konstantin S. Tikhonov 5,6,7✉, Mikhail I. Katsnelson1,8 &

Andrey A. Bagrov1,8,9✉

Neural quantum states (NQS) attract a lot of attention due to their potential to serve as a

very expressive variational ansatz for quantum many-body systems. Here we study the main

factors governing the applicability of NQS to frustrated magnets by training neural networks

to approximate ground states of several moderately-sized Hamiltonians using the corre-

sponding wave function structure on a small subset of the Hilbert space basis as training

dataset. We notice that generalization quality, i.e. the ability to learn from a limited number of

samples and correctly approximate the target state on the rest of the space, drops abruptly

when frustration is increased. We also show that learning the sign structure is considerably

more difficult than learning amplitudes. Finally, we conclude that the main issue to be

addressed at this stage, in order to use the method of NQS for simulating realistic models, is

that of generalization rather than expressibility.
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Following fascinating success in image and speech recogni-
tion tasks, machine-learning (ML) methods have recently
been shown to be useful in physical sciences. For example,

ML has been used to classify phases of matter1, to enhance
quantum state tomography2,3, to bypass expensive dynamic ab
initio calculations4, and more5. Currently, artificial neural net-
works (NNs) are being explored as variational approximations for
many-body quantum systems in the context of variational Monte
Carlo (vMC) approach. vMC is a well-established class of
methods suitable for studying low-energy physics of many-body
quantum systems with a more than 50-year history6. A vast
variety of trial wave functions have been suggested in different
contexts. One of the simplest choices is mean-field form of the
wave function which can be enriched by explicit account for
particle–particle correlation7–9 and generalized to include many
variational parameters10–13. Certain tensor network variational
ansätze, e.g. matrix product states14, do not require stochastic
Monte Carlo sampling and are thus amenable to exact optimi-
zation. The common shortcoming of all these methods is that the
trial functions are tailored to a concrete model of interest and
often require some prior knowledge about structure of the ground
state (such as short-range entanglement for MPS methods) or
intuition which helps constrain the optimization landscape (e.g.
approximate understanding of nodal surfaces for Quantum
Monte Carlo methods15). However, in many cases our prior
intuition can be insufficient or unreliable. This poses a natural
question whether a more generic ansatz that can efficiently
approximate ground states of many-body systems could exist.

A novel and fresh look at this problem was given in ref. 16,
where the traditional vMC optimization approach was hybridized
with ML. A simple yet very unrestricted variational ansatz that
inherits the structure of a certain neural network—restricted
Boltzmann machine (RBM)—was suggested. For the test cases of
one-dimensional and two-dimensional Heisenberg and transverse
field Ising models, it was demonstrated that, optimizing this
ansatz with the stochastic reconfiguration (SR) scheme17, one
could achieve high accuracy in approximating ground states of
systems of up to hundreds of spins, sometimes outperforming the
state-of-the-art methods.

In subsequent years, a number of new variational neural
quantum states (NQS) have been suggested and their properties
were thoroughly analyzed. Among other important discoveries, it
was realized that even the simplest RBMs with polynomial
number of parameters have rich enough structure to host volume
law entanglement18,19, indicating that NQS are more flexible
than, for instance, tensor networks20. Recently, RBM repre-
sentation for open quantum systems has been formulated21–23.
Hybrid wave functions, combining properties of RBMs and more
traditional pair product wave functions, were demonstrated to
significantly reduce relative energy error of variational ground
state of two-dimensional Fermi–Hubbard model24 and to
enhance the accuracy of Gutzwiller-projected wave functions in
frustrated magnets25. An algorithm for computing the spectrum
of low-lying excited states has been suggested26, opening a route
to studying finite-temperature phenomena with NQS (see also
ref. 27). However, it also became evident that NQS must not be
perceived as a magic bullet in the area of strongly correlated
quantum systems28. Although a variational wave function with a
network structure may be able to approximate the ground state
really well, in some cases the desired point in the space of var-
iational parameters can be hard to reach, and learning algorithm
hits a saddle point before approaching the solution. This results in
a large relative energy error and a low overlap between the NQS
and the actual exact ground state, making the obtained solution
almost useless for computing physical observables. This problem
is particularly pronounced for systems where the energy gap

between the ground state and the first excited state is very small,
like for frustrated spin systems such as J1−J2 antiferromagnetic
Heisenberg model on square lattice29, or the Fermi–Hubbard
model away from the neutrality point30.

