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The human brain consists of a network of regions that are engaged when one observes

the movements of others. Observing unexpected movements, as defined by the context,

often elicits greater activity, particularly in the right posterior superior temporal sulcus

(pSTS). This implies that observers use contextual information to form expectations

about an agent’s goal and subsequent movements. The current study sought to identify

regions that support the formation of these context-dependent expectations, with the

pSTS being one candidate, given the consistent contextual modulation of its activity.

We presented participants with fictitious individuals who had emotion-dependent food

preferences, and instructed participants to indicate which food they expected each

individual to choose based on the individual’s current emotional state. Each individual’s

preference and emotional state therefore created a context that informed the observer’s

expectation of the individual’s choice. Multi-voxel pattern analysis (MVPA) was used to

assess if these different contexts could be discriminated in the pSTS and elsewhere

in the brain. No evidence for context discrimination was found in the pSTS. Context

discrimination was found instead a network of other brain regions including the anterior

medial prefrontal cortex (amPFC), bilateral parietal cortex, left middle temporal gyrus

(L MTG) and left anterior temporal lobe (L ATL), which have been previously associated

with context processing, and semantic and memory retrieval. All together, these regions

possibly support the formation of context-dependent expectations of an agent’s goal.

Keywords: context discrimination, expectations, pSTS, fMRI, MVPA

Introduction

The human brain consists of a network of regions that are engaged when one observes the

movements and actions of other living things. These regions are involved in processing the form

and kinematics of motion, and identifying the actions performed (Thompson and Parasuraman,

2012). The brain, however, does not merely react to observed movements, but also seems to predict

the movements of an agent, based on inferred goals and intentions. Evidence for this idea comes

from studies showing that the same observed movements elicit greater activity, particularly in

the right posterior superior temporal sulcus (pSTS), when the context renders the movement

unexpected than expected. For example, Pelphrey et al. (2003) found that pSTS activity to shifts in

an avatar’s eye gaze was greater when the gaze shift did not occur in the direction of a preceding

flashing checkerboard than when it did. In another study, Brass et al. (2007) found greater pSTS
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activity to the same action when the action seemed implausible

than when it seemed plausible, for example, an actress flipping a

light switch with her knees when her hands were free compared

to when her hands were occupied. Vander Wyk et al. (2009,

2012) found greater pSTS activity when an actress’ action was

incongruent with her expressed emotion (i.e., reaching toward

a cup that she had previously expressed dislike for) than when

it was congruent (i.e., reaching away from the cup that she

had previously expressed dislike for). Increased pSTS activity to

actions that are unexpected has been found in other studies as

well (Pelphrey et al., 2004; Saxe et al., 2004; Shultz et al., 2011).

The differences in neural response to observing identical

actions embedded within different contexts suggests several

stages of processing. That the pSTS shows different responses

to expected and unexpected actions necessitates that the

observer must have first formed an expectation about the

agent’s goal. Forming an accurate expectation, in turn, depends

on the observer having assessed the context preceding the

action. Indeed, according to the predictive coding framework

of action observation, context provides priors from which

predictions about an agent’s intentions are formed, which

in turn informs predictions about the immediate goal of an

agent’s subsequent movements, and the kinematics of those

movements (Kilner et al., 2007). Therefore, it seems that assessing

context and forming expectations about intentions and goals

can occur prior to observing an action. Here, our operational

definition of context is any situation-specific information that

informs an observer’s expectation of an agent’s intention. For

example, in Vander Wyk et al. (2009), the actress’ particular

emotional expression directed at a particular cup served as

the contextual information that allowed the observer to expect

that she would either choose that cup or the other cup.

What are the neural substrates of these earlier stages of

processing? That is, which regions are involved in assessing

the context, thus allowing the observer to predict an agent’s

goal?

To investigate this question, we reasoned that if a brain region

uses contextual information to inform expectations about an

agent’s goal, then this region should be able to discriminate

between different contexts. Therefore, in this study, participants

were presented with unique contexts that led to specific

expectations. To avoid using spatial cues as context, as the

pSTS has also been implicated in attention reorienting (Corbetta

et al., 2008), participant’s expectations were instead informed via

learned preferences of fictitious individuals. To this end, we used

an ecologically valid manipulation of assigning different food

preferences to these fictitious individuals depending on their

emotional state (Lyman, 1982). Specifically, one individual would

choose to eat meat when he was happy, and vegetables when

he was sad. The other individual had the opposite preference.

During the experimental task, participants were presented with

each individual and his current emotional state, and were

asked to indicate which food they expected the individual to

choose based on the individual’s current emotional state. Each

individual’s preference and his current emotional state therefore

created a context that would inform the observer’s expectation of

the individual’s choice. Multi-voxel pattern analysis (MVPA) was

used to assess if these different contexts could be discriminated

from one another. Unlike previous studies, neither spatial cuing

in the form of motion nor outcome was presented in this study

because our aim was to investigate context assessment and

expectation formation prior to observing an outcome.

Given the robust and consistent influence of context on pSTS

activity reported in the literature, the pSTS served as a region-of-

interest (ROI) on which we performed a targeted analysis. The

role of assessing context is also plausible for this region given

that the surrounding cortex in the inferior parietal lobules has

been proposed as a convergence zone for multimodal contextual

information to support semantic (Binder and Desai, 2011) and

episodic (Shimamura, 2011) memory. However, it is also possible

that contextual information is represented not in the pSTS,

but in other regions. In particular, the medial prefrontal cortex

(mPFC) has been suggested to use contextual associations to

form predictions about possible subsequent stimuli (Bar, 2009).

We therefore also conducted a whole-brain searchlight analysis

to uncover other brain regions that could discriminate between

contexts.

Materials and Methods

Participants
Twenty-one right-handed, healthy adults (14 male, mean age

23.2 ± 3.9 years) participated in the study. All participants had

normal or corrected-to-normal vision and had no history of

neurological or psychiatric illnesses. The protocol was approved

by the Yale Human Investigation Committee and all participants

gave informed consent. Data from one participant was excluded

because the timing files were corrupted, and from another

participant because of excessive artifacts in the data. Therefore,

results from nineteen participants are reported.

Stimuli and Design
Stimuli consisted of colored pictures of three male faces

with neutral expressions, obtained from the NimStim database

(Tottenham et al., 2009), along with 36 colored pictures

of meat dishes and 36 colored pictures of vegetable dishes

obtained from the Internet. Stimuli were presented with using

Psychtoolbox 3.0.8 (Brainard, 1997; Pelli, 1997) in MATLAB 7.8

(The MathWorks, Inc., Natick, MA, USA).

The stimuli were presented using an event-related design. In

each trial, one of the three faces was presented along with a

text cue above the face indicating the person’s emotional state

(‘‘happy’’ or ‘‘sad’’), and pictures of a meat dish and a vegetable

dish on the left and right of the face (Figure 1). Each trial was

presented for 2 s and trials were separated by a 4–10 s jittered

fixation interval. Each run consisted of six trials per condition

(i.e., each face paired with each emotion) to give a total of 36 trials

per run, and a run duration of 5 min. The program ‘‘optseq2’’1

was used to generate the optimal sequence and separation of

trials for maximal statistical efficiency of rapid-presentation

event-related hemodynamic response estimation for each run

(Dale, 1999). The position of the meat and vegetable dishes

1http://surfer.nmr.mgh.harvard.edu/optseq
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FIGURE 1 | Schematic illustration of the experimental paradigm. During

each trial, the neutral face picture of one of the three white male individuals

was displayed. As the NimStim faces used cannot be published, sample faces

generated with FaceGen (Singular Inversions, Toronto, ON, Canada) are

shown here instead. Pictures of a meat dish and a vegetable dish were

presented on the left and right of the face. The word “happy” or “sad” was

displayed above the face to indicate the individual’s current emotional state.