While it can be proven mathematically that NNs can in prin-
ciple approximate any smooth function to arbitrary accuracy31, it
might require an impractically large number of parameters. Thus
an important feature of any ansatz is its expressibility—a
potential capacity to represent a many-body wave function with
high accuracy using a moderate number of parameters32–34, and
so far, significant effort has been put into the search for NQS
architectures that possess this property3,35. At the same time,
there is another issue that is not widely discussed in this context
—the generalization properties of an ansatz. To illustrate this
aspect, it is instructive to consider the problem of fitting a known
wave function by a certain ansatz. For a sufficiently large quan-
tum system, even evaluation of the cost function (which depends
on the ansatz parameters and measures the fit quality) and its
gradients may become impossible as it requires summing over a
very large number of terms in the Hilbert space. One may hope
that, by instead evaluating the cost function on a smaller set of the
Hilbert space basis, sampled in a certain way, one will eventually
approach point of optimality close to the actual solution of the
full optimization problem. This is not guaranteed at all, and is
exactly what is known as generalization property in the ML
context. This issue is also very important in the variational
optimization scheme. In vMC, an ansatz is adjusted iteratively in
a certain way, so that it is expected that the system ends up in the
lowest energy state allowed by the form of the ansatz17,36,37. At
each step of this iterative procedure, one has to evaluate the
change of the trial wave function parameters. This relies on MC
sampling from basis of the Hilbert space of the model, and for
large systems the total number of samples is negligibly small in
comparison with the dimension of the Hilbert space. Hence, it is
of crucial importance for the ansatz to accurately generalize onto
a larger subspace that was not sampled in the course of learning
and correctly estimate phases and amplitudes of the wave func-
tion on the full set of basis vectors.

Although the generalization issue concerns both phases and
amplitudes of the wave function coefficients, it turns out that
these two components behave differently in this respect. Already
from the first works in the field, it seemed plausible that effec-
tiveness of NN as variational ansatz is somehow connected to the
sign structure of the models. For instance, in ref. 16, even for
the unfrustrated Heisenberg antiferromagnet on a square lattice,
the Hamiltonian must first be brought into stoquastic (sign-
definite) form by a unitary transformation in order to reduce
noise and attain proper level of convergence (see also ref. 38). As
another example, let us note that in recent study37 it was stressed
that biasing the NQS ansatz with certain predefined (heuristic)
sign structures is very important for performance of the method.

In this paper, we study generalization properties of NNs39,40 in
the context of approximating the eigenstates of large quantum
systems paying special attention to the sign structure. By running
numerical experiments, we shall demonstrate that it is indeed the
lack of sign structure generalization that prevents a neural
quantum state from learning the wave function, even though
expressibility of the corresponding ansatz could be good enough.
To do that, we focus on the antiferromagnetic Heisenberg model
on square, triangular, and Kagome lattices with competing
interactions. First, we solve each of the models using exact
diagonalization. Then, with the exact ground state as a target, we
use supervised learning to train the NQS. During the training
procedure, NNs are shown only a tiny fraction of the ground state
(which is chosen by sampling from the probability distribu-
tion∝ ∣ψi∣2). Quality of the approximation is then assessed on the
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remaining part of the Hilbert space basis which we call test
dataset. We tune both the training dataset size as well as the
degree of frustration (controlled by J2/J1), and show that when the
models are interpolated between unfrustrated and fully frustrated
regimes, networks’ generalization abilities change in a non-trivial
way, with sign structure becoming very difficult to learn in certain
cases. This motivates a search for NQS architectures which gen-
eralize better.

Results
Setup and main findings. We consider several antiferromagnetic
spin models described by the Heisenberg Hamiltonian:

Ĥ ¼ J1
X
ha;bi

σ̂a � σ̂b þ J2
X
hha;bii

σ̂a � σ̂b ; ð1Þ

where for each lattice geometry, the first sum is taken over the
unfrustrated sublattice (solid lines in Fig. 1), and the second sum
is taken over the sublattice that brings in frustrations (dashed
lines in Fig. 1). Namely, we consider J1−J2 model on a square
lattice41–43 and the nearest-neighbor antiferromagnets on spa-
tially anisotropic triangular44 and Kagome45,46 lattices. These
models are known to host spin liquid phases in certain domains
of J2/J1, to which we further refer as frustrated regions.