Participant’s task was to indicate, using the left and right button presses,

which dish the individual would choose based on the individual’s emotional

state. Trials were presented for 2 s and were separated by a 4–10 s jittered

interval during which a fixation cross was displayed (not shown). The red

circles indicate each individual’s emotion-dependent food preferences and

were not displayed during the task.

on the left and right of the face was counterbalanced across

trials within each condition and each run. Ten runs were

presented.

Experimental Procedure
Prior to scanning, participants were introduced to three fictitious

male individuals (‘‘John’’, ‘‘Alex’’, and ‘‘Rick’’). They were briefed

that each individual had different food preferences depending

on their emotional state. When John was happy (‘‘H1’’), he

would choose to eat vegetables, but when he was sad (‘‘S1’’), he

would choose to eat meat. The exact description presented to

participants read, ‘‘This is John. He is into healthy living so when

he’s feeling happy, he’ll choose to eat vegetables because they are

refreshing. However, when he’s sad, he’ll indulge and choose to

eat meat instead.’’

Alex, however, had the opposite preference; he would choose

to eat meat when he was happy (‘‘H2’’), but vegetables when

he was sad (‘‘S2’’). The description of Alex read, ‘‘This is Alex.

Unlike John, when he’s happy, he’ll indulge and choose to eat

hearty meat meals. However, when he’s sad, he’ll want something

refreshing so he’ll choose vegetables instead.’’ These two

individuals had opposite preferences so that the discrimination

of context would not be confounded with discrimination of

emotion (i.e., happy vs. sad) or food choice (i.e., meat vs.

vegetables). These trials were considered the ‘‘Preference’’ trials,

where participants had to rely on information about each

person’s preference and emotional state to form expectations

about their choice.

Rick had no particular preference and could choose to eat

either meat or vegetables when he was happy (‘‘H3’’) or sad

(‘‘S3’’). The description of Rick read, ‘‘This is Rick. He doesn’t

have a strong preference for either type of food.When he’s happy,

he some times chooses to eat meat and he some times chooses to

eat vegetables. Likewise, when he’s sad, he some times chooses

to eat meat and he some times chooses to eat vegetables.’’ These

were the ‘‘No Preference’’ trials and served as control trials since

there was no contextual information from which the participants

could form an expectation about the person’s choice.

Participant’s task in the scanner was to indicate on each trial,

using their right index and middle fingers corresponding to the

left and right response buttons respectively, which food item

they expected each person would choose based on his emotional

state. No feedback was given during the in-scanner task.

However, participants were familiarized with the preferences by

performing a practice task, which included feedback, until they

achieved an accuracy of at least 75%.

A 2 (Person: John, Alex) × 2 (Emotion: Happy, Sad)

repeated measures analysis of variance (ANOVA) revealed that

participants performed equally well in the ‘‘Preference’’ trials for

which there were correct answers (M = 93.7%); there was no

main effect of Person or Emotion, and no Person x Emotion

interaction (all ps > 0.5). However, there was a marginal main

effect of Emotion on response times (F(1,72) = 3.078, p = 0.084);

participants took longer to respond to Sad trials (M = 1486 ms)

than to Happy trials (M = 1362 ms).

Image Acquisition and Preprocessing
Data were acquired using a 3T Siemens TIM Trio scanner with

a 32-channel head coil. Functional images were acquired using

a multi-band echo-planar pulse sequence (TR = 1000 ms, TE =

30 ms, flip angle = 62◦, FOV = 210 mm, matrix = 84 × 84,

slice thickness = 2.5 mm, 51 slices). Two structural images were

acquired for registration: T1 coplanar images were acquired

using a T1 Flash sequence (TR = 285 ms, TE = 2.61 ms, flip

angle = 70◦, FOV= 220mm,matrix = 192× 192, slice thickness =

2.5 mm, 51 slices), and high-resolution images were acquired

using a 3DMP-RAGE sequence (TR = 2530ms, TE = 3.31ms, flip

angle = 7◦, FOV = 256 mm, matrix = 256 × 256, slice thickness =

1 mm, 176 slices).

Image preprocessing was performed using the FMRIB

Software Library (FSL).2 Structural and functional images were

skull-stripped using the Brain Extraction Tool (BET). The first

six volumes (6 s) of each functional dataset were discarded to

allow for MR equilibration. Functional images then underwent

motion correction (using the MCFLIRT linear realignment)

2http://www.fmrib.ox.ac.uk/fsl
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and high-pass filtering with a 0.01 Hz cut-off to remove

low-frequency drift. No spatial smoothing was applied to the

functional data. The functional images were registered to the

coplanar images, which were in turn registered to the high-

resolution structural images for subject-level analyses. Subject-

level results were later normalized to the Montreal Neurological

Institute’s MNI152 template, using non-linear registration, for

group-level analyses.

Multi-Voxel Pattern Analysis (MVPA)
To obtain data samples for the classification analysis,

participant’s preprocessed functional data were first normalized

to their structural image (which were resampled to the resolution

of the functional data) using the transformation matrix from

preprocessing. Regression analyses were then performed

to obtain beta estimates for each trial, using least-squares-

sum estimation (AFNI’s 3dLSS), which is recommended for

classification analyses involving fast event-related designs

(Mumford et al., 2012). The model consisted of separate

regressors for each 2-s trial from each condition, convolved

with a hemodynamic response function, along with the six

motion parameters obtained from preprocessing as nuisance

regressors. Estimates were obtained for each run separately, and

then concatenated to form a beta series for each participant.

All classification analyses were implemented using PyMVPA

(Hanke et al., 2009) using a Gaussian Naïve Bayes (GNB)

classifier and a leave-one-run-out cross-validation scheme.

Only correct trials were included in the analysis and PyMVPA’s

Balancer function was used to ensure an equal number of

trials across conditions for each cross-validation fold. To

determine if a region could discriminate between the different

contexts, we used a GNB classifier to perform a four-way

classification to discriminate correct ‘‘Preference’’ trials (i.e., H1,

S1, H2, S2).

A significant four-way classification can arise from accurate

classification of some categories but not others. Therefore, we

focused our discussion on regions where the classifier made the

correct prediction about the actual target category on majority of

the trials, that is, where the diagonal elements of the confusion

matrix had the highest numerical value in each row. For each

participant, the confusion matrices from all voxels within each

searchlight cluster were averaged. The mean confusion matrix

was then scaled such that each cell in the resulting confusion

matrix reflected the percentage of trials in each category that were

classified as each of the four potential categories (e.g., percentage

of H1 trials classified as H1 trials, S1 trials, H2 trials, S2 trials).

The cells in each row therefore add up to 100 (or approximately

100 due to rounding). The group-level confusion matrix for each

searchlight cluster was obtained by averaging the subject-level

confusion matrices.

To verify that a successful four-way classification of

the ‘‘Preference’’ trials indeed reflected context-dependent

expectations (i.e., each individual’s preferences and their

emotional state), we also conducted a two-way classification

on the control ‘‘No Preference’’ trials (i.e., H3, S3). Here, we

expected that these trials should not be successfully discriminated

since there was no preference and therefore no contextual

information from which participants could form an expectation

about the individual’s choice. Only trials with behavioral

responses were included in the analysis (i.e., missed trials were

excluded).