For every model, its ground state belongs to the sector of
minimal magnetization, thus the dimension of the corresponding
Hilbert space is K ¼ CN

N=2½ � (where N is the number of spins). It is
convenient to work in the basis of eigenstates of σ̂z operator:
Sj i � "# ¼ #"j i. In this basis the Hamiltonian Ĥ is real-valued.
The ground state is thus also real-valued, and every coefficient in
its basis expansion is characterized by a sign si= sign(ψi) (instead
of a continuous phase):

ΨGSj i ¼
XK
i¼1

ψi Sij i ¼
XK
i¼1

sijψij Sij i: ð2Þ

We have analyzed how NNs learn ground state structures of
these models. In what follows, we will be mainly speaking about
periodic clusters of 24 spins, since all the effects are clear already
in that case, but will also provide results for 30-spin clusters, and
some data for a 6-by-6 periodic square lattice. Effective
dimension of a 24-spin system Hilbert space in the zero-
magnetization sector is d ¼ C24

12 ’ 2:7 � 106. Our main results
seem universal for all studied models and architectures and can
be summarized in the following four statements:

(i) Generalization from a relatively small subset of Hilbert
space basis of the wave function sign structure is not
granted even when the ansatz is able to express the ground

state with high accuracy. Very well known to ML
practitioners, this fact is also valid for spin systems, in
both frustrated and ordered regimes.

(ii) Construction and training of a network to achieve good
generalization, a task which is relatively simple in the
ordered phase, becomes much harder upon approaching
the frustrated regime.

(iii) Quality of generalization depends on the size of training set
in an abrupt way exhibiting a sharp increase at some
εtrain ¼ Training dataset size

Hilbert space dimension.
(iv) Generalization of wave function amplitudes turns out to be

a substantially easier task than generalization of signs.

In the remaining part of this section we explain the findings in
more detail using Kagome lattice as an example. We focus on a
two-layer dense neural network architecture. For results for other
models and detailed comparison of different architectures we
refer the reader to Supplementary Notes 1 and 2.

Generalization of sign structure. Upper row on Fig. 2 illustrates
both points i and ii. Here, we use a small subset (1%) of the
Hilbert space basis to train the NN and then evaluate how well it
predicts the sign structure on the remaining basis vectors una-
vailable to it during training. To assess the quality of general-
ization we use overlap between the exact ground state and the
trial state. The latter is defined as a state with amplitudes taken
from exact diagonalization and sign structure encoded in a NN
(the sign is chosen by following the most probable outcome
according to the NN). Consider, for example, panel c, where
generalization quality for Kagome model is shown as a function
of J2 ∕ J1. It is known46 that Kagome model hosts a frustrated
regime for 0.51≲ J2 ∕ J1≲ 1.82. Strikingly, this phase transition
shows itself as a sharp decrease of overlap around the value J2 ∕
J1 ≈ 0.51. As one may expect, the frustrated regime is character-
ized by very intricate sign distribution leading to a drastic
reduction in the overlap. For the square and the triangular lattices
(Fig. 2a, b), generalization quality behaves somewhat differently.
For J1−J2 model on the square lattice, instead of a sharp transi-
tion, it exhibits a large but smooth dip in frustrated regime (0.4 <
J2/J1 < 0.6). On the triangular lattice, the minimum is reached
slightly before approaching the transition point (J2/J1 ≈ 1.25).
However, for all three models we see that behavior of general-
ization quality reflects very well the known phase transitions with
generalization being easy in ordered phases and becoming
notoriously hard in disordered phases. Note also that different
NNs may generalize very differently: in particular, as shown for
the square and triangular lattices of Fig. 2, dips in performance of
convolutional NNs are much smaller than for dense networks.
Such good performance is most likely due to the fact that our

J1

a b

J1

J1

J2

J2

J2

c

Fig. 1 Lattices considered in this work. We studied three frustrated antiferromagnetic Heisenberg models: a next-nearest neighbor J1−J2 model on square
lattice; b anisotropic nearest-neighbor model on triangular lattice; c spatially anisotropic Kagome lattice. In all cases J2= 0 corresponds to the absence of
frustration.
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implementation of CNNs accounts for translational symmetry
(see Supplementary Note 1 for an in-depth explanation of used
NN architectures).