ROI-Based MVPA
An independent pSTS ROI was obtained from the Atlas of Social

Agent Perception (Engell andMcCarthy, 2013). Briefly, this Atlas

included results from a Biological Motion localizer (consisting

of blocks of point-light figures and blocks of their scrambled

counterparts) that was run on 121 participants. The probability

map of the Biological Motion > Scrambled Motion contrast,

which localizes the pSTS, was thresholded at 0.1 and intersected

with the right Supramarginal Gyrus from the Harvard Oxford

Atlas to obtain a liberal pSTS mask. The mask was further

edited manually to remove voxels spreading into the parietal

operculum. The resulting ROI of 751 voxels (Figure 1, in yellow)

was then transformed into subject-space for each participant.

The beta estimates within the ROI were mean-normalized

by z-scoring within each sample to remove mean differences

between samples. Feature selection was performed on the

samples in the training set of each cross-validation fold by

conducting a one-way ANOVA on the beta estimates for the

four ‘‘Preference’’ trials for each voxel in the pSTS ROI. The

top 123 voxels (to match the number of voxels used for the

searchlight analysis described later) that showed the greatest

variance between the four trial types were selected as features for

that cross-validation fold. The accuracies from all participants

were then averaged to obtain the group level classification

accuracy.

Significance testing at the group level was implemented

using a combination of permutation and bootstrap sampling

methods (Stelzer et al., 2013). Specifically, the data labels for

each participant were permuted (within each run) 100 times

and the classification analysis was repeated using each permuted

label set to yield 100 chance accuracies for each participant. We

then randomly drew one of the chance accuracies from each

participant and averaged these accuracies to obtain a chance

group-level accuracy. This random sampling (with replacement)

was repeated 105 times to create a group-level null distribution.

The true group-level classification accuracy was then compared

to the null distribution to obtain the p-value associated with the

accuracy.

Whole-Brain Searchlight Analysis
To identify other brain regions that discriminate context-specific

information, we conducted a whole-brain searchlight analysis

in subject-space for each participant with a three-voxel-radius

searchlight consisting of 123 voxels centered on every non-zero

voxel in an MNI152 brain mask. The four-way classification

analysis performed for each searchlight followed the method

used in the ROI-based analysis, except that no feature selection

was conducted. The classification accuracy for each searchlight

was assigned to the voxel at the center of the searchlight, yielding

a whole-brain classification accuracy map for each participant.

Each participant’s accuracy map was transformed back into

MNI152 template space. The group-level classification accuracy
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map was obtained by averaging the accuracy maps from all

participants.

Significance testing of the whole-brain classification results

also used permutation and bootstrap sampling methods, along

with cluster thresholding to correct for multiple comparisons

(Stelzer et al., 2013). Specifically, we ran the searchlight

classification analysis for each participant an additional 100

times, each time using a random permutation of the data

labels (within each run), thus producing an accuracy map of

chance classification. Each participant therefore had 100 chance

accuracy maps. Each of these maps was then normalized to the

MNI152 template space. To obtain a null distribution for the

group level classification accuracies, we generated 105 group-

level chance accuracy maps, each of which was obtained by

choosing a random chance accuracy map from each participant

and averaging those randomly chosen maps. A whole-brain

threshold of p < 0.001 at each voxel was then applied to the

group-level accuracy map.

Cluster thresholding was used to correct for multiple

comparisons. Each of the 105 group-level chance maps were also

thresholded at voxel-wise p < 0.001. We recorded the number

of clusters for each cluster size occurring in each of these 105

thresholded chance maps and generated a null distribution of

clusters. Each recorded cluster across all 105 chance maps was

then assigned a p-value based on the occurrence of its size in

the chance-level cluster distribution. Significant clusters were

those whose probability survived a false discovery rate (FDR) of

q < 0.05. To verify that the significant four-way classification

reflected accurate discrimination of all four categories, a cluster-

level confusion matrix was obtained by averaging the confusion

matrices of all searchlights in each significant cluster.

We also conducted a whole-brain searchlight analysis

performing a two-way classification using the two ‘‘No

Preference’’ trials in each searchlight to verify that regions

that discriminated the four ‘‘Preference’’ trials did not also

discriminate the two ‘‘No Preference’’ trials.