We believe that experiments of this kind would help to choose
proper architectures to be used in vMC methods such as SR. In
SR scheme, parameter updates are calculated using a small
(compared to the Hilbert space dimension) set of vectors sampled
from the probability distribution proportional to ∣ψ∣2. This closely
resembles the way we choose our training dataset. Moreover, SR
does not optimize energy directly, rather at each iteration it tries
to maximize the overlap between the NQS Ψj i and the result of its
imaginary time evolution ð1� δtĤÞ Ψj i. Hence, even though our
supervised learning scheme and SR differ drastically, their
efficiencies are strongly related. To make this correlation more
apparent, we have performed several vMC experiments for 24-
spin clusters. In the second row of Fig. 2, we provide results of SR
simulations for different values of J2 ∕ J1. One can see that the two
learning schemes follow very similar patterns.

Let us now turn to observation (iii). As we have already
mentioned, it is very important to distinguish the ability to
represent the data from generalization. In the context of NQS,
the former means that a NN is able to express complex
quantum states well if training was conducted in a perfect way.
For clusters of 24 spins we have trained the networks on the

entire ground state and found that expressibility of the ansätze
is not an issue—we could achieve overlaps above 0.94 for all
values of J2/J1 (dashed lines in the upper row of Fig. 2). We
believe that this result holds true for larger clusters though we
could not verify this: for 30 spins (Hilbert space dimension
~1.5 × 108) training the network on the entire set of basis
vectors is too resource demanding. However, high expressibility
does not automatically make a neural network useful if it
cannot generalize well. To make the boundary more clear, we
study how generalization quality changes when size of the
training dataset is increased. Results for Kagome lattice are
shown in Fig. 3. Interestingly, even in the frustrated regime
(J2= 0.6) it is possible to generalize reasonably well from a
relatively small subset of the basis states, but the required εtrain
becomes substantially larger than in the magnetically ordered
phase. Most importantly, the ability of the NN to generalize
establishes in an abrupt manner contrary to more typical
smooth behavior observed in statistical models of learning47–49.
Another interesting feature is saturation of the overlap at large
εtrain which can be observed in larger systems (see Supplemen-
tary Figs. 5 and 7). In the system of 24 spins, it is hard to see
this plateau as it requires too large εtrain, such that all relevant
basis vectors end up in the training dataset, and overlap
computed on the rest of the basis is meaningless.
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Fig. 2 Optimization results for 24-site clusters obtained with supervised learning and stochastic reconfiguration. Subfigures a–c were obtained using
supervised learning of the sign structure. Overlap of the variational wave function with the exact ground state is shown as function of J2∕J1 for square a,
triangular b, and Kagome c lattices. Overlap was computed on the test dataset (not included into training and validation datasets). Note that generalization
is poor in the frustrated regions (which are shaded on the plots). 1-layer dense, 2-layer dense, and convolutional neural network (CNN) architectures are
described in Supplementary Note 1. Subfigures d–f show overlap between the variational wave function optimized using Stochastic Reconfiguration and the
exact ground state for square, triangular, and Kagome lattices, respectively. Variational wave function was represented by two two-layer dense networks. A
correlation between generalization quality and accuracy of the SR method is evident. On this figure, as well as on all the subsequent ones (both in the main
text and Supplementary Notes 1 and 2), error bars represent standard error (SE) obtained by repeating simulations multiple times.
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Generalization of amplitudes. In our discussion up to this point,
we concentrated entirely on the quality of generalization of the
wave function sign structure. One may wonder whether it is
indeed the signs rather than amplitudes, which are responsible for
the difficulty of learning the wave function as a whole (this
possibility has been discussed in the context of state tomography
in ref. 2). To prove this statement, we conduct the following
analysis. In the context of learning, overlap between a trial wave
function and the target state can be used to characterize the
effectiveness of NNs in two different ways. First, one can fix the
amplitudes of the wave function and use a NN to learn the signs.
This produces a trial wave function ψsign. Alternatively, one can
fix the sign structure, and encode the amplitudes in a NN to get a
trial wave function ψamp. Clearly, the accuracy of ψamp and ψsign
will depend on the relative complexity of learning amplitudes and
signs of the wave function coefficients. We illustrate statement
(iv) with Fig. 4, where we use overlap to compare the quality of
generalization of signs and amplitudes (using, again, 1% of the
basis for training). Upon increase of J2, one moves from a simple