Results

Classification Analysis on the pSTS
Region-of-Interest (ROI)
No significant four-way classification of ‘‘Preference’’ trials was

found in the pSTS ROI (M = 25.49%, p = 0.314). There was

also no significant two-way classification for the control ‘‘No

Preference’’ trials (M = 48.89%, p = 0.792). To assess if the

four-way classification would improve with a larger number of

features, the classification analysis was also run with the top

200, 300, and 400 voxels from the feature selection, but no

improvement in the four-way classification accuracy was found

(200 voxels: M = 25.36%, 300 voxels: M = 25.34%, 400 voxels:

M = 25.71%, all ps > 0.2). We also performed a separate two-

way classification, using only ‘‘Preference’’ trials, to assess if the

pSTS could discriminate the expected outcome (in this case food

choice, i.e., meat vs. vegetables). No successful discrimination of

expected outcome was found with any feature selection size (all

ps > 0.5).

Whole-Brain Searchlight Analysis
Regions that successfully discriminated the ‘‘Preference’’ trials

in the whole-brain searchlight four-way classification analysis

included the left inferior parietal lobule/intraparietal sulcus

(L IPL/IPS) spanning from the angular gyrus to the intraparietal

sulcus, precuneus, right intraparietal sulcus (R IPS), anterior

medial prefrontal cortex (amPFC), left middle temporal gyrus

(L MTG), dorsal anterior cingulate cortex (dACC), superior

frontal gyrus (SFG), left anterior temporal lobe (L ATL) at

the anterior MTG, and right inferior frontal sulcus (R IFS;

Figure 2, in red and orange; coordinates of peaks are reported

in Table 1). Of these regions, the L IPL/IPS, R IPS, amPFC,

L MTG, and L ATL (Figure 2, in red) yielded confusion matrices

where the diagonal elements had the highest numerical value in

each row (Figure 3). No regions successfully discriminated the

‘‘No Preference’’ trials in the whole-brain searchlight two-way

classification analysis.

Discussion

The current study sought to investigate the neural substrates

of assessing contextual information to form expectations about

an agent’s goal. To this end, participants were presented

with fictitious individuals who had emotion-dependent food

preferences, and were asked to indicate which food they expected

each individual to choose given the individual’s emotional state.

Here, knowledge about each individual’s emotion-dependent

food preferences and the individual’s current emotional state

served as a unique context that informed the observer’s

expectation of the individual’s food choice (i.e., his goal). We

assessed if the different contexts could be discriminated based on

FIGURE 2 | The posterior superior temporal sulcus (pSTS) region-of-

interest (ROI) obtained from the Atlas of Social Perception (Engell and

McCarthy, 2013) for the ROI-based MVPA is displayed in yellow. Clusters of

searchlight centers with significant four-way classification of the “Preference”

trials in the whole-brain searchlight analysis are displayed in red and orange.

Regions in red (i.e., L IPL/IPS, R IPS, amPFC, L MTG, and L ATL) had

confusion matrices in which the diagonal elements had the highest numerical

value in each row.
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TABLE 1 | Coordinates of peak accuracy in each searchlight cluster.

Region MNI coordinates (mm) Number of

searchlights

x y z

Left inferior parietal lobule −40 −50.5 48 553

(L IPL/IPS)∗

Precuneus 5 −63 38 429

Right intraparietal sulcus 32.5 −58 43 341

(R IPS)∗

Anterior medial prefrontal

cortex (amPFC)* −12.5 54.5 0.5 217

Left middle temporal gyrus −62.5 −25.5 −24.5 216

(L MTG)∗

Dorsal anterior cingulate −10 19.5 35.5 163

cortex (dACC)

Superior frontal gyrus (SFG) −7.5 49.5 38 106

Left anterior temporal lobe −60 −5.5 −19.5 99

(L ATL)∗

Right inferior frontal sulcus 47.5 19.5 20.5 82

(R IFS)

*Regions with confusion matrices in which the diagonal elements had the highest

numerical value in each row.

the spatial pattern of activity in different brain areas. Given the

consistently observed influence of context of pSTS activity, the

pSTS served as a ROI on which we performed a targeted analysis.