ordered phase to frustrated regime where overlap drops sharply.
Although the generalization of both signs and amplitudes
becomes harder at the point of phase transition J2/J1= 0.51, drop
in the sign curve is much larger, and at even higher J2 the quality
of the learned states becomes too poor to approximate the target
wave function. At the same time, even deeply in the frustrated
regime generalization of amplitudes, given the exact sign struc-
ture, leads to a decent result. Moreover, generalization quality of
amplitudes does not drop abruptly when εtrain is decreased,
remaining non-zero on very small datasets (see Supplementary
Fig. 3). These observations suggest that it is indeed the sign part
of the wave function that becomes problematic for generalization
in frustrated region. One should keep in mind that difficult to
learn sign structure is not directly related to the famous Quantum
Monte Carlo sign problem. For example, Fig. 2 shows that in
J2→ 0 limit of J1−J2 model, networks have no trouble learning
the sign structure even though in σ̂z basis, there is sign problem
since we are not applying Marshall’s Sign Rule.

Larger clusters. So far we have been exemplifying our results on
24-spin clusters, and it is interesting to see whether the main
observations hold for larger Hilbert spaces as well. Most of the
computations that we performed can be repeated for lattices of
30 spins. Even bigger systems become too resource demanding
and require a more involved algorithm implementation. Never-
theless, for the square lattice of 36 spins (6-by-6), we managed to
compute dependency of generalization on the training dataset size
for several values of J2 ∕ J1. For the detailed analysis of 30-spin
clusters we refer the reader to Supplementary Note 2. One can see
that all the conclusions remain valid—behavior of the general-
ization quality as function of J2 ∕ J1 is very similar to that for 24-
spin clusters, and the dependence on εtrain exhibits a sharp
transition.

What is especially interesting is that the critical size of the
training dataset required for non-zero generalization seems to
scale relatively slowly with the system size. In Fig. 5, for the case
of the square lattice, we show the critical size of the training
dataset as a function of the Hilbert space dimension K. It turns
out, that when one goes from 24 spins (K≃ 2.7 × 106) to 36 spins
(K≃ 9 × 109), it is sufficient to increase the training dataset just by
a factor of 10. This gives us hope that reasonable generalization
quality can be achieved for even larger systems.

Discussion
In this paper, we have analyzed the ability of NNs to generalize
many-body quantum states from a small number of basis vectors
to the whole Hilbert space. The main observation we made is that
for all models we have considered, quality of generalization of the
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ground state sign structure falls off near quantum phase transi-
tions and remains low in the frustrated regimes.

We have demonstrated that generalization may indeed be an
essential factor that is likely responsible for spoiling the con-
vergence of NQS in a number of physically interesting cases, such
as frustrated quantum spin systems. Our main conclusion which
is qualitatively valid for all the studied models and NN archi-
tectures is that a NN struggles to generalize the distribution of
signs in the ground state of a many-body system with competing
interactions in the regime of strong frustrations if the training is
done on a small fraction of basis states. At the same time, even
simple NNs seem to have no problem in generalizing amplitudes
from the training dataset onto the entire Hilbert space. They also
have very good capacity to express both sign and amplitude
distributions of the studied states. Hence, in a search for neural
quantum state architectures that can be trained to approximate
the ground state of a large-scale many-body Hamiltonian, one
should mainly focus on NNs that are at least capable of gen-
eralizing the ground state sign structure of moderately sized test
systems. At this point, it is hard to give a concrete recipe of how
to look for such architectures, but one of the possible ways could
be to incorporate symmetries of the system into the network
structure (improving the learning protocols may also help50). In
our examples, using convolutional NNs that respected transla-
tional symmetries of the square and triangular lattices helped
improve generalization quality significantly. This also suggests
that our results are heuristic: although we have studied several
most popular NN architectures, we cannot exclude a possibility
that for certain other designs, the generalization will show fea-
tures, qualitatively different from our findings.