We also conducted a whole-brain searchlight analysis to identify

other regions in the brain that might discriminate between

contexts. Despite using a liberal mask and selecting voxels

that varied the most between trials to optimize classification

performance, no evidence for context discrimination was found

in the pSTS. However, we found robust evidence for context

discrimination in three-voxel-radius searchlights centered in a

network of other regions in the brain, including the left IPL/IPS,

right IPS, amPFC, left MTG, and left ATL.

The positive finding in the whole-brain analysis demonstrates

that our task was sensitive to our experimental manipulation,

but the lack of a positive finding in the pSTS does not

rule out the possibility that the pSTS may still represent

contextual information. A recent study found that MVPA

failed to find information about face identity in macaques,

even when single-unit recordings revealed the presence

of this information in the underlying neural populations

(Dubois et al., 2015), demonstrating the limitations of the

method. The different contexts presented in this study may

not be represented in a spatially organized or consistent

way in the pSTS, which is what a successful classification

analysis using MVPA requires. Alternatively, the pSTS could

represent contextual information, but only those conveyed

through visual or other sensory modalities, as was used in

previous studies, and not those conveyed through linguistic,

conceptual means, as was used in this study. Similarly, the

pSTS may not represent information about an agent’s

stable preferences, which is only one type of contextual

information, but may represent other types of contextual

information that are conveyed through the stimulus, such

as facial expressions. Indeed, the analysis rested on the

assumption that regardless of the nature of the context,

there should be a point of convergence where the contextual

information is interpreted and translated into an expected

outcome.

Relatedly, the searchlights that discriminated the different

contexts were centered in regions associated with semantic

processing and retrieval. The left ATL is involved in semantic

processing (Visser et al., 2010), and has been shown to be

particularly important for processing person-specific semantic

information (Brambati et al., 2010), which could refer to each

individual’s context-specific preferences in this study. Meta-

analyses have also found that the parietal lobules and MTG

regions are involved in episodic (Spaniol et al., 2009) and

semantic (Binder et al., 2009) retrieval. However, previous studies

that have used scenes to convey context have instead implicated

the retrosplenial cortex and parahippocampal gyrus, which are

associated with scene processing (Bar, 2009). The differences

in regions implicated suggest that the regions that successfully

discriminated the different contexts in this study may not

necessarily be involved in all types of context processing, but

could reflect the specific type of contextual information that is

used in this task. In our study, the regions that showed successful

context discrimination have previously been implicated in

semantic processing and retrieval, which may reflect the retrieval

of learned person knowledge required for the task. Similarly,

Zaki et al. (2010) also found greater engagement of amPFC, left

temporal and parietal regions when participants used contextual

cues (e.g., text describing affective events) to infer a person’s

emotional state than when watching a silent video of the person

describing the events.

Notably, the region that was commonly implicated in both

types of context studies was the amPFC, which may suggest

that this region is critical for context processing more generally,

regardless of domain. Indeed, the mPFC has been proposed

to use contextual associations to form predictions (Bar, 2009).

The mPFC has also been implicated in integrating context

and past experience, albeit for guiding an organism’s responses

(Euston et al., 2012). One question that can be raised from this

observation is whether the same neural mechanisms are also

used to guide predictions about another’s response. Interestingly,

in a similar study, participants assessed how four individuals,

each with different personalities, would react in a given situation

(Hassabis et al., 2014). Successful discrimination of the four

personalities was found in the mPFC. In our study, we also

found successful within-personality discrimination, that is, of

each person and his emotional state, suggesting that mPFC

may make more fine-grained discriminations than personality

models. It is possible therefore that the four personalities

in Hassabis et al. (2014) represented four different contexts

that informed participants’ expectations about the agents’

reactions.

If the pSTS is not involved in re-evaluating contextual

information, then what might explain the commonly observed

increase in activity to unexpected actions? Given that this

region also shows greater response to attention reorienting tasks

(Corbetta et al., 2008; Lee and McCarthy, 2014), the increased

activity could reflect attention reorienting, or prediction error

signals (Koster-Hale and Saxe, 2013). One study, however,
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FIGURE 3 | Confusion matrices from each significant cluster from the four-way classification. Each cell reflects the group-level proportion of each type of

trial (in rows) that were classified as each of the four types of trials (in columns). The cells in each row therefore add up to 100 (or approximately 100 due to rounding).

Cells are colored according to a gradient ranging from the lowest (gray) to highest numbers (red). Successful classification of all four categories is reflected through

strong red colors in the diagonal from top left to bottom right. The first five regions (i.e., L IPL, R IPS, amPFC, L MTG, and L ATL) had confusion matrices in which the

diagonal elements had the highest numerical value in each row. H1: John-happy, H2: Alex-happy, S1: John-sad, S2: Alex-sad.

dissociated attention reorienting from stimulus evaluations and

suggested that the pSTS at the temporoparietal junction is

involved in stimulus evaluation instead of reorienting attention

(Han and Marois, 2014). Therefore, the increased activity could

also reflect greater stimulus evaluation, given the unexpectedness

of the stimulus.

Another possibility is that the pSTS represents the expected

outcome (e.g., a specific action), and when the outcome violates

expectations, the region re-represents the outcome, leading to

increased activity. However, we also found no evidence that the

pSTS could discriminate between expected outcomes (in this

case, the meat dish or vegetable dish) in this study. Indeed, the

target object of an agent’s reach was found to be encoded in

the left IPS instead (Hamilton and Grafton, 2006). It is also

possible that the pSTS’ representation of expected outcomes

could be specific to the domain of motion information and not

static pictures as was used here, especially since the pSTS is

known to respond robustly to biological motion (Allison et al.,

2000; Puce and Perrett, 2003). For example, Said et al. (2010)

found successful discrimination of dynamic facial expressions

in the pSTS. However, motion was not presented in this study

because our aim was to investigate the expectation phase of

observation with no feedback, and goal-directed motion would

inevitably hint at an outcome. A study that investigates if the
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pSTS can discriminate between different expected actions can

address this issue.

Limitations
One limitation of this study is the rule-based nature of the

task. That is, participants could have learned and applied

the face-emotion-food combinations without reflecting on the

person’s goal. The left IPL/IPS has been found to represent

event-specific (i.e., specific word-picture pairings) information

(Kuhl and Chun, 2014), which resembles the face picture and

emotional word pairings in the current study. We did not,

however, find successful classification of the two types of ‘‘No

Preference’’ trials, which suggests that there was additional

information being represented in the four-way classification

than just the face-emotion combination (perhaps the more

subtle face-emotion-word combination). Other studies have

also found decoding of task rules in the IPS (Woolgar

et al., 2011; Zhang et al., 2013). It is possible, though,

that the same mechanisms underlie action observation. For

example, in Vander Wyk et al. (2009, 2012), an observer

who sees a person scowling at an object presumably expects

the person to retrieve the other object due to some internal

rule, for example, Bayesian models for cue integration (Zaki,

2013).

Conclusion
In summary, we found no evidence that the right pSTS,

a region that has been shown to be sensitive to the

context in which the observed movements of others occur,

discriminates contextual information. We did, however, identify

a network of other brain regions commonly associated with

context processing and semantic and memory retrieval that

successfully discriminated contexts. These regions possibly

support the formation of context-dependent expectations of an

agent’s goal.
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