Another important feature we have discovered is the threshold
behavior of generalization as a function of the training dataset
size. This is rather unusual and different from the smooth
behavior known for standard models of learning, such as
teacher–student scenario in a binary perceptron47,48 and some
other studies of NNs generalization51. From the point of view of
vMC applications, it is desirable to understand how the required
number of samples depends on system parameters, such as size
and degree of frustration and training algorithm parameters.

As a closely related phenomenon, let us mention the fact
known from the binary perceptron problem: bias towards dense
clusters of local minima on the loss landscape makes general-
ization error a significantly steeper function of the number of the
samples49. This may partially explain the observed abrupt change
in generalization quality since stochastic gradient descent
employed by us is known to have similar properties (bias towards
wide minima of the loss landscape40,52,53). It would be very useful
to have analytically tractable models which show the threshold
behavior of generalization.

Finally, it is worth mentioning that, while the dip in general-
ization is not desirable in the context of variational energy opti-
mization, it could be used as a tool to identify—in a completely
unsupervised manner—the position of the phase transitions,
similarly in spirit to approaches of refs. 54–57.

Methods
Training procedure. In this study, we use feed-forward networks of three different
architectures (dense 1-layer, dense 2-layer, and convolutional two-layer) to encode
wave function coefficients via splitting them into amplitudes and signs. All of our
networks have the same input format: spin configuration Sij i ¼ σ1σ2 ¼ σNj i
represented as a binary sequence, σk= ±1. Network encoding amplitudes outputs a
real number—natural logarithm of the amplitude. Network encoding sign structure
outputs a probability p∈ [0, 1] for the corresponding sign to be plus. For inference
we then use "+” whenever p ≥ 0.5 and "−” otherwise. Thus, unlike the approach of
ref. 16, we represent wave function signs using a binary classifier.

Both networks are trained on data obtained from exact diagonalization. We
sample εtrain ⋅ K spin configuration from the Hilbert space basis according to

probability distribution PðiÞ ¼ jψi j2P
j
jψj j2

. They constitute the training dataset. Then,

we sample another εval ⋅ K spin configurations which we use as a validation dataset
during training. It enables us to monitor the progress and employ regularization
techniques such as early stopping. In practical applications of NQS16,26,29, SR17,58,
stochastic gradient descent12,59, or generalized Lanczos36, the training dataset is
generated by Monte Carlo sampling from basis of the Hilbert space of the model,
and, since dimension of the latter grows exponentially with the number of spins,
only a tiny fraction of it can be covered with a Monte Carlo chain in reasonable
time. Therefore, it is natural to mimic this incomplete coverage with εtrain, εval≪ 1.

To assess the performance of the NNs we evaluate overlap (scalar product)
between exact eigenstate and the trial state. A trial state for sign NN is defined as a
state with amplitudes from ED and sign structure encoded in a NN. Analogously, a
trial state for amplitude NN is obtained by superimposing the exact sign structure
onto the positive amplitudes encoded in the amplitude NN.

We train the classifier by minimizing binary cross-entropy loss function

LS ¼ �
X
i

1þ si
2

log pi þ
1� si
2

log ð1� piÞ
� �

; ð3Þ

where pi is the predicted probability for the spin configuration Sij i to have sign
+1, si= ±1 is the expected sign obtained from ED, and the sum is taken over the
training dataset.

Training of the neural network which approximates amplitudes occurs via
minimization of

LA ¼
X
i

log jψij � log jψe
i j

� �2
; ð4Þ

where ψe
i is the exact value of ith coefficient.

Usually, in ML algorithms it is crucial to choose hyperparameters correctly. For
example, dependence of critical εtrain on batch size is non-monotonic. Choosing a
wrong batch size can lead to an order of magnitude increase of required εtrain. In
our calculations, we typically work with batches of 64 or 128 samples. For
optimizaion, we mostly use Adam60 (a stochastic gradient-based method) with
learning rates around 10−4–10−3. Early stopping is our main regularization
technique, but we have also experimented with dropout layers (which randomly
throw away some hidden units) and L2-regularization.

Data availability
All simulations were carried out using PyTorch neural network manipulation package61.
Original simulation results are available from the corresponding authors on a reasonable
request.

Code availability
Code to carry out the analysis is publicly available at http://github.com/nikita-astronaut/
nqs_frustrated_phase and http://github.com/twesterhout/nqs-playground.
